organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o733-o734

4-[(E)-(4-Hy­dr­oxy­benzyl­­idene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Studies in Chemistry, Industrial Chemistry Division, Mangalore University, Mangalagangotri 574 199, D.K., Mangalore, India, bDepartment of Chemistry, P. A. College of Engineering, Nadupadavu 574 153, D.K., Mangalore, India, cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, D.K., India, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 26 May 2014; accepted 27 May 2014; online 31 May 2014)

The title compound, C10H10N4OS, is nearly planar with the mean planes of the hy­droxy­benzyl and triazole rings inclined at an angle of only 3.2 (7)°. In the crystal, O—H⋯N hydrogen bonds between the hy­droxy group and the triazole ring in concert with weak N—H⋯S inter­molecular inter­actions between the triazole ring and thione group form chains along [-210] enclosing R22(8) graph-set motifs. A weak intra­molecular C—H⋯S inter­action and inter­molecular ππ inter­actions [centroid–centroid distance = 3.5990 (15) Å] are also observed.

Related literature

For the chemistry of Schiff base compounds, see: Dubey & Vaid (1991[Dubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1299-1311.]); Yadav et al. (1994[Yadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 925-939.]). For uses of Schiff bases in analytical applications and metal coordination, see: Galic et al. (2001[Galic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187-194.]); Wyrzykiewicz & Prukah (1998[Wyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381-387.]); Reddy & Lirgappa (1994[Reddy, H. & Lirgappa, Y. (1994). Indian J. Heterocycl. Chem. 33, 919-923.]). For the chemical and biological activity of Schiff base compounds, see: Barrera et al. (1985[Barrera, H., Vinas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027-2030.]); Dornow et al. (1964[Dornow, M. H. & Marx, P. (1964). Chem. Ber. 97, 2173-2178.]); Malik et al. (2011[Malik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387-1394.]); Thieme et al. (1973a[Thieme, P., Konig, H. & Amann, A. (1973a). BASF, Ger. Patent 2228259.],b[Thieme, P., Konig, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q.]); Wei & Bell (1982[Wei, P. H. L. & Bell, C. S. (1982). American Home Products Corp., US Patent 4302585 (1981); Chem. Abstr. 96, 104227.]). For related structures see: Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Sarojini, B. K. & Narayana, B. (2012). Acta Cryst. E68, o2193.]); Praveen et al. (2012[Praveen, A. S., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o3435.]); Kubicki et al. (2012[Kubicki, M., Dutkiewicz, G., Praveen, A. S., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2012). J. Chem. Crystallogr. 42, 432-437.]); Jeyaseelan et al. (2012[Jeyaseelan, S., Devarajegowda, H. C., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1407.]); Devarajegowda et al. (2012[Devarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607.]); Vinduvahini et al. (2011[Vinduvahini, M., Roopashree, K. R., Bhattacharya, S., Krishna, K. M. & Devaru, V. B. (2011). Acta Cryst. E67, o2535-o2536.]); Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); Ding et al. (2009[Ding, Q.-C., Huang, Y.-L., Jin, J. Y., Zhang, L.-X., Zhou, C. F. & Hu, M.-L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 105-106.]); Sarojini et al. (2007a[Sarojini, B. K., Yathirajan, H. S., Narayana, B., Sunil, K. & Bolte, M. (2007a). Acta Cryst. E63, o3521.],b[Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4OS

  • Mr = 234.28

  • Triclinic, [P \overline 1]

  • a = 5.7677 (5) Å

  • b = 7.7233 (8) Å

  • c = 12.7269 (12) Å

  • α = 84.104 (8)°

  • β = 77.719 (8)°

  • γ = 73.358 (9)°

  • V = 530.23 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.59 mm−1

  • T = 173 K

  • 0.28 × 0.16 × 0.12 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.723, Tmax = 1.000

  • 3082 measured reflections

  • 1987 independent reflections

  • 1658 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.151

  • S = 1.05

  • 1987 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3i 0.84 1.98 2.804 (3) 165
N4—H4⋯S1ii 0.88 2.46 3.324 (2) 166
C3—H3⋯S1 0.95 2.49 3.234 (3) 135
Symmetry codes: (i) x-2, y+1, z; (ii) -x+3, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

During the last few decades, there has been a considerable interest in the chemistry of Schiff base compounds (Dubey & Vaid 1991; Yadav et al., 1994). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001; Wyrzykiewicz & Prukah, 1998; Reddy & Lirgappa, 1994). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei & Bell, 1982), analgesic (Thieme et al., 1973a,b), anti-inflammatory (Dornow et al., 1964), sedative (Barrera et al., 1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical and biological activity. The crystal structures of some of the related Schiff bases viz: 3-ethyl-4-[(E)-(4-fluorobenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Jeyaseelan et al., 2012); 4-[(E)-(4-fluorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione (Devarajegowda et al., 2012); 3-[2-(2,6-dichloro-anilino)benzyl]-4-[(4-methoxybenzylidene)amino]-1H-1,2,4- triazole-5(4H)-thione (Vinduvahini et al., 2011); 3-(adamantan-1-yl)-1-[(4-ethylpiperazin-1-yl)methyl]-4-[(E)-(4-hydroxy- benzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Almutairi et al., 2012); 4-{(2E)-2-[1-(4-Methoxyphenyl)ethylidene]hydrazinyl}-8-(trifluoromethyl) quinoline (Kubicki et al., 2012); (E)-N'-(4-Methoxybenzylidene)-2-m-tolylacetohydrazide (Praveen et al., 2012); (1Z)-1-[(2E)-3-(4-Bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-ylidene]-2- (2,4-dinitrophenyl)hydrazine (Kant et al., 2012); (E)-3-(2-ethoxyphenyl)-4-(2-fluorobenzylideneamino)-1H-1,2,4-triazole-5(4H)- thione (Ding et al., 2009) have been reported. Crystal structures of some Schiff bases were also reported by our group (Sarojini et al., 2007a,b). The present work describes the synthesis and crystal structure of the title compound, (I), C10H10N4OS.

In (I), the molecule is nearly planar with the mean planes of the hydroxybenzyl and triazole rings inclined at an angle of only 3.2 (7)°. (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, O—H···N hydrogen bonds between the hydroxy group and triazole ring in concert with weak N—H···S intermolecular interactions between the triazole ring and thione group form infinite polymeric 1-dimensional chains along [-2 1 0] displaying R22(8) graph set motifs (Fig. 2). As the chains are extended, additional graph set motifs [R44(28), R44(30), R44(32), R66(50), R66(52) & R66(54)] are also formed. A weak C—H···S intramolecular interaction (Table 1) and weak π···π intermolecular interactions (Cg1–Cg2 = 3.5990 (15)Å, 1+x, y, z; (Cg1 and Cg2 are the centroids of the N2/C1/N3/N4/C2 and C4–C9 rings respectively) are also observed.

Related literature top

For the chemistry of Schiff base compounds, see: Dubey & Vaid (1991); Yadav et al. (1994). For uses of Schiff bases in analytical applications and metal coordination, see: Galic et al. (2001); Wyrzykiewicz & Prukah (1998); Reddy & Lirgappa (1994). For the chemical and biological activity of Schiff base compounds, see: Barrera et al. (1985); Dornow et al. (1964); Malik et al. (2011); Thieme et al. (1973a,b); Wei & Bell (1982). For related structures see: Kant et al. (2012); Praveen et al. (2012); Kubicki et al. (2012); Jeyaseelan et al. (2012); Devarajegowda et al. (2012); Vinduvahini et al. (2011); Almutairi et al. (2012); Ding et al. (2009); Sarojini et al. (2007a,b). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a suspension of 4-hydroxy benzaldehyde (1.22g, 0.01mol) in ethanol (15ml), 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01mol, 1.3g) was added and heated to get a clear solution. To this a few drops of conc. H2SO4 was added as a catalyst and refluxed for 36 hr. on a water bath (Fig. 3). The precipitate formed was filtered and recrystallized from methanol to get the title compound, (I). Single crystals were grown from methanol by the slow evaporation method (m.p. 505–507 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.98Å (CH3), 0.84Å (OH) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me and tetrahedral OH (O1(H1))were refined as rotating groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I), C10H10N4OS, showing the labeling scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate O—H···N hydogen bonds between the hydroxy group and triazole ring and weak S—H···S intermolecular interactions between the triazole ring and thione group forming infinite polymeric 1-dimensional chains along [210] and displaying R22(8) graph-set motifs. H atoms not involved in hydrogen bonding or weak intermolecular interactions have been removed for clarity.
[Figure 3] Fig. 3. Reaction scheme.
4-[(E)-(4-Hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C10H10N4OSZ = 2
Mr = 234.28F(000) = 244
Triclinic, P1Dx = 1.467 Mg m3
a = 5.7677 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.7233 (8) ÅCell parameters from 1294 reflections
c = 12.7269 (12) Åθ = 6.0–71.1°
α = 84.104 (8)°µ = 2.59 mm1
β = 77.719 (8)°T = 173 K
γ = 73.358 (9)°Prism, colourless
V = 530.23 (9) Å30.28 × 0.16 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
1987 independent reflections
Radiation source: Enhance (Cu) X-ray Source1658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 3.6°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 89
Tmin = 0.723, Tmax = 1.000l = 1115
3082 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.0331P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1987 reflectionsΔρmax = 0.62 e Å3
147 parametersΔρmin = 0.40 e Å3
0 restraints
Crystal data top
C10H10N4OSγ = 73.358 (9)°
Mr = 234.28V = 530.23 (9) Å3
Triclinic, P1Z = 2
a = 5.7677 (5) ÅCu Kα radiation
b = 7.7233 (8) ŵ = 2.59 mm1
c = 12.7269 (12) ÅT = 173 K
α = 84.104 (8)°0.28 × 0.16 × 0.12 mm
β = 77.719 (8)°
Data collection top
Agilent Eos Gemini
diffractometer
1987 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
1658 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 1.000Rint = 0.030
3082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05Δρmax = 0.62 e Å3
1987 reflectionsΔρmin = 0.40 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.11567 (12)0.19885 (9)0.52135 (5)0.0379 (3)
O10.1143 (3)0.9783 (3)0.86418 (16)0.0377 (5)
H10.20481.00770.81800.057*
N10.9248 (4)0.4001 (3)0.76560 (17)0.0283 (5)
N21.1501 (4)0.2819 (3)0.72431 (16)0.0256 (4)
N31.5264 (4)0.1215 (3)0.73740 (18)0.0307 (5)
N41.4752 (4)0.1066 (3)0.63900 (17)0.0300 (5)
H41.58350.04200.58810.036*
C11.2477 (4)0.1981 (3)0.6267 (2)0.0265 (5)
C21.3255 (4)0.2280 (3)0.7878 (2)0.0287 (5)
C30.7774 (5)0.4764 (3)0.7032 (2)0.0318 (6)
H30.81790.44910.62930.038*
C40.5459 (4)0.6061 (3)0.7454 (2)0.0276 (5)
C50.3644 (5)0.6680 (4)0.6829 (2)0.0322 (6)
H50.39440.62500.61260.039*
C60.1427 (5)0.7901 (3)0.7209 (2)0.0316 (6)
H60.02100.82980.67730.038*
C70.0976 (4)0.8550 (3)0.8236 (2)0.0289 (5)
C80.2773 (5)0.7967 (3)0.8869 (2)0.0327 (6)
H80.24820.84200.95660.039*
C90.4976 (5)0.6732 (3)0.8483 (2)0.0324 (6)
H90.61860.63290.89230.039*
C101.2826 (5)0.2836 (4)0.9004 (2)0.0384 (6)
H10A1.16640.22400.94670.058*
H10B1.21390.41510.90290.058*
H10C1.43920.24810.92590.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0299 (4)0.0437 (4)0.0324 (4)0.0105 (3)0.0096 (3)0.0190 (3)
O10.0277 (10)0.0413 (11)0.0346 (10)0.0111 (8)0.0076 (8)0.0141 (8)
N10.0209 (10)0.0271 (10)0.0295 (11)0.0057 (8)0.0011 (8)0.0113 (8)
N20.0212 (10)0.0252 (9)0.0255 (10)0.0022 (8)0.0022 (8)0.0090 (8)
N30.0262 (11)0.0329 (11)0.0286 (11)0.0026 (9)0.0061 (8)0.0104 (8)
N40.0229 (10)0.0309 (10)0.0295 (11)0.0047 (8)0.0016 (8)0.0127 (8)
C10.0229 (11)0.0252 (11)0.0257 (11)0.0025 (9)0.0016 (9)0.0085 (9)
C20.0223 (12)0.0283 (12)0.0314 (13)0.0013 (9)0.0059 (10)0.0056 (10)
C30.0280 (13)0.0294 (12)0.0313 (13)0.0013 (10)0.0011 (10)0.0077 (10)
C40.0224 (12)0.0270 (11)0.0280 (12)0.0022 (9)0.0030 (9)0.0066 (9)
C50.0322 (13)0.0355 (13)0.0240 (12)0.0016 (11)0.0048 (10)0.0121 (10)
C60.0265 (13)0.0353 (13)0.0291 (13)0.0022 (10)0.0093 (10)0.0056 (10)
C70.0218 (12)0.0258 (11)0.0334 (13)0.0021 (9)0.0024 (10)0.0063 (10)
C80.0293 (13)0.0347 (13)0.0300 (13)0.0033 (11)0.0070 (10)0.0154 (11)
C90.0251 (13)0.0350 (13)0.0324 (13)0.0060 (10)0.0099 (10)0.0118 (11)
C100.0342 (15)0.0457 (15)0.0285 (13)0.0058 (12)0.0087 (11)0.0133 (12)
Geometric parameters (Å, º) top
S1—C11.675 (2)C4—C51.396 (4)
O1—H10.8400C4—C91.401 (4)
O1—C71.354 (3)C5—H50.9500
N1—N21.388 (3)C5—C61.378 (4)
N1—C31.267 (3)C6—H60.9500
N2—C11.392 (3)C6—C71.394 (4)
N2—C21.374 (3)C7—C81.393 (4)
N3—N41.369 (3)C8—H80.9500
N3—C21.295 (3)C8—C91.379 (3)
N4—H40.8800C9—H90.9500
N4—C11.334 (3)C10—H10A0.9800
C2—C101.488 (4)C10—H10B0.9800
C3—H30.9500C10—H10C0.9800
C3—C41.454 (3)
C7—O1—H1109.5C4—C5—H5119.3
C3—N1—N2119.5 (2)C6—C5—C4121.4 (2)
N1—N2—C1133.6 (2)C6—C5—H5119.3
C2—N2—N1118.42 (19)C5—C6—H6120.1
C2—N2—C1108.01 (19)C5—C6—C7119.7 (2)
C2—N3—N4104.1 (2)C7—C6—H6120.1
N3—N4—H4122.8O1—C7—C6122.3 (2)
C1—N4—N3114.5 (2)O1—C7—C8117.8 (2)
C1—N4—H4122.8C8—C7—C6119.8 (2)
N2—C1—S1130.18 (18)C7—C8—H8120.1
N4—C1—S1127.45 (18)C9—C8—C7119.9 (2)
N4—C1—N2102.3 (2)C9—C8—H8120.1
N2—C2—C10123.3 (2)C4—C9—H9119.5
N3—C2—N2111.1 (2)C8—C9—C4121.1 (2)
N3—C2—C10125.6 (2)C8—C9—H9119.5
N1—C3—H3120.2C2—C10—H10A109.5
N1—C3—C4119.6 (2)C2—C10—H10B109.5
C4—C3—H3120.2C2—C10—H10C109.5
C5—C4—C3120.1 (2)H10A—C10—H10B109.5
C5—C4—C9118.0 (2)H10A—C10—H10C109.5
C9—C4—C3121.9 (2)H10B—C10—H10C109.5
O1—C7—C8—C9179.1 (2)C2—N2—C1—S1175.0 (2)
N1—N2—C1—S14.7 (4)C2—N2—C1—N42.0 (3)
N1—N2—C1—N4178.3 (2)C2—N3—N4—C10.9 (3)
N1—N2—C2—N3178.6 (2)C3—N1—N2—C112.7 (4)
N1—N2—C2—C102.8 (4)C3—N1—N2—C2167.6 (2)
N1—C3—C4—C5169.2 (2)C3—C4—C5—C6179.6 (2)
N1—C3—C4—C911.1 (4)C3—C4—C9—C8179.7 (3)
N2—N1—C3—C4177.4 (2)C4—C5—C6—C70.5 (4)
N3—N4—C1—S1175.24 (19)C5—C4—C9—C80.0 (4)
N3—N4—C1—N21.9 (3)C5—C6—C7—O1178.4 (3)
N4—N3—C2—N20.5 (3)C5—C6—C7—C80.3 (4)
N4—N3—C2—C10178.1 (3)C6—C7—C8—C90.9 (4)
C1—N2—C2—N31.6 (3)C7—C8—C9—C40.7 (4)
C1—N2—C2—C10177.0 (2)C9—C4—C5—C60.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.841.982.804 (3)165
N4—H4···S1ii0.882.463.324 (2)166
C3—H3···S10.952.493.234 (3)135
Symmetry codes: (i) x2, y+1, z; (ii) x+3, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.841.982.804 (3)165.1
N4—H4···S1ii0.882.463.324 (2)166.1
C3—H3···S10.952.493.234 (3)134.9
Symmetry codes: (i) x2, y+1, z; (ii) x+3, y, z+1.
 

Acknowledgements

PSM gratefully acknowledges the Department of Chemistry, P. A. College of Engineering for providing research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationBarrera, H., Vinas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027–2030.  CSD CrossRef CAS Web of Science Google Scholar
First citationDevarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607.  CSD CrossRef IUCr Journals Google Scholar
First citationDing, Q.-C., Huang, Y.-L., Jin, J. Y., Zhang, L.-X., Zhou, C. F. & Hu, M.-L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 105–106.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDornow, M. H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178.  CrossRef CAS Web of Science Google Scholar
First citationDubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1299–1311.  CrossRef CAS Web of Science Google Scholar
First citationGalic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187–194.  CAS Google Scholar
First citationJeyaseelan, S., Devarajegowda, H. C., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1407.  CSD CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Sarojini, B. K. & Narayana, B. (2012). Acta Cryst. E68, o2193.  CSD CrossRef IUCr Journals Google Scholar
First citationKubicki, M., Dutkiewicz, G., Praveen, A. S., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2012). J. Chem. Crystallogr. 42, 432–437.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387–1394.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o3435.  CSD CrossRef IUCr Journals Google Scholar
First citationReddy, H. & Lirgappa, Y. (1994). Indian J. Heterocycl. Chem. 33, 919–923.  Google Scholar
First citationSarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Narayana, B., Sunil, K. & Bolte, M. (2007a). Acta Cryst. E63, o3521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThieme, P., Konig, H. & Amann, A. (1973a). BASF, Ger. Patent 2228259.  Google Scholar
First citationThieme, P., Konig, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q.  Google Scholar
First citationVinduvahini, M., Roopashree, K. R., Bhattacharya, S., Krishna, K. M. & Devaru, V. B. (2011). Acta Cryst. E67, o2535–o2536.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWei, P. H. L. & Bell, C. S. (1982). American Home Products Corp., US Patent 4302585 (1981); Chem. Abstr. 96, 104227.  Google Scholar
First citationWyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381–387.  CrossRef CAS Google Scholar
First citationYadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 925–939.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o733-o734
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds