organic compounds
4-[(E)-(4-Hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione
aDepartment of Studies in Chemistry, Industrial Chemistry Division, Mangalore University, Mangalagangotri 574 199, D.K., Mangalore, India, bDepartment of Chemistry, P. A. College of Engineering, Nadupadavu 574 153, D.K., Mangalore, India, cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, D.K., India, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
The title compound, C10H10N4OS, is nearly planar with the mean planes of the hydroxybenzyl and triazole rings inclined at an angle of only 3.2 (7)°. In the crystal, O—H⋯N hydrogen bonds between the hydroxy group and the triazole ring in concert with weak N—H⋯S intermolecular interactions between the triazole ring and thione group form chains along [-210] enclosing R22(8) graph-set motifs. A weak intramolecular C—H⋯S interaction and intermolecular π–π interactions [centroid–centroid distance = 3.5990 (15) Å] are also observed.
CCDC reference: 1005409
Related literature
For the chemistry of Schiff base compounds, see: Dubey & Vaid (1991); Yadav et al. (1994). For uses of in analytical applications and metal coordination, see: Galic et al. (2001); Wyrzykiewicz & Prukah (1998); Reddy & Lirgappa (1994). For the chemical and biological activity of Schiff base compounds, see: Barrera et al. (1985); Dornow et al. (1964); Malik et al. (2011); Thieme et al. (1973a,b); Wei & Bell (1982). For related structures see: Kant et al. (2012); Praveen et al. (2012); Kubicki et al. (2012); Jeyaseelan et al. (2012); Devarajegowda et al. (2012); Vinduvahini et al. (2011); Almutairi et al. (2012); Ding et al. (2009); Sarojini et al. (2007a,b). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1005409
10.1107/S1600536814012215/sj5405sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814012215/sj5405Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814012215/sj5405Isup3.cml
To a suspension of 4-hydroxy benzaldehyde (1.22g, 0.01mol) in ethanol (15ml), 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01mol, 1.3g) was added and heated to get a clear solution. To this a few drops of conc. H2SO4 was added as a catalyst and refluxed for 36 hr. on a water bath (Fig. 3). The precipitate formed was filtered and recrystallized from methanol to get the title compound, (I). Single crystals were grown from methanol by the slow evaporation method (m.p. 505–507 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.98Å (CH3), 0.84Å (OH) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me and tetrahedral OH (O1(H1))were refined as rotating groups.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C10H10N4OS | Z = 2 |
Mr = 234.28 | F(000) = 244 |
Triclinic, P1 | Dx = 1.467 Mg m−3 |
a = 5.7677 (5) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 7.7233 (8) Å | Cell parameters from 1294 reflections |
c = 12.7269 (12) Å | θ = 6.0–71.1° |
α = 84.104 (8)° | µ = 2.59 mm−1 |
β = 77.719 (8)° | T = 173 K |
γ = 73.358 (9)° | Prism, colourless |
V = 530.23 (9) Å3 | 0.28 × 0.16 × 0.12 mm |
Agilent Eos Gemini diffractometer | 1987 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1658 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 71.3°, θmin = 3.6° |
ω scans | h = −6→7 |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | k = −8→9 |
Tmin = 0.723, Tmax = 1.000 | l = −11→15 |
3082 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.151 | w = 1/[σ2(Fo2) + (0.0895P)2 + 0.0331P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
1987 reflections | Δρmax = 0.62 e Å−3 |
147 parameters | Δρmin = −0.40 e Å−3 |
0 restraints |
C10H10N4OS | γ = 73.358 (9)° |
Mr = 234.28 | V = 530.23 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.7677 (5) Å | Cu Kα radiation |
b = 7.7233 (8) Å | µ = 2.59 mm−1 |
c = 12.7269 (12) Å | T = 173 K |
α = 84.104 (8)° | 0.28 × 0.16 × 0.12 mm |
β = 77.719 (8)° |
Agilent Eos Gemini diffractometer | 1987 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 1658 reflections with I > 2σ(I) |
Tmin = 0.723, Tmax = 1.000 | Rint = 0.030 |
3082 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.62 e Å−3 |
1987 reflections | Δρmin = −0.40 e Å−3 |
147 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.11567 (12) | 0.19885 (9) | 0.52135 (5) | 0.0379 (3) | |
O1 | −0.1143 (3) | 0.9783 (3) | 0.86418 (16) | 0.0377 (5) | |
H1 | −0.2048 | 1.0077 | 0.8180 | 0.057* | |
N1 | 0.9248 (4) | 0.4001 (3) | 0.76560 (17) | 0.0283 (5) | |
N2 | 1.1501 (4) | 0.2819 (3) | 0.72431 (16) | 0.0256 (4) | |
N3 | 1.5264 (4) | 0.1215 (3) | 0.73740 (18) | 0.0307 (5) | |
N4 | 1.4752 (4) | 0.1066 (3) | 0.63900 (17) | 0.0300 (5) | |
H4 | 1.5835 | 0.0420 | 0.5881 | 0.036* | |
C1 | 1.2477 (4) | 0.1981 (3) | 0.6267 (2) | 0.0265 (5) | |
C2 | 1.3255 (4) | 0.2280 (3) | 0.7878 (2) | 0.0287 (5) | |
C3 | 0.7774 (5) | 0.4764 (3) | 0.7032 (2) | 0.0318 (6) | |
H3 | 0.8179 | 0.4491 | 0.6293 | 0.038* | |
C4 | 0.5459 (4) | 0.6061 (3) | 0.7454 (2) | 0.0276 (5) | |
C5 | 0.3644 (5) | 0.6680 (4) | 0.6829 (2) | 0.0322 (6) | |
H5 | 0.3944 | 0.6250 | 0.6126 | 0.039* | |
C6 | 0.1427 (5) | 0.7901 (3) | 0.7209 (2) | 0.0316 (6) | |
H6 | 0.0210 | 0.8298 | 0.6773 | 0.038* | |
C7 | 0.0976 (4) | 0.8550 (3) | 0.8236 (2) | 0.0289 (5) | |
C8 | 0.2773 (5) | 0.7967 (3) | 0.8869 (2) | 0.0327 (6) | |
H8 | 0.2482 | 0.8420 | 0.9566 | 0.039* | |
C9 | 0.4976 (5) | 0.6732 (3) | 0.8483 (2) | 0.0324 (6) | |
H9 | 0.6186 | 0.6329 | 0.8923 | 0.039* | |
C10 | 1.2826 (5) | 0.2836 (4) | 0.9004 (2) | 0.0384 (6) | |
H10A | 1.1664 | 0.2240 | 0.9467 | 0.058* | |
H10B | 1.2139 | 0.4151 | 0.9029 | 0.058* | |
H10C | 1.4392 | 0.2481 | 0.9259 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0299 (4) | 0.0437 (4) | 0.0324 (4) | 0.0105 (3) | −0.0096 (3) | −0.0190 (3) |
O1 | 0.0277 (10) | 0.0413 (11) | 0.0346 (10) | 0.0111 (8) | −0.0076 (8) | −0.0141 (8) |
N1 | 0.0209 (10) | 0.0271 (10) | 0.0295 (11) | 0.0057 (8) | −0.0011 (8) | −0.0113 (8) |
N2 | 0.0212 (10) | 0.0252 (9) | 0.0255 (10) | 0.0022 (8) | −0.0022 (8) | −0.0090 (8) |
N3 | 0.0262 (11) | 0.0329 (11) | 0.0286 (11) | 0.0026 (9) | −0.0061 (8) | −0.0104 (8) |
N4 | 0.0229 (10) | 0.0309 (10) | 0.0295 (11) | 0.0047 (8) | −0.0016 (8) | −0.0127 (8) |
C1 | 0.0229 (11) | 0.0252 (11) | 0.0257 (11) | 0.0025 (9) | −0.0016 (9) | −0.0085 (9) |
C2 | 0.0223 (12) | 0.0283 (12) | 0.0314 (13) | 0.0013 (9) | −0.0059 (10) | −0.0056 (10) |
C3 | 0.0280 (13) | 0.0294 (12) | 0.0313 (13) | 0.0013 (10) | −0.0011 (10) | −0.0077 (10) |
C4 | 0.0224 (12) | 0.0270 (11) | 0.0280 (12) | 0.0022 (9) | −0.0030 (9) | −0.0066 (9) |
C5 | 0.0322 (13) | 0.0355 (13) | 0.0240 (12) | 0.0016 (11) | −0.0048 (10) | −0.0121 (10) |
C6 | 0.0265 (13) | 0.0353 (13) | 0.0291 (13) | 0.0022 (10) | −0.0093 (10) | −0.0056 (10) |
C7 | 0.0218 (12) | 0.0258 (11) | 0.0334 (13) | 0.0021 (9) | −0.0024 (10) | −0.0063 (10) |
C8 | 0.0293 (13) | 0.0347 (13) | 0.0300 (13) | 0.0033 (11) | −0.0070 (10) | −0.0154 (11) |
C9 | 0.0251 (13) | 0.0350 (13) | 0.0324 (13) | 0.0060 (10) | −0.0099 (10) | −0.0118 (11) |
C10 | 0.0342 (15) | 0.0457 (15) | 0.0285 (13) | 0.0058 (12) | −0.0087 (11) | −0.0133 (12) |
S1—C1 | 1.675 (2) | C4—C5 | 1.396 (4) |
O1—H1 | 0.8400 | C4—C9 | 1.401 (4) |
O1—C7 | 1.354 (3) | C5—H5 | 0.9500 |
N1—N2 | 1.388 (3) | C5—C6 | 1.378 (4) |
N1—C3 | 1.267 (3) | C6—H6 | 0.9500 |
N2—C1 | 1.392 (3) | C6—C7 | 1.394 (4) |
N2—C2 | 1.374 (3) | C7—C8 | 1.393 (4) |
N3—N4 | 1.369 (3) | C8—H8 | 0.9500 |
N3—C2 | 1.295 (3) | C8—C9 | 1.379 (3) |
N4—H4 | 0.8800 | C9—H9 | 0.9500 |
N4—C1 | 1.334 (3) | C10—H10A | 0.9800 |
C2—C10 | 1.488 (4) | C10—H10B | 0.9800 |
C3—H3 | 0.9500 | C10—H10C | 0.9800 |
C3—C4 | 1.454 (3) | ||
C7—O1—H1 | 109.5 | C4—C5—H5 | 119.3 |
C3—N1—N2 | 119.5 (2) | C6—C5—C4 | 121.4 (2) |
N1—N2—C1 | 133.6 (2) | C6—C5—H5 | 119.3 |
C2—N2—N1 | 118.42 (19) | C5—C6—H6 | 120.1 |
C2—N2—C1 | 108.01 (19) | C5—C6—C7 | 119.7 (2) |
C2—N3—N4 | 104.1 (2) | C7—C6—H6 | 120.1 |
N3—N4—H4 | 122.8 | O1—C7—C6 | 122.3 (2) |
C1—N4—N3 | 114.5 (2) | O1—C7—C8 | 117.8 (2) |
C1—N4—H4 | 122.8 | C8—C7—C6 | 119.8 (2) |
N2—C1—S1 | 130.18 (18) | C7—C8—H8 | 120.1 |
N4—C1—S1 | 127.45 (18) | C9—C8—C7 | 119.9 (2) |
N4—C1—N2 | 102.3 (2) | C9—C8—H8 | 120.1 |
N2—C2—C10 | 123.3 (2) | C4—C9—H9 | 119.5 |
N3—C2—N2 | 111.1 (2) | C8—C9—C4 | 121.1 (2) |
N3—C2—C10 | 125.6 (2) | C8—C9—H9 | 119.5 |
N1—C3—H3 | 120.2 | C2—C10—H10A | 109.5 |
N1—C3—C4 | 119.6 (2) | C2—C10—H10B | 109.5 |
C4—C3—H3 | 120.2 | C2—C10—H10C | 109.5 |
C5—C4—C3 | 120.1 (2) | H10A—C10—H10B | 109.5 |
C5—C4—C9 | 118.0 (2) | H10A—C10—H10C | 109.5 |
C9—C4—C3 | 121.9 (2) | H10B—C10—H10C | 109.5 |
O1—C7—C8—C9 | −179.1 (2) | C2—N2—C1—S1 | 175.0 (2) |
N1—N2—C1—S1 | −4.7 (4) | C2—N2—C1—N4 | −2.0 (3) |
N1—N2—C1—N4 | 178.3 (2) | C2—N3—N4—C1 | −0.9 (3) |
N1—N2—C2—N3 | −178.6 (2) | C3—N1—N2—C1 | −12.7 (4) |
N1—N2—C2—C10 | 2.8 (4) | C3—N1—N2—C2 | 167.6 (2) |
N1—C3—C4—C5 | −169.2 (2) | C3—C4—C5—C6 | 179.6 (2) |
N1—C3—C4—C9 | 11.1 (4) | C3—C4—C9—C8 | 179.7 (3) |
N2—N1—C3—C4 | −177.4 (2) | C4—C5—C6—C7 | 0.5 (4) |
N3—N4—C1—S1 | −175.24 (19) | C5—C4—C9—C8 | 0.0 (4) |
N3—N4—C1—N2 | 1.9 (3) | C5—C6—C7—O1 | 178.4 (3) |
N4—N3—C2—N2 | −0.5 (3) | C5—C6—C7—C8 | 0.3 (4) |
N4—N3—C2—C10 | 178.1 (3) | C6—C7—C8—C9 | −0.9 (4) |
C1—N2—C2—N3 | 1.6 (3) | C7—C8—C9—C4 | 0.7 (4) |
C1—N2—C2—C10 | −177.0 (2) | C9—C4—C5—C6 | −0.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N3i | 0.84 | 1.98 | 2.804 (3) | 165 |
N4—H4···S1ii | 0.88 | 2.46 | 3.324 (2) | 166 |
C3—H3···S1 | 0.95 | 2.49 | 3.234 (3) | 135 |
Symmetry codes: (i) x−2, y+1, z; (ii) −x+3, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N3i | 0.84 | 1.98 | 2.804 (3) | 165.1 |
N4—H4···S1ii | 0.88 | 2.46 | 3.324 (2) | 166.1 |
C3—H3···S1 | 0.95 | 2.49 | 3.234 (3) | 134.9 |
Symmetry codes: (i) x−2, y+1, z; (ii) −x+3, −y, −z+1. |
Acknowledgements
PSM gratefully acknowledges the Department of Chemistry, P. A. College of Engineering for providing research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656. CSD CrossRef IUCr Journals Google Scholar
Barrera, H., Vinas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027–2030. CSD CrossRef CAS Web of Science Google Scholar
Devarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607. CSD CrossRef IUCr Journals Google Scholar
Ding, Q.-C., Huang, Y.-L., Jin, J. Y., Zhang, L.-X., Zhou, C. F. & Hu, M.-L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 105–106. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dornow, M. H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178. CrossRef CAS Web of Science Google Scholar
Dubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1299–1311. CrossRef CAS Web of Science Google Scholar
Galic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187–194. CAS Google Scholar
Jeyaseelan, S., Devarajegowda, H. C., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1407. CSD CrossRef IUCr Journals Google Scholar
Kant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Sarojini, B. K. & Narayana, B. (2012). Acta Cryst. E68, o2193. CSD CrossRef IUCr Journals Google Scholar
Kubicki, M., Dutkiewicz, G., Praveen, A. S., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2012). J. Chem. Crystallogr. 42, 432–437. Web of Science CSD CrossRef CAS Google Scholar
Malik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387–1394. Web of Science CrossRef CAS Google Scholar
Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580. Web of Science CrossRef CAS IUCr Journals Google Scholar
Praveen, A. S., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o3435. CSD CrossRef IUCr Journals Google Scholar
Reddy, H. & Lirgappa, Y. (1994). Indian J. Heterocycl. Chem. 33, 919–923. Google Scholar
Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarojini, B. K., Yathirajan, H. S., Narayana, B., Sunil, K. & Bolte, M. (2007a). Acta Cryst. E63, o3521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thieme, P., Konig, H. & Amann, A. (1973a). BASF, Ger. Patent 2228259. Google Scholar
Thieme, P., Konig, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q. Google Scholar
Vinduvahini, M., Roopashree, K. R., Bhattacharya, S., Krishna, K. M. & Devaru, V. B. (2011). Acta Cryst. E67, o2535–o2536. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wei, P. H. L. & Bell, C. S. (1982). American Home Products Corp., US Patent 4302585 (1981); Chem. Abstr. 96, 104227. Google Scholar
Wyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381–387. CrossRef CAS Google Scholar
Yadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 925–939. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the last few decades, there has been a considerable interest in the chemistry of Schiff base compounds (Dubey & Vaid 1991; Yadav et al., 1994). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001; Wyrzykiewicz & Prukah, 1998; Reddy & Lirgappa, 1994). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei & Bell, 1982), analgesic (Thieme et al., 1973a,b), anti-inflammatory (Dornow et al., 1964), sedative (Barrera et al., 1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical and biological activity. The crystal structures of some of the related Schiff bases viz: 3-ethyl-4-[(E)-(4-fluorobenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Jeyaseelan et al., 2012); 4-[(E)-(4-fluorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione (Devarajegowda et al., 2012); 3-[2-(2,6-dichloro-anilino)benzyl]-4-[(4-methoxybenzylidene)amino]-1H-1,2,4- triazole-5(4H)-thione (Vinduvahini et al., 2011); 3-(adamantan-1-yl)-1-[(4-ethylpiperazin-1-yl)methyl]-4-[(E)-(4-hydroxy- benzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Almutairi et al., 2012); 4-{(2E)-2-[1-(4-Methoxyphenyl)ethylidene]hydrazinyl}-8-(trifluoromethyl) quinoline (Kubicki et al., 2012); (E)-N'-(4-Methoxybenzylidene)-2-m-tolylacetohydrazide (Praveen et al., 2012); (1Z)-1-[(2E)-3-(4-Bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-ylidene]-2- (2,4-dinitrophenyl)hydrazine (Kant et al., 2012); (E)-3-(2-ethoxyphenyl)-4-(2-fluorobenzylideneamino)-1H-1,2,4-triazole-5(4H)- thione (Ding et al., 2009) have been reported. Crystal structures of some Schiff bases were also reported by our group (Sarojini et al., 2007a,b). The present work describes the synthesis and crystal structure of the title compound, (I), C10H10N4OS.
In (I), the molecule is nearly planar with the mean planes of the hydroxybenzyl and triazole rings inclined at an angle of only 3.2 (7)°. (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, O—H···N hydrogen bonds between the hydroxy group and triazole ring in concert with weak N—H···S intermolecular interactions between the triazole ring and thione group form infinite polymeric 1-dimensional chains along [-2 1 0] displaying R22(8) graph set motifs (Fig. 2). As the chains are extended, additional graph set motifs [R44(28), R44(30), R44(32), R66(50), R66(52) & R66(54)] are also formed. A weak C—H···S intramolecular interaction (Table 1) and weak π···π intermolecular interactions (Cg1–Cg2 = 3.5990 (15)Å, 1+x, y, z; (Cg1 and Cg2 are the centroids of the N2/C1/N3/N4/C2 and C4–C9 rings respectively) are also observed.