organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,3-Di­methyl-2,6-di­phenyl­piperidin-4-one O-(phen­­oxy­carbon­yl)oxime

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment Of Chemistry, Annamalai University, Annamalai Nagar 608 002, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 December 2013; accepted 8 May 2014; online 24 May 2014)

The title piperidine derivative, C26H26N2O3, has an E conformation about the N=C bond. The piperidine ring has a chair conformation and its mean plane is almost perpendicular to the attached phenyl rings, making dihedral angles of 87.47 (9) and 87.34 (8)°. The planes of these two phenyl rings are inclined to one another by 60.38 (9)°. The plane of the terminal phenyl ring is tilted at an angle of 32.79 (9)° to the mean plane of the piperidine ring. The mol­ecular conformation is stabilized by two intra­molecular C—H⋯O contacts. There are no significant inter­molecular inter­actions in the crystal.

Related literature

For the biological activity of piperidine derivatives, see, for example: Moldt et al. (1997[Moldt, P., Joergen, S. K. & Waetjen, F. (1997). World Patent WO9730997.]); Peters et al. (2009[Peters, D., Eriksen, B. L., Munro, G. & Nielsen, E. O. (2009). World Patent WO2009/077585.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26N2O3

  • Mr = 414.49

  • Monoclinic, P 21 /c

  • a = 16.2004 (12) Å

  • b = 11.9587 (10) Å

  • c = 11.3601 (7) Å

  • β = 102.547 (2)°

  • V = 2148.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 27566 measured reflections

  • 6686 independent reflections

  • 3950 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.180

  • S = 1.01

  • 6686 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1 0.97 2.27 2.6881 (18) 105
C26—H26⋯O2 0.93 2.30 2.823 (2) 115

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2/SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT/XPREP ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In view of the biological importance of piperidine derivatives (Moldt et al., 1997; Peters et al., 2009) we undertook the synthesis of the title compound and report herein on its crystal structure.

In the title molecule, Fig. 1, the piperidine ring (N1/C2—C6) [DS (C3) = 0.005 (8) Å and D2 (C3—C2) = 0.015 (6) Å] adopts a chair conformation defined by the above asymmetry parameters (Nardelli, 1983). Its mean plane is almost perpendicular to the attached phenyl rings (C13—C18 and C7—C12), with dihedral angles of 87.47 (9)° and 87.34 (8)°, respectively. These two phenyl rings are inclined to one another by 60.38 (9) °. More over the mean plane of the piperidine ring is tilted by 32.79 (9)° with respect to the terminal phenyl ring (C21-C26). The molecular conformation is stabilized by two intramolecular C-H···O contacts (Table 1).

In the crystal, there are no significant intermolecular interactions present (Fig. 2).

Related literature top

For the biological activity of piperidine derivatives, see, for example: Moldt et al. (1997); Peters et al. (2009). For asymmetry parameters, see: Nardelli (1983).

Experimental top

The title compound was synthesized by Mannich condensation. Benzaldehyde (2 mol), ammonium acetate (1 mol) and ethyl methyl ketone (1 mol) in absolute ethanol were warmed for 30 min and then stirred overnight at room temperature. The product obtained was treated with methyl iodide (1.5 mol) in the presence of potassium carbonate (2 mol) in acetone (10 ml) and the mixture was refluxed to give 1,3-dimethyl-2,6-diphenylpiperidin-4-one (I). Oximation was carried out by refluxing (I) with hydroxylamine hydrochloride (2 mol) in the presence of sodium acetate (2 mol) in ethanol (10 ml). To the resulting oxime (0.5 g, 1.79 mmol) in dry tetrahydrofuran (10 ml), was added potassium carbonate (0.48 g, 3.52 mmol) followed by tetrabutylammonium bromide (0.58 g,1.79 mmol). After stirring for 15 min, phenyl chloroformate (0.38 g, 2.68 mmol) was added drop wise over a period of 15 min. The mixture was stirred at ambient temperature for 2 h and progress of the reaction was monitored by thin layer chromatography. Upon completion of the reaction, the mixture was diluted with water (20 ml) and extracted with dichloromethane (2 × 20 ml). The combined organic layers were washed with water (2 × 20 ml), then brine solution (20 ml), and then dried over anhydrous sodium sulfate (5 g). The mixture was the filtered and concentrated under reduced pressure. The crude product obtained was purified by column chromatography over silica gel (100–200 mesh) eluted with a solvent system of ethyl acetate:petroleum ether (2:98). The pure fractions were collected and concentrated under reduced pressure giving a white solid (0.63 g, 85%). This was recrystallized from a DMF-water mixture (9:1) to yield colourless block-like crystals suitable for X-ray diffraction studies.

Refinement top

All the H atoms were positioned geometrically and constrained to ride on their parent atom: C–H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound.
(E)-1,3-Dimethyl-2,6-diphenylpiperidin-4-one O-(phenoxycarbonyl)oxime top
Crystal data top
C26H26N2O3F(000) = 880
Mr = 414.49Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8834 reflections
a = 16.2004 (12) Åθ = 2.1–31.2°
b = 11.9587 (10) ŵ = 0.08 mm1
c = 11.3601 (7) ÅT = 293 K
β = 102.547 (2)°Block, colourless
V = 2148.3 (3) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6686 independent reflections
Radiation source: fine-focus sealed tube3950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scanθmax = 30.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 2321
Tmin = 0.979, Tmax = 0.983k = 1717
27566 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.093P)2 + 0.2301P]
where P = (Fo2 + 2Fc2)/3
6686 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C26H26N2O3V = 2148.3 (3) Å3
Mr = 414.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2004 (12) ŵ = 0.08 mm1
b = 11.9587 (10) ÅT = 293 K
c = 11.3601 (7) Å0.25 × 0.20 × 0.20 mm
β = 102.547 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
3950 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.033
27566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
6686 reflectionsΔρmin = 0.35 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.16989 (9)0.35382 (12)0.83490 (12)0.0379 (3)
H20.13820.29970.87260.045*
C30.26100 (11)0.31168 (15)0.85152 (13)0.0467 (4)
H3A0.26080.23550.82200.056*
H3B0.29150.35790.80510.056*
C40.30428 (9)0.31542 (13)0.98144 (13)0.0393 (3)
C50.30006 (9)0.42707 (12)1.03942 (13)0.0389 (3)
H50.32530.48150.99330.047*
C60.20588 (9)0.45817 (12)1.02319 (12)0.0368 (3)
H60.17780.39951.06030.044*
C70.19662 (9)0.56761 (13)1.08548 (12)0.0382 (3)
C80.15971 (11)0.57068 (15)1.18468 (14)0.0505 (4)
H80.13850.50531.21120.061*
C90.15411 (12)0.67029 (18)1.24476 (15)0.0590 (5)
H90.12930.67111.31130.071*
C100.18471 (12)0.76735 (16)1.20726 (15)0.0565 (5)
H100.18060.83401.24770.068*
C110.22174 (12)0.76556 (15)1.10914 (16)0.0529 (4)
H110.24300.83121.08330.064*
C120.22743 (11)0.66632 (14)1.04893 (14)0.0455 (4)
H120.25250.66610.98260.055*
C130.12923 (10)0.35957 (13)0.70176 (12)0.0399 (3)
C140.16171 (12)0.42803 (15)0.62530 (14)0.0509 (4)
H140.21050.46920.65500.061*
C150.12225 (15)0.43587 (17)0.50478 (15)0.0654 (6)
H150.14450.48220.45370.078*
C160.05001 (15)0.37504 (19)0.46032 (16)0.0700 (6)
H160.02280.38170.37960.084*
C170.01834 (14)0.30530 (19)0.53423 (18)0.0689 (6)
H170.02980.26300.50380.083*
C180.05790 (12)0.29753 (16)0.65455 (16)0.0545 (4)
H180.03610.24960.70470.065*
C190.34923 (12)0.43356 (15)1.16909 (15)0.0546 (4)
H19A0.32140.38911.21930.082*
H19B0.35190.50991.19580.082*
H19C0.40550.40581.17430.082*
C200.37323 (10)0.05039 (13)1.04333 (14)0.0445 (4)
C210.41582 (10)0.13514 (13)1.00076 (14)0.0446 (4)
C220.39797 (12)0.21341 (15)0.91128 (15)0.0534 (4)
H220.36540.19510.83580.064*
C230.42925 (14)0.32043 (16)0.93527 (19)0.0640 (5)
H230.41810.37460.87520.077*
C240.47672 (13)0.34739 (16)1.04712 (19)0.0619 (5)
H240.49690.41991.06300.074*
C250.49410 (13)0.26815 (16)1.13426 (18)0.0622 (5)
H250.52620.28661.21000.075*
C260.46459 (12)0.16009 (15)1.11162 (16)0.0587 (5)
H260.47770.10531.17080.070*
C270.07667 (10)0.49575 (17)0.87840 (15)0.0533 (4)
H27A0.05050.49810.79410.080*
H27B0.07320.56820.91340.080*
H27C0.04800.44200.91800.080*
N10.16563 (7)0.46358 (10)0.89327 (10)0.0357 (3)
N20.34143 (8)0.23699 (11)1.04748 (11)0.0438 (3)
O10.34161 (8)0.13746 (10)0.97534 (9)0.0528 (3)
O20.38576 (11)0.04349 (12)1.14880 (12)0.0795 (5)
O30.38400 (9)0.02830 (10)0.96515 (10)0.0643 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0455 (8)0.0346 (7)0.0319 (6)0.0009 (6)0.0048 (6)0.0017 (5)
C30.0558 (10)0.0460 (9)0.0356 (7)0.0169 (7)0.0042 (6)0.0000 (6)
C40.0394 (7)0.0390 (8)0.0379 (7)0.0063 (6)0.0054 (6)0.0017 (6)
C50.0430 (8)0.0345 (7)0.0369 (7)0.0018 (6)0.0035 (6)0.0030 (6)
C60.0432 (8)0.0374 (8)0.0297 (6)0.0003 (6)0.0077 (5)0.0022 (5)
C70.0403 (8)0.0421 (8)0.0315 (6)0.0047 (6)0.0061 (5)0.0001 (6)
C80.0569 (10)0.0568 (11)0.0406 (8)0.0011 (8)0.0171 (7)0.0023 (7)
C90.0672 (12)0.0733 (13)0.0403 (8)0.0103 (10)0.0200 (8)0.0092 (8)
C100.0633 (11)0.0537 (11)0.0486 (9)0.0150 (9)0.0039 (8)0.0141 (8)
C110.0594 (10)0.0407 (9)0.0575 (10)0.0038 (8)0.0101 (8)0.0021 (7)
C120.0530 (9)0.0439 (9)0.0417 (8)0.0065 (7)0.0147 (7)0.0011 (7)
C130.0472 (8)0.0369 (8)0.0330 (6)0.0077 (6)0.0033 (6)0.0026 (6)
C140.0631 (11)0.0490 (10)0.0403 (8)0.0061 (8)0.0106 (7)0.0045 (7)
C150.0961 (16)0.0622 (12)0.0386 (8)0.0197 (11)0.0164 (9)0.0081 (8)
C160.0919 (15)0.0724 (14)0.0355 (8)0.0366 (12)0.0086 (9)0.0114 (9)
C170.0645 (12)0.0750 (14)0.0556 (11)0.0092 (10)0.0126 (9)0.0179 (10)
C180.0552 (10)0.0560 (11)0.0483 (9)0.0004 (8)0.0024 (7)0.0042 (8)
C190.0599 (10)0.0488 (10)0.0455 (8)0.0038 (8)0.0094 (7)0.0011 (7)
C200.0463 (9)0.0403 (8)0.0439 (8)0.0077 (7)0.0033 (6)0.0008 (6)
C210.0487 (9)0.0367 (8)0.0461 (8)0.0044 (7)0.0051 (7)0.0002 (7)
C220.0631 (11)0.0483 (10)0.0477 (9)0.0000 (8)0.0097 (8)0.0060 (8)
C230.0785 (13)0.0450 (10)0.0721 (12)0.0025 (9)0.0240 (10)0.0132 (9)
C240.0689 (12)0.0390 (9)0.0833 (14)0.0092 (9)0.0283 (10)0.0044 (9)
C250.0678 (12)0.0529 (11)0.0615 (11)0.0182 (9)0.0044 (9)0.0091 (9)
C260.0675 (11)0.0477 (10)0.0521 (9)0.0146 (8)0.0066 (8)0.0046 (8)
C270.0437 (9)0.0664 (12)0.0465 (9)0.0141 (8)0.0029 (7)0.0087 (8)
N10.0373 (6)0.0380 (6)0.0306 (5)0.0054 (5)0.0046 (4)0.0008 (5)
N20.0496 (7)0.0368 (7)0.0420 (7)0.0081 (6)0.0037 (5)0.0018 (5)
O10.0691 (8)0.0402 (6)0.0433 (6)0.0174 (6)0.0004 (5)0.0004 (5)
O20.1305 (14)0.0596 (9)0.0476 (7)0.0390 (9)0.0178 (8)0.0083 (6)
O30.0964 (10)0.0428 (7)0.0440 (6)0.0213 (7)0.0060 (6)0.0031 (5)
Geometric parameters (Å, º) top
C2—N11.4790 (18)C15—C161.377 (3)
C2—C131.5144 (18)C15—H150.9300
C2—C31.532 (2)C16—C171.360 (3)
C2—H20.9800C16—H160.9300
C3—C41.491 (2)C17—C181.381 (2)
C3—H3A0.9700C17—H170.9300
C3—H3B0.9700C18—H180.9300
C4—N21.2683 (19)C19—H19A0.9600
C4—C51.497 (2)C19—H19B0.9600
C5—C191.517 (2)C19—H19C0.9600
C5—C61.542 (2)C20—O21.1738 (19)
C5—H50.9800C20—O11.3310 (18)
C6—N11.4797 (17)C20—O31.3312 (19)
C6—C71.511 (2)C21—C221.366 (2)
C6—H60.9800C21—C261.366 (2)
C7—C121.380 (2)C21—O31.4040 (19)
C7—C81.386 (2)C22—C231.382 (3)
C8—C91.386 (3)C22—H220.9300
C8—H80.9300C23—C241.373 (3)
C9—C101.366 (3)C23—H230.9300
C9—H90.9300C24—C251.355 (3)
C10—C111.376 (3)C24—H240.9300
C10—H100.9300C25—C261.382 (2)
C11—C121.383 (2)C25—H250.9300
C11—H110.9300C26—H260.9300
C12—H120.9300C27—N11.4655 (19)
C13—C141.378 (2)C27—H27A0.9600
C13—C181.380 (2)C27—H27B0.9600
C14—C151.383 (2)C27—H27C0.9600
C14—H140.9300N2—O11.4454 (16)
N1—C2—C13110.79 (11)C16—C15—C14120.03 (19)
N1—C2—C3111.98 (12)C16—C15—H15120.0
C13—C2—C3109.65 (12)C14—C15—H15120.0
N1—C2—H2108.1C17—C16—C15120.12 (16)
C13—C2—H2108.1C17—C16—H16119.9
C3—C2—H2108.1C15—C16—H16119.9
C4—C3—C2110.21 (12)C16—C17—C18119.7 (2)
C4—C3—H3A109.6C16—C17—H17120.1
C2—C3—H3A109.6C18—C17—H17120.1
C4—C3—H3B109.6C13—C18—C17121.20 (19)
C2—C3—H3B109.6C13—C18—H18119.4
H3A—C3—H3B108.1C17—C18—H18119.4
N2—C4—C3128.62 (14)C5—C19—H19A109.5
N2—C4—C5117.42 (13)C5—C19—H19B109.5
C3—C4—C5113.94 (12)H19A—C19—H19B109.5
C4—C5—C19114.10 (12)C5—C19—H19C109.5
C4—C5—C6107.53 (12)H19A—C19—H19C109.5
C19—C5—C6113.64 (13)H19B—C19—H19C109.5
C4—C5—H5107.1O2—C20—O1127.35 (15)
C19—C5—H5107.1O2—C20—O3127.78 (15)
C6—C5—H5107.1O1—C20—O3104.81 (13)
N1—C6—C7111.23 (11)C22—C21—C26121.53 (16)
N1—C6—C5109.87 (11)C22—C21—O3113.84 (14)
C7—C6—C5110.45 (12)C26—C21—O3124.53 (15)
N1—C6—H6108.4C21—C22—C23118.60 (17)
C7—C6—H6108.4C21—C22—H22120.7
C5—C6—H6108.4C23—C22—H22120.7
C12—C7—C8118.03 (14)C24—C23—C22120.51 (18)
C12—C7—C6121.39 (13)C24—C23—H23119.7
C8—C7—C6120.53 (14)C22—C23—H23119.7
C9—C8—C7120.60 (17)C25—C24—C23119.84 (18)
C9—C8—H8119.7C25—C24—H24120.1
C7—C8—H8119.7C23—C24—H24120.1
C10—C9—C8120.66 (16)C24—C25—C26120.61 (18)
C10—C9—H9119.7C24—C25—H25119.7
C8—C9—H9119.7C26—C25—H25119.7
C9—C10—C11119.40 (16)C21—C26—C25118.88 (17)
C9—C10—H10120.3C21—C26—H26120.6
C11—C10—H10120.3C25—C26—H26120.6
C10—C11—C12120.11 (17)N1—C27—H27A109.5
C10—C11—H11119.9N1—C27—H27B109.5
C12—C11—H11119.9H27A—C27—H27B109.5
C7—C12—C11121.19 (15)N1—C27—H27C109.5
C7—C12—H12119.4H27A—C27—H27C109.5
C11—C12—H12119.4H27B—C27—H27C109.5
C14—C13—C18118.45 (14)C27—N1—C2108.77 (12)
C14—C13—C2120.91 (14)C27—N1—C6109.62 (11)
C18—C13—C2120.63 (14)C2—N1—C6110.79 (11)
C13—C14—C15120.44 (18)C4—N2—O1109.43 (11)
C13—C14—H14119.8C20—O1—N2111.29 (11)
C15—C14—H14119.8C20—O3—C21122.97 (13)
N1—C2—C3—C451.47 (17)C14—C15—C16—C171.4 (3)
C13—C2—C3—C4174.87 (13)C15—C16—C17—C181.4 (3)
C2—C3—C4—N2125.06 (18)C14—C13—C18—C171.5 (3)
C2—C3—C4—C553.16 (18)C2—C13—C18—C17177.48 (16)
N2—C4—C5—C195.7 (2)C16—C17—C18—C130.1 (3)
C3—C4—C5—C19175.91 (14)C26—C21—C22—C231.0 (3)
N2—C4—C5—C6121.35 (15)O3—C21—C22—C23177.45 (17)
C3—C4—C5—C657.08 (16)C21—C22—C23—C240.5 (3)
C4—C5—C6—N159.89 (15)C22—C23—C24—C250.9 (3)
C19—C5—C6—N1172.82 (12)C23—C24—C25—C260.1 (3)
C4—C5—C6—C7177.03 (11)C22—C21—C26—C252.1 (3)
C19—C5—C6—C749.75 (17)O3—C21—C26—C25178.08 (19)
N1—C6—C7—C1258.45 (18)C24—C25—C26—C211.6 (3)
C5—C6—C7—C1263.83 (17)C13—C2—N1—C2759.84 (15)
N1—C6—C7—C8124.20 (15)C3—C2—N1—C27177.40 (12)
C5—C6—C7—C8113.52 (15)C13—C2—N1—C6179.61 (12)
C12—C7—C8—C90.1 (2)C3—C2—N1—C656.85 (15)
C6—C7—C8—C9177.50 (15)C7—C6—N1—C2756.06 (16)
C7—C8—C9—C100.1 (3)C5—C6—N1—C27178.67 (13)
C8—C9—C10—C110.3 (3)C7—C6—N1—C2176.10 (12)
C9—C10—C11—C120.3 (3)C5—C6—N1—C261.28 (15)
C8—C7—C12—C110.0 (2)C3—C4—N2—O13.7 (2)
C6—C7—C12—C11177.46 (14)C5—C4—N2—O1178.11 (12)
C10—C11—C12—C70.1 (3)O2—C20—O1—N213.6 (3)
N1—C2—C13—C1462.89 (18)O3—C20—O1—N2169.00 (13)
C3—C2—C13—C1461.21 (19)C4—N2—O1—C20174.36 (14)
N1—C2—C13—C18116.10 (16)O2—C20—O3—C211.9 (3)
C3—C2—C13—C18119.80 (17)O1—C20—O3—C21179.34 (15)
C18—C13—C14—C151.5 (3)C22—C21—O3—C20160.61 (16)
C2—C13—C14—C15177.54 (15)C26—C21—O3—C2023.1 (3)
C13—C14—C15—C160.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O10.972.272.6881 (18)105
C26—H26···O20.932.302.823 (2)115
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O10.972.272.6881 (18)105
C26—H26···O20.932.302.823 (2)115
 

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoldt, P., Joergen, S. K. & Waetjen, F. (1997). World Patent WO9730997.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeters, D., Eriksen, B. L., Munro, G. & Nielsen, E. O. (2009). World Patent WO2009/077585.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds