organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o672-o673

Ethyl 5-methyl-7-phenyl-1,2,4-triazolo[4,3-a]pyrimidine-6-carboxyl­ate

aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt, and bNational Institute of Oceanography and Fisheries, Alexandria University, Alexandria 21556, Egypt
*Correspondence e-mail: omaimawafa@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 April 2014; accepted 5 May 2014; online 17 May 2014)

In the title compound, C15H14N4O2, the triazolo­pyrimidine ring system is almost planar (r.m.s. deviation = 0.02 Å) and the phenyl ring is inclined to its mean plane by 42.45 (9)°. The carboxyl group is inclined to the triazolo­pyrimidine ring mean plane by 57.8 (3)°. In the mol­ecule, there is a short C—H⋯O contact involving the carbonyl O atom and an H atom of the adjacent methyl substituent. In the crystal, neighbouring mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along [010]. There are also weak ππ inter­actions present involving the pyridine and phenyl rings of neighbouring chains [inter­centroid distance = 3.8580 (16) Å].

Related literature

For information on annelated pyrimidine derivatives as promising vasodilating agents, see: Jeanneau-Nicolle et al. (1992[Jeanneau-Nicolle, E., Benoit-Guyod, M., Namil, A. & Leclerc, G. (1992). Eur. J. Med. Chem. 27, 115-120.]); Ali et al. (2011[Ali, K. A., Ragab, E. A., Farghaly, T. A. & Abdalla, M. M. (2011). Acta Pol. Pharm. Drug Res. 68, 237-247.]). For details concerning triazolo­pyrimidines having anti­hypertensive and diuretic activity, see: Ali et al. (2011[Ali, K. A., Ragab, E. A., Farghaly, T. A. & Abdalla, M. M. (2011). Acta Pol. Pharm. Drug Res. 68, 237-247.]). For details of Biginelli di­hydro­pyrimidine calcium channel blockers, see: Rovnyak et al. (1995[Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R. & Moreland, S. (1995). J. Med. Chem. 38, 119-129.]); Triggle & Padmanabhan (1995[Triggle, D. J. & Padmanabhan, S. (1995). Chemtracts Org. Chem. 8, 191-196.]); Ohno et al. (2002[Ohno, S., Otani, K., Niwa, S., Iwayama, S., Takahara, A., Koganei, H., Ono, Y., Fujita, S., Takeda, T., Hagihara, M. & Okajima, A. (2002). Int. Patent Appl. WO 2002022588.]). For potential ex vivo calcium-channel-blocking activity, see: Farghaly et al. (2013[Farghaly, A. M., AboulWafa, O. M., Rizk, O. H., Teleb, M. & Darwish, I. E. (2013). Frontiers in Medicinal Chemistry, June 23-26, 2013, San Francisco, California, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4O2

  • Mr = 282.30

  • Monoclinic, P 21 /n

  • a = 10.322 (2) Å

  • b = 8.1678 (19) Å

  • c = 16.798 (4) Å

  • β = 92.111 (4)°

  • V = 1415.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.610, Tmax = 0.991

  • 12066 measured reflections

  • 2550 independent reflections

  • 1742 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.182

  • S = 1.07

  • 2550 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2 0.96 2.58 3.127 (4) 116
C15—H15⋯O2i 0.93 2.57 3.246 (3) 129
Symmetry code: (i) x, y-1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007[Rigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR88 (Burla et al., 1989[Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and CrystalStructure (Rigaku Americas and Rigaku, 2007[Rigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: SHELXL2013 and CrystalStructure.

Supporting information


Introduction top

Annelated pyrimidine derivatives have gained considerable inter­est as promising vasodilating agents (Jeanneau-Nicolle et al., 1992; Ali et al., 2011). Triazolo­pyrimidines in particular have shown anti­hypertensive as well as diuretic activities (Ali et al., 2011). The title compound has a triazolo­pyrimidine nucleus and was derivatized from the well known Biginelli di­hydro­pyrimidine calcium channel blockers (Rovnyak et al., 1995; Triggle & Padmanabhan, 1995; Ohno et al., 2002). It has been shown to possess potential ex vivo calcium channel blocking activity (Farghaly et al., 2013). In the present investigation, the crystal structure of the title compound was obtained in an effort to gain information pertaining to the role of regiocontrol in the cyclization step as well as electronic induction in the conformation of such a molecule.

Discussion top

The stereochemistry of the title compound, Fig. 1, revealed that the product has retained its original stereochemistry, and that cyclization has occurred on N1 as predicted from HMBC (Heteronuclear Multiple Bond Correlation experiment). A close contact between the ester moiety and the phenyl group is also evident.

In the title compound, the triazolo­pyrimidine ring system is planar [r.m.s. deviation 0.02 Å] and its mean plane is inclined to the phenyl ring (C10—C15) by 42.45 (9) °. The carboxyl group (COO) is inclined to the triazolo­pyrimidine ring mean plane by 57.8 (3) °. It occupies a cis position relative to C5C6 double bond of the triazolo­pyrimidine ring system thus allowing potential stabilization of such a conformation. There is a short C—H···O contact involving atom O2 and an H atom of the adjacent methyl substituent (C9), see Table 1. The ester group is again oriented away from the phenyl ring substituent for steric considerations with a torsional angle C4—C5—C6—O1 = -56.1 (3)°.

In the crystal, neighbouring molecules are linked by C—H···O hydrogen bonds forming chains propagating along [010]; Table 1 and Fig. 2. There are also weak π-π inter­actions present involving the pyridine and phenyl rings of neighbouring chains [Cg2—Cg3i = 3.8580 (16) Å; Cg2 and Cg3 are the centroids of rings N1/N2/C2—C5 and C10—C15, respectively; symmetry code: (i) -x+3/2, y+1/2, -z+1/2].

Experimental top

Synthesis and crystallization top

A solution of ethyl 2-hydrazino-6-methyl-4-phenyl­pyrimidine-5-carboxyl­ate (0.27 g, 1 mmole) in formic acid (5 ml) was heated under reflux for 27 h. The reaction mixture was concentrated to a small volume and diluted with ice-cold water. The precipitate was filtered, washed with water and dried. Colourless crystals of the title compound were obtained by slow evaporation of a solution in aqueous ethanol.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Related literature top

For information on annelated pyrimidine derivatives as promising vasodilating agents, see: Jeanneau-Nicolle et al. (1992); Ali et al. (2011). For details concerning triazolopyrimidines having antihypertensive and diuretic activity, see: Ali et al. (2011). For details of Biginelli dihydropyrimidine calcium channel blockers, see: Rovnyak et al. (1995); Triggle & Padmanabhan (1995); Ohno et al. (2002). For potential ex vivo calcium-channel-blocking activity, see: Farghaly et al. (2013).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007); program(s) used to solve structure: SIR88 (Burla et al., 1989); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and CrystalStructure (Rigaku Americas and Rigaku, 2007); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and CrystalStructure (Rigaku Americas and Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C—H···O hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as a dashed line (see Table 1 for details).
Ethyl 5-methyl-7-phenyl-1,2,4-triazolo[4,3-a]pyrimidine-6-carboxylate top
Crystal data top
C15H14N4O2F(000) = 592
Mr = 282.30Dx = 1.325 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 10.322 (2) ÅCell parameters from 10163 reflections
b = 8.1678 (19) Åθ = 3.1–27.6°
c = 16.798 (4) ŵ = 0.09 mm1
β = 92.111 (4)°T = 293 K
V = 1415.2 (5) Å3Prism, colourless
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Rigaku SCXmini
diffractometer
1742 reflections with I > 2σ(I)
ω scansRint = 0.092
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
θmax = 25.3°, θmin = 3.2°
Tmin = 0.610, Tmax = 0.991h = 1212
12066 measured reflectionsk = 99
2550 independent reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.076 w = 1/[σ2(Fo2) + (0.1047P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.182(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.46 e Å3
2550 reflectionsΔρmin = 0.51 e Å3
193 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.118 (11)
Crystal data top
C15H14N4O2V = 1415.2 (5) Å3
Mr = 282.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.322 (2) ŵ = 0.09 mm1
b = 8.1678 (19) ÅT = 293 K
c = 16.798 (4) Å0.30 × 0.10 × 0.10 mm
β = 92.111 (4)°
Data collection top
Rigaku SCXmini
diffractometer
2550 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1742 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.991Rint = 0.092
12066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
2550 reflectionsΔρmin = 0.51 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39205 (15)0.6185 (2)0.24879 (9)0.0632 (5)
O20.51731 (19)0.8413 (2)0.24434 (12)0.0817 (6)
N10.68299 (18)0.3481 (2)0.14373 (12)0.0619 (6)
N20.65225 (18)0.5557 (3)0.04523 (11)0.0602 (6)
N30.7530 (2)0.3301 (3)0.00856 (15)0.0811 (7)
N40.6793 (2)0.5809 (3)0.03304 (12)0.0763 (7)
C10.7390 (3)0.4421 (4)0.04963 (18)0.0844 (9)
H1A0.77020.42290.10000.101*
C20.5898 (2)0.6607 (3)0.09427 (14)0.0571 (6)
C30.6971 (2)0.4037 (3)0.06930 (15)0.0631 (7)
C40.6228 (2)0.4455 (3)0.19354 (13)0.0514 (6)
C50.5725 (2)0.6021 (3)0.16969 (13)0.0512 (6)
C60.4935 (2)0.7029 (3)0.22516 (14)0.0557 (6)
C70.3199 (3)0.6916 (4)0.31288 (18)0.0855 (9)
H7A0.37920.74120.35200.103*
H7B0.26210.77590.29170.103*
C80.2453 (3)0.5624 (4)0.3499 (2)0.1047 (11)
H8A0.18060.52200.31230.157*
H8B0.20400.60540.39570.157*
H8C0.30230.47460.36600.157*
C90.5465 (3)0.8207 (3)0.06000 (17)0.0752 (8)
H9A0.61890.89440.05910.113*
H9B0.48060.86650.09210.113*
H9C0.51220.80440.00670.113*
C100.6102 (2)0.3845 (3)0.27599 (13)0.0518 (6)
C110.6315 (2)0.4852 (3)0.34188 (15)0.0604 (7)
H110.65880.59250.33470.073*
C120.6127 (2)0.4282 (3)0.41738 (16)0.0716 (8)
H120.62690.49690.46090.086*
C130.5726 (3)0.2680 (4)0.42890 (17)0.0764 (8)
H130.55700.23040.47990.092*
C140.5560 (2)0.1660 (3)0.36494 (18)0.0735 (8)
H140.53130.05790.37280.088*
C150.5757 (2)0.2217 (3)0.28853 (15)0.0594 (7)
H150.56590.15050.24550.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0658 (10)0.0599 (10)0.0652 (11)0.0005 (8)0.0222 (8)0.0063 (8)
O20.0989 (14)0.0453 (11)0.1024 (15)0.0022 (9)0.0206 (11)0.0087 (9)
N10.0677 (12)0.0523 (12)0.0665 (14)0.0044 (10)0.0151 (10)0.0045 (10)
N20.0599 (12)0.0686 (14)0.0527 (12)0.0042 (10)0.0113 (9)0.0021 (10)
N30.0879 (16)0.0836 (17)0.0737 (16)0.0003 (13)0.0294 (12)0.0176 (13)
N40.0772 (14)0.0967 (18)0.0560 (14)0.0106 (13)0.0176 (11)0.0007 (13)
C10.088 (2)0.100 (2)0.0668 (19)0.0110 (18)0.0246 (15)0.0165 (18)
C20.0522 (13)0.0566 (15)0.0629 (16)0.0033 (11)0.0078 (11)0.0020 (12)
C30.0631 (15)0.0613 (16)0.0658 (17)0.0007 (12)0.0139 (12)0.0080 (13)
C40.0514 (12)0.0438 (13)0.0594 (15)0.0020 (10)0.0069 (10)0.0040 (11)
C50.0534 (13)0.0459 (13)0.0549 (14)0.0033 (10)0.0091 (10)0.0008 (10)
C60.0640 (14)0.0447 (14)0.0588 (14)0.0064 (11)0.0079 (11)0.0044 (11)
C70.092 (2)0.082 (2)0.085 (2)0.0076 (16)0.0389 (16)0.0107 (16)
C80.110 (2)0.115 (3)0.092 (2)0.026 (2)0.0457 (19)0.0211 (19)
C90.0748 (16)0.0750 (19)0.0764 (19)0.0108 (14)0.0102 (13)0.0226 (14)
C100.0540 (13)0.0447 (13)0.0571 (14)0.0039 (10)0.0076 (10)0.0006 (11)
C110.0666 (15)0.0505 (14)0.0639 (16)0.0002 (11)0.0017 (12)0.0025 (12)
C120.0791 (17)0.0751 (18)0.0602 (17)0.0074 (14)0.0033 (13)0.0020 (14)
C130.0807 (18)0.084 (2)0.0649 (17)0.0115 (16)0.0091 (13)0.0192 (16)
C140.0725 (17)0.0602 (17)0.089 (2)0.0006 (13)0.0147 (15)0.0154 (15)
C150.0653 (14)0.0440 (13)0.0696 (16)0.0002 (11)0.0109 (12)0.0017 (12)
Geometric parameters (Å, º) top
O1—C61.327 (3)C7—H7B0.9700
O1—C71.459 (3)C8—H8A0.9600
O2—C61.198 (3)C8—H8B0.9600
N1—C41.325 (3)C8—H8C0.9600
N1—C31.343 (3)C9—H9A0.9600
N2—C21.367 (3)C9—H9B0.9600
N2—N41.370 (3)C9—H9C0.9600
N2—C31.380 (3)C10—C111.390 (3)
N3—C31.334 (3)C10—C151.395 (3)
N3—C11.343 (4)C11—C121.372 (3)
N4—C11.325 (4)C11—H110.9300
C1—H1A0.9300C12—C131.388 (4)
C2—C51.372 (3)C12—H120.9300
C2—C91.490 (3)C13—C141.365 (4)
C4—C51.432 (3)C13—H130.9300
C4—C101.482 (3)C14—C151.384 (3)
C5—C61.506 (3)C14—H140.9300
C7—C81.459 (4)C15—H150.9300
C7—H7A0.9700
C6—O1—C7116.0 (2)C7—C8—H8A109.5
C4—N1—C3117.0 (2)C7—C8—H8B109.5
C2—N2—N4127.0 (2)H8A—C8—H8B109.5
C2—N2—C3123.3 (2)C7—C8—H8C109.5
N4—N2—C3109.8 (2)H8A—C8—H8C109.5
C3—N3—C1102.2 (3)H8B—C8—H8C109.5
C1—N4—N2100.7 (2)C2—C9—H9A109.5
N4—C1—N3117.9 (3)C2—C9—H9B109.5
N4—C1—H1A121.0H9A—C9—H9B109.5
N3—C1—H1A121.0C2—C9—H9C109.5
N2—C2—C5114.7 (2)H9A—C9—H9C109.5
N2—C2—C9117.3 (2)H9B—C9—H9C109.5
C5—C2—C9128.0 (2)C11—C10—C15118.5 (2)
N3—C3—N1128.6 (3)C11—C10—C4121.9 (2)
N3—C3—N2109.4 (2)C15—C10—C4119.6 (2)
N1—C3—N2122.0 (2)C12—C11—C10120.8 (2)
N1—C4—C5122.2 (2)C12—C11—H11119.6
N1—C4—C10116.6 (2)C10—C11—H11119.6
C5—C4—C10121.20 (18)C11—C12—C13120.1 (3)
C2—C5—C4120.8 (2)C11—C12—H12119.9
C2—C5—C6118.2 (2)C13—C12—H12119.9
C4—C5—C6120.97 (19)C14—C13—C12119.7 (3)
O2—C6—O1124.5 (2)C14—C13—H13120.2
O2—C6—C5124.9 (2)C12—C13—H13120.2
O1—C6—C5110.6 (2)C13—C14—C15120.7 (3)
C8—C7—O1108.1 (2)C13—C14—H14119.6
C8—C7—H7A110.1C15—C14—H14119.6
O1—C7—H7A110.1C14—C15—C10120.0 (2)
C8—C7—H7B110.1C14—C15—H15120.0
O1—C7—H7B110.1C10—C15—H15120.0
H7A—C7—H7B108.4
C2—N2—N4—C1179.8 (2)C10—C4—C5—C2177.0 (2)
C3—N2—N4—C10.3 (2)N1—C4—C5—C6174.1 (2)
N2—N4—C1—N30.3 (3)C10—C4—C5—C66.1 (3)
C3—N3—C1—N40.2 (3)C7—O1—C6—O211.1 (3)
N4—N2—C2—C5178.28 (19)C7—O1—C6—C5170.1 (2)
C3—N2—C2—C51.2 (3)C2—C5—C6—O258.0 (3)
N4—N2—C2—C90.4 (3)C4—C5—C6—O2125.1 (3)
C3—N2—C2—C9179.9 (2)C2—C5—C6—O1120.8 (2)
C1—N3—C3—N1179.8 (3)C4—C5—C6—O156.1 (3)
C1—N3—C3—N20.0 (3)C6—O1—C7—C8159.8 (2)
C4—N1—C3—N3179.8 (2)N1—C4—C10—C11137.2 (2)
C4—N1—C3—N20.5 (3)C5—C4—C10—C1142.6 (3)
C2—N2—C3—N3179.8 (2)N1—C4—C10—C1542.9 (3)
N4—N2—C3—N30.2 (3)C5—C4—C10—C15137.3 (2)
C2—N2—C3—N10.4 (4)C15—C10—C11—C123.2 (3)
N4—N2—C3—N1180.0 (2)C4—C10—C11—C12176.6 (2)
C3—N1—C4—C51.1 (3)C10—C11—C12—C130.3 (4)
C3—N1—C4—C10178.75 (19)C11—C12—C13—C142.2 (4)
N2—C2—C5—C42.6 (3)C12—C13—C14—C151.7 (4)
C9—C2—C5—C4178.8 (2)C13—C14—C15—C101.3 (4)
N2—C2—C5—C6174.28 (19)C11—C10—C15—C143.7 (3)
C9—C2—C5—C64.3 (4)C4—C10—C15—C14176.1 (2)
N1—C4—C5—C22.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O20.962.583.127 (4)116
C15—H15···O2i0.932.573.246 (3)129
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O20.962.583.127 (4)116
C15—H15···O2i0.932.573.246 (3)129
Symmetry code: (i) x, y1, z.
 

References

First citationAli, K. A., Ragab, E. A., Farghaly, T. A. & Abdalla, M. M. (2011). Acta Pol. Pharm. Drug Res. 68, 237–247.  CAS Google Scholar
First citationBurla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarghaly, A. M., AboulWafa, O. M., Rizk, O. H., Teleb, M. & Darwish, I. E. (2013). Frontiers in Medicinal Chemistry, June 23–26, 2013, San Francisco, California, USA.  Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJeanneau-Nicolle, E., Benoit-Guyod, M., Namil, A. & Leclerc, G. (1992). Eur. J. Med. Chem. 27, 115–120.  CAS Google Scholar
First citationOhno, S., Otani, K., Niwa, S., Iwayama, S., Takahara, A., Koganei, H., Ono, Y., Fujita, S., Takeda, T., Hagihara, M. & Okajima, A. (2002). Int. Patent Appl. WO 2002022588.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R. & Moreland, S. (1995). J. Med. Chem. 38, 119–129.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTriggle, D. J. & Padmanabhan, S. (1995). Chemtracts Org. Chem. 8, 191–196.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o672-o673
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds