organic compounds
Methyl (E)-3-(2-formylphenoxy)acrylate
aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in
In the title compound, C11H10O4, the methyl acrylate substituent adopts an extended E conformation with all torsion angles close to 180°. The conformation of the keto group with respect to the olefinic double bond is typically S-trans. In the crystal, molecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) graph-set motif. The dimers are further linked via C—H⋯O hydrogen bonds, forming chains along [001], which enclose R32(16) graph-set ring motifs. The keto group O atomaccepts two C—H⋯O interactions.
CCDC reference: 1001914
Related literature
For applications of acrylate derivatives, see: Xiao et al. (2008); De et al. (2011); Sharma (2011). For related crystal structures, see: Karthikeyan et al. (2012). For E-conformation aspects, see: Dunitz & Schweizer (1982). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For graph-set motif notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
CCDC reference: 1001914
10.1107/S1600536814010617/su2732sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814010617/su2732Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814010617/su2732Isup3.cml
Salicylaldehyde (1 mmol) was dissolved in an aqueous solution of K2CO3 (1 mmol) and methyl propiolate (1 mmol) was added. The reaction mixture was stirred vigorously at room temperature. A turbid solution was formed by consumption of salicylaldehyde (monitored by TLC) in 5 min, the reaction mixture then became clear. The title compound was precipitated as a solid in water. The product was isolated by filtration without further purification [Yield 75%]. Block-like colourless crystals were obtained by slow evaporation of a solution in ethylacetate.
The H atoms could all be located in difference electron-density maps. In the final cycles of
they were treated as riding atoms: C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5 Ueq(C– methyl) and = 1.2Ueq(C) for other H atoms.Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al.,2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C11H10O4 | F(000) = 432 |
Mr = 206.19 | Dx = 1.369 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2ybc | Cell parameters from 2015 reflections |
a = 17.7458 (8) Å | θ = 1.2–26.3° |
b = 4.0629 (2) Å | µ = 0.11 mm−1 |
c = 14.5745 (7) Å | T = 293 K |
β = 107.868 (3)° | Block, colorless |
V = 1000.13 (8) Å3 | 0.20 × 0.15 × 0.10 mm |
Z = 4 |
Bruker SMART APEXII CCD diffractometer | 1523 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
Graphite monochromator | θmax = 26.3°, θmin = 1.2° |
ω scans | h = −22→21 |
13052 measured reflections | k = −5→5 |
2015 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.1001P)2 + 0.0957P] where P = (Fo2 + 2Fc2)/3 |
2015 reflections | (Δ/σ)max < 0.001 |
137 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C11H10O4 | V = 1000.13 (8) Å3 |
Mr = 206.19 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.7458 (8) Å | µ = 0.11 mm−1 |
b = 4.0629 (2) Å | T = 293 K |
c = 14.5745 (7) Å | 0.20 × 0.15 × 0.10 mm |
β = 107.868 (3)° |
Bruker SMART APEXII CCD diffractometer | 1523 reflections with I > 2σ(I) |
13052 measured reflections | Rint = 0.027 |
2015 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.23 e Å−3 |
2015 reflections | Δρmin = −0.17 e Å−3 |
137 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.19462 (11) | 0.6483 (5) | 1.09554 (11) | 0.0570 (5) | |
H1 | 0.2426 | 0.7588 | 1.1079 | 0.068* | |
C2 | 0.16126 (8) | 0.4928 (4) | 1.00055 (10) | 0.0437 (4) | |
C3 | 0.08802 (9) | 0.3378 (4) | 0.97865 (12) | 0.0518 (5) | |
H3 | 0.0621 | 0.3250 | 1.0252 | 0.062* | |
C4 | 0.05341 (10) | 0.2034 (5) | 0.88901 (13) | 0.0574 (5) | |
H4 | 0.0040 | 0.1033 | 0.8746 | 0.069* | |
C5 | 0.09250 (10) | 0.2182 (5) | 0.82056 (12) | 0.0545 (5) | |
H5 | 0.0692 | 0.1265 | 0.7600 | 0.065* | |
C6 | 0.16554 (9) | 0.3671 (4) | 0.84083 (11) | 0.0484 (4) | |
H6 | 0.1918 | 0.3734 | 0.7946 | 0.058* | |
C7 | 0.19943 (8) | 0.5068 (4) | 0.93033 (10) | 0.0425 (4) | |
C8 | 0.30241 (9) | 0.7868 (4) | 0.88985 (11) | 0.0463 (4) | |
H8 | 0.2706 | 0.8014 | 0.8260 | 0.056* | |
C9 | 0.37579 (9) | 0.8937 (5) | 0.91462 (12) | 0.0542 (5) | |
H9 | 0.4075 | 0.8649 | 0.9780 | 0.065* | |
C10 | 0.40974 (9) | 1.0549 (5) | 0.84737 (12) | 0.0516 (4) | |
C11 | 0.39059 (12) | 1.2299 (6) | 0.68764 (14) | 0.0655 (5) | |
H11A | 0.4103 | 1.4452 | 0.7097 | 0.098* | |
H11B | 0.3494 | 1.2484 | 0.6272 | 0.098* | |
H11C | 0.4329 | 1.0976 | 0.6794 | 0.098* | |
O1 | 0.35946 (7) | 1.0781 (3) | 0.75754 (8) | 0.0598 (4) | |
O2 | 0.47632 (7) | 1.1596 (4) | 0.86851 (10) | 0.0723 (5) | |
O3 | 0.27287 (6) | 0.6544 (3) | 0.95771 (7) | 0.0541 (4) | |
O4 | 0.16367 (9) | 0.6413 (5) | 1.15808 (9) | 0.0821 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0536 (10) | 0.0738 (13) | 0.0448 (8) | 0.0075 (8) | 0.0171 (7) | 0.0039 (8) |
C2 | 0.0403 (8) | 0.0498 (10) | 0.0419 (8) | 0.0095 (6) | 0.0142 (6) | 0.0084 (7) |
C3 | 0.0432 (9) | 0.0604 (11) | 0.0562 (9) | 0.0071 (7) | 0.0220 (7) | 0.0119 (8) |
C4 | 0.0442 (9) | 0.0590 (11) | 0.0665 (11) | −0.0046 (8) | 0.0134 (8) | 0.0077 (8) |
C5 | 0.0531 (10) | 0.0542 (10) | 0.0504 (9) | 0.0009 (8) | 0.0074 (7) | 0.0007 (8) |
C6 | 0.0485 (9) | 0.0547 (10) | 0.0443 (8) | 0.0048 (7) | 0.0175 (7) | 0.0049 (7) |
C7 | 0.0357 (7) | 0.0485 (10) | 0.0429 (7) | 0.0054 (6) | 0.0115 (6) | 0.0082 (6) |
C8 | 0.0411 (8) | 0.0565 (10) | 0.0435 (8) | 0.0025 (7) | 0.0162 (6) | 0.0013 (7) |
C9 | 0.0425 (8) | 0.0710 (12) | 0.0490 (9) | −0.0019 (8) | 0.0137 (7) | −0.0027 (8) |
C10 | 0.0383 (8) | 0.0609 (11) | 0.0580 (9) | −0.0018 (7) | 0.0184 (7) | −0.0063 (8) |
C11 | 0.0639 (11) | 0.0721 (13) | 0.0669 (11) | −0.0039 (10) | 0.0297 (9) | 0.0095 (10) |
O1 | 0.0487 (7) | 0.0767 (9) | 0.0553 (7) | −0.0123 (6) | 0.0181 (5) | 0.0033 (6) |
O2 | 0.0431 (7) | 0.1021 (13) | 0.0731 (8) | −0.0180 (7) | 0.0197 (6) | −0.0050 (7) |
O3 | 0.0403 (6) | 0.0800 (9) | 0.0427 (6) | −0.0071 (5) | 0.0139 (5) | 0.0042 (5) |
O4 | 0.0787 (10) | 0.1250 (15) | 0.0509 (7) | −0.0008 (9) | 0.0322 (7) | −0.0084 (7) |
C1—O4 | 1.200 (2) | C7—O3 | 1.3778 (18) |
C1—C2 | 1.471 (2) | C8—C9 | 1.314 (2) |
C1—H1 | 0.9300 | C8—O3 | 1.3640 (18) |
C2—C3 | 1.390 (2) | C8—H8 | 0.9300 |
C2—C7 | 1.3910 (19) | C9—C10 | 1.454 (2) |
C3—C4 | 1.375 (3) | C9—H9 | 0.9300 |
C3—H3 | 0.9300 | C10—O2 | 1.2035 (19) |
C4—C5 | 1.380 (2) | C10—O1 | 1.342 (2) |
C4—H4 | 0.9300 | C11—O1 | 1.438 (2) |
C5—C6 | 1.378 (2) | C11—H11A | 0.9600 |
C5—H5 | 0.9300 | C11—H11B | 0.9600 |
C6—C7 | 1.380 (2) | C11—H11C | 0.9600 |
C6—H6 | 0.9300 | ||
O4—C1—C2 | 123.98 (17) | O3—C7—C2 | 115.83 (13) |
O4—C1—H1 | 118.0 | C6—C7—C2 | 120.61 (14) |
C2—C1—H1 | 118.0 | C9—C8—O3 | 120.00 (14) |
C3—C2—C7 | 118.80 (14) | C9—C8—H8 | 120.0 |
C3—C2—C1 | 119.24 (14) | O3—C8—H8 | 120.0 |
C7—C2—C1 | 121.91 (15) | C8—C9—C10 | 122.98 (15) |
C4—C3—C2 | 120.77 (15) | C8—C9—H9 | 118.5 |
C4—C3—H3 | 119.6 | C10—C9—H9 | 118.5 |
C2—C3—H3 | 119.6 | O2—C10—O1 | 122.10 (15) |
C3—C4—C5 | 119.52 (16) | O2—C10—C9 | 124.32 (16) |
C3—C4—H4 | 120.2 | O1—C10—C9 | 113.58 (14) |
C5—C4—H4 | 120.2 | O1—C11—H11A | 109.5 |
C6—C5—C4 | 120.83 (15) | O1—C11—H11B | 109.5 |
C6—C5—H5 | 119.6 | H11A—C11—H11B | 109.5 |
C4—C5—H5 | 119.6 | O1—C11—H11C | 109.5 |
C5—C6—C7 | 119.46 (15) | H11A—C11—H11C | 109.5 |
C5—C6—H6 | 120.3 | H11B—C11—H11C | 109.5 |
C7—C6—H6 | 120.3 | C10—O1—C11 | 115.85 (13) |
O3—C7—C6 | 123.51 (13) | C8—O3—C7 | 120.10 (12) |
O4—C1—C2—C3 | 2.7 (3) | C3—C2—C7—C6 | −0.5 (2) |
O4—C1—C2—C7 | −179.85 (17) | C1—C2—C7—C6 | −178.03 (15) |
C7—C2—C3—C4 | −0.6 (2) | O3—C8—C9—C10 | −176.28 (16) |
C1—C2—C3—C4 | 176.94 (17) | C8—C9—C10—O2 | 178.78 (19) |
C2—C3—C4—C5 | 1.0 (3) | C8—C9—C10—O1 | −1.2 (3) |
C3—C4—C5—C6 | −0.3 (3) | O2—C10—O1—C11 | 1.2 (3) |
C4—C5—C6—C7 | −0.9 (3) | C9—C10—O1—C11 | −178.82 (16) |
C5—C6—C7—O3 | 178.55 (15) | C9—C8—O3—C7 | −172.25 (16) |
C5—C6—C7—C2 | 1.3 (2) | C6—C7—O3—C8 | 26.2 (2) |
C3—C2—C7—O3 | −178.02 (14) | C2—C7—O3—C8 | −156.37 (14) |
C1—C2—C7—O3 | 4.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O2i | 0.93 | 2.54 | 3.440 (2) | 164 |
C8—H8···O4ii | 0.93 | 2.61 | 3.529 (2) | 171 |
C11—H11C···O2iii | 0.96 | 2.63 | 3.578 (2) | 168 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O2i | 0.93 | 2.54 | 3.440 (2) | 164 |
C8—H8···O4ii | 0.93 | 2.61 | 3.529 (2) | 171.2 |
C11—H11C···O2iii | 0.96 | 2.63 | 3.578 (2) | 167.6 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2. |
Acknowledgements
SK and KS thank Dr D. Velmurugan, CAS in Crystallography and Biophysics, University of Madras, Maraimalai Campus, Chennai, India, for the
data collection.References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
De, P., Baltas, M. & Bedos-Belvan, F. (2011). Curr. Med. Chem. 18, 1672–1703. CrossRef CAS PubMed Google Scholar
Dunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547–1554. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2012). Acta Cryst. E68, o1273. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Merlino, S. (1971). Acta Cryst. B27, 2491–2492. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sharma, P. (2011). J. Chem. Pharm. Res. 3, 403–423. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cinnamic acid derivatives have received attention in medicinal research as traditional as well as recent synthetic antitumor agents (De et al., 2011). They also posses significant antibacterial activities against staphylococcus aureus (Xiao et al., 2008). Different substitutions on the basic moiety lead to various pharmacological activities, such as antioxidant, hepatoprotective, anxiolytic, insect repellent, antidiabetic, and anticholesterolemic (Sharma, 2011).
In the title molecule, Fig. 1, the methyl acrylate group is essentially planar, with a maximum deviation of 0.0264 (19) Å for atom C9. Its mean plane forms a dihedral angle of 31.74 (6)° with the benzene ring (C2—C7). The molecular dimensions are in excellent agreement with the those reported for a closely related compound (Karthikeyan et al., 2012).
The configuration of the keto group with respect to the olefinic double bond is typically S-trans, with the O2═C10—C9═C8 torsion angle = 178.78 (19)°. The methyl acrylate group adopts an extended E conformation with torsion angles C8═C9—C10═O2 = 178.78 (19)°, C8═ C9—C10—O1 = -1.2 (3)°, C9—C10—O1—C11 = -178.82 (16)° and O2═ C10—O1—C11 = 1.2 (3)°. The extended conformation is supported by the fact that the bond angles involving carbonyl O atoms are invariably enlarged (Dunitz & Schweizer, 1982).
The significant difference in the bond lengths C10—O1 = 1.342 (2) Å and C11—O1 = 1.438 (2) Å is attributed to a partial contribution from the O-—C═O+—C resonance structure of the O2═C10—O1—C11 group (Merlino, 1971). This feature, commonly observed for the carboxylic ester group of substituents in various compounds gives average values of 1.340 Å and 1.447 Å, respectively (Varghese et al., 1986).
The crystal packing (Fig. 2 and Table 1) is stabilized by C—H···O intermolecular interactions. The molecules are linked into inversion dimers via C9—H9···O2 interactions resulting in an R22(8) graph-set motif (Bernstein et al., 1995). The dimers are further consolidated by R23(16) graph-set ring motifs via C8—H8···O4 and C11—H11C···O2 interactions resulting in chains of molecules running parallel to the c axis; the keto group O atom (O2) is involved in bifurcated hydrogen bonding.