organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o710-o711

7,7-Di­methyl-2-methyl­amino-4-(4-methyl­phenyl)-3-nitro-7,8-di­hydro-4H-chromen-5(6H)-one

aSri Ram Engineering College, Chennai 602 024, India, bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 May 2014; accepted 11 May 2014; online 24 May 2014)

In the title compound, C19H22N2O4, the six-membered cyclo­hexenone ring of the chromene unit adopts an envelope conformation, with the dimethyl-substituted C atom as the flap, while the pyran ring has a boat conformation. These two mean planes are inclined to one another by 6.65 (13)°·The benzene ring is normal to the 4H-chromene moiety mean plane, making a dihedral angle of 89.18 (5)°. The methyl­amine and nitro groups are slightly twisted from the chromene moiety mean plane, with torsion angles C—N—C—O = 1.70 (18) and O—N—C—C = 0.15 (18)°. The mol­ecular structure is characterized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of weak C—H⋯O hydrogen bonds, forming inversion dimers. These dimers are connected by further C—H⋯O hydrogen bonds, forming sheets lying parallel to (10-1).

Related literature

For the biological and pharmacological properties of chromenes and their derivatives, see: Zonouzi et al. (2013[Zonouzi, A., Mirzazadeh, R., Safavi, M., Ardestani, S. K., Emami, S. & Foroumadi, A. (2013). IJPR, 12, 679-685.]). For related structures, see: Narayanan et al. (2013[Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931-o932.]); Inglebert et al. (2014[Inglebert, S. A., Kamalraja, J., Sethusankar, K. & Vasuki, G. (2014). Acta Cryst. E70, o579-o580.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N2O4

  • Mr = 342.39

  • Monoclinic, P 21 /c

  • a = 9.4373 (5) Å

  • b = 15.8487 (8) Å

  • c = 12.1414 (6) Å

  • β = 105.122 (1)°

  • V = 1753.09 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.968

  • 22747 measured reflections

  • 4023 independent reflections

  • 3290 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.129

  • S = 1.04

  • 4023 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 1.98 2.6024 (15) 129
C5—H5⋯O3i 0.93 2.58 3.0685 (17) 113
C10—H10A⋯O4ii 0.96 2.54 3.4335 (19) 154
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4H-Chromene derivatives are important scaffolds in organic and medicinal chemistry. 4H-Chromene and their derivatives exhibit a wide spectrum of biological applications, such as antiallergic, anti-proliferative, anticancer, antibacterial, antiviral and potent apoptosis (Zonouzi et al., 2013).

The title compound, Fig. 1, consists of a chromene unit connected to a toluene ring at C11, a nitro group at C12, a methyl amine group at C13, dimethyl group at C16 and an oxygen atom at C18. The benzene ring (C1-C6) is normal to the mean plane of chromene unit (O1/C11–C19) with a dihedral angle of 89.18 (5)°. The nitro and methylamine groups are inclined to the mean plane of chromene unit by 6.51 (8) and 5.42 (6)°, respectively.

The six membered carbocyclic ring (C14–C19) of the chromene moiety adopts an envelope conformation with atom C16 as the flap: puckering amplitude (Q) = 0.4584 (15) Å, θ = 58.54 (17)° ϕ = 120.3 (2)°. Atom C16 deviates by 0.3234 (15) Å from the mean plane passing through the rest of the ring atoms. This conformation is similar to that in related structures (Narayanan et al., 2013; Inglebert et al., 2014).

The amine group nitrogen atoms, N1 and N2, deviate by -0.2044 (11) and -0.1338 (11) Å from the mean plane of the chromene moiety. The methyl amine group attached to C13 is coplanar with the chromene moiety as indicated by the torsion angle C8–N1–C13–O1 = 1.70 (18)°. The nitro group is also coplanar to the chromene moiety mean plane, as indicated by the torsion angles C13–C12–N2–O3 = 0.15 (18)° and C11–C12–N2–O4 = -4.82 (16)°. The molecular structure is characterized by an intramolecular N—H···O hydrogen bond, generates an S(6) ring motif (Fig. 1 and Table 1).

In the crystal, molecules are linked via pairs of C—H···O hydrogen bonds forming inversion dimers (Fig. 2 and Table 1). These dimers are connected by further C-H···O hydrogen bonds forming sheets lying parallel to (10-1) [Table 1 and Fig. 2]. The nitro atom O3 is involved in both intra- and inter-molecular hydrogen bonding, having a bifurcated character.

Related literature top

For the biological and pharmacological properties of chromenes and their derivatives, see: Zonouzi et al. (2013). For related structures, see: Narayanan et al. (2013); Inglebert et al. (2014).

Experimental top

A solution of 4-methylbenzaldehyde (1.0 mmol), 5,5-dimethylcyclohexane-1,3-dione (1.0 mmol), NMSM (1.0 mmol), and piperidine (0.2 equiv) in ethanol (2 ml) was stirred for 3.5 h. After the reaction was complete, as indicated by TLC, the product was filtered and washed with 2 ml of ethanol, to remove the excess base and other impurities. Finally, the product was recrystallized from ethanol yielding colourless block-like crystals.

Refinement top

H atoms were placed in idealized positions and allowed to ride on the parent atoms: N-H = 0.86 Å, and C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H atoms, respectively, with Uiso(H)= 1.5 Ueq(C-methyl) and = 1.2Ueq(C,N) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
7,7-Dimethyl-2-methylamino-4-(4-methylphenyl)-3-nitro-7,8-dihydro-4H-chromen-5(6H)-one top
Crystal data top
C19H22N2O4F(000) = 728
Mr = 342.39Dx = 1.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4023 reflections
a = 9.4373 (5) Åθ = 2.2–27.5°
b = 15.8487 (8) ŵ = 0.09 mm1
c = 12.1414 (6) ÅT = 293 K
β = 105.122 (1)°Block, colourless
V = 1753.09 (15) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4023 independent reflections
Radiation source: fine-focus sealed tube3290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scanθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.968, Tmax = 0.968k = 2020
22747 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.3328P]
where P = (Fo2 + 2Fc2)/3
4023 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H22N2O4V = 1753.09 (15) Å3
Mr = 342.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4373 (5) ŵ = 0.09 mm1
b = 15.8487 (8) ÅT = 293 K
c = 12.1414 (6) Å0.30 × 0.25 × 0.20 mm
β = 105.122 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4023 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3290 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.968Rint = 0.022
22747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
4023 reflectionsΔρmin = 0.27 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35586 (16)0.13090 (10)0.09850 (12)0.0483 (3)
C20.26190 (17)0.06267 (10)0.06696 (12)0.0482 (3)
H20.24680.04010.00590.058*
C30.19010 (15)0.02757 (8)0.14194 (11)0.0415 (3)
H30.12630.01750.11840.050*
C40.21229 (13)0.05885 (7)0.25161 (10)0.0337 (3)
C50.30488 (14)0.12771 (8)0.28302 (11)0.0396 (3)
H50.31970.15050.35570.047*
C60.37535 (15)0.16289 (9)0.20772 (12)0.0458 (3)
H60.43710.20890.23070.055*
C70.4372 (2)0.16838 (15)0.01843 (17)0.0787 (6)
H7A0.49670.21460.05540.118*
H7B0.36790.18830.04920.118*
H7C0.49870.12610.00180.118*
C80.41028 (17)0.05680 (10)0.74565 (12)0.0526 (4)
H8A0.49030.03130.80110.079*
H8B0.32350.05520.77280.079*
H8C0.43430.11430.73360.079*
C90.19570 (18)0.30022 (10)0.45333 (15)0.0582 (4)
H9A0.25720.26750.48890.087*
H9B0.25580.33080.38990.087*
H9C0.13880.33920.50770.087*
C100.00622 (16)0.29312 (9)0.35491 (13)0.0492 (3)
H10A0.05320.32380.29130.074*
H10B0.07080.25590.32870.074*
H10C0.06320.33200.40940.074*
C110.13852 (13)0.01918 (7)0.33750 (10)0.0339 (3)
H110.07730.02810.30060.041*
C120.24902 (13)0.01314 (7)0.44158 (10)0.0343 (3)
C130.28241 (13)0.02932 (8)0.54548 (10)0.0352 (3)
C140.08036 (14)0.12100 (8)0.47489 (10)0.0362 (3)
C150.00113 (15)0.19200 (9)0.51285 (11)0.0425 (3)
H15A0.07180.22980.56090.051*
H15B0.06150.16990.55800.051*
C160.09273 (14)0.24144 (8)0.41109 (12)0.0406 (3)
C170.18292 (14)0.17886 (9)0.32523 (12)0.0440 (3)
H17A0.25840.15520.35700.053*
H17B0.23180.20950.25670.053*
C180.09720 (13)0.10749 (8)0.29228 (11)0.0388 (3)
C190.04223 (13)0.08322 (8)0.37386 (10)0.0344 (3)
N10.38424 (12)0.01069 (7)0.63882 (9)0.0410 (3)
H10.43960.03200.63650.049*
N20.32677 (12)0.08485 (7)0.42859 (9)0.0378 (2)
O10.20515 (10)0.09898 (6)0.55876 (7)0.0424 (2)
O20.14135 (11)0.06874 (7)0.20344 (9)0.0559 (3)
O30.42802 (11)0.11268 (6)0.51012 (9)0.0484 (3)
O40.29464 (12)0.12159 (6)0.33498 (9)0.0508 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0473 (7)0.0549 (8)0.0458 (8)0.0037 (6)0.0177 (6)0.0092 (6)
C20.0579 (8)0.0548 (8)0.0333 (7)0.0044 (7)0.0147 (6)0.0007 (6)
C30.0481 (7)0.0391 (7)0.0363 (6)0.0009 (6)0.0092 (5)0.0022 (5)
C40.0342 (6)0.0340 (6)0.0318 (6)0.0034 (5)0.0068 (5)0.0018 (5)
C50.0397 (6)0.0417 (7)0.0356 (6)0.0020 (5)0.0069 (5)0.0031 (5)
C60.0415 (7)0.0446 (7)0.0511 (8)0.0053 (6)0.0116 (6)0.0026 (6)
C70.0853 (13)0.0951 (15)0.0681 (12)0.0151 (11)0.0421 (10)0.0092 (11)
C80.0526 (8)0.0620 (9)0.0371 (7)0.0013 (7)0.0007 (6)0.0017 (6)
C90.0604 (9)0.0534 (9)0.0656 (10)0.0194 (7)0.0253 (8)0.0050 (7)
C100.0491 (7)0.0431 (7)0.0560 (8)0.0010 (6)0.0147 (6)0.0081 (6)
C110.0356 (6)0.0322 (6)0.0327 (6)0.0009 (5)0.0069 (5)0.0008 (5)
C120.0359 (6)0.0323 (6)0.0345 (6)0.0006 (5)0.0088 (5)0.0033 (5)
C130.0361 (6)0.0335 (6)0.0357 (6)0.0007 (5)0.0090 (5)0.0055 (5)
C140.0377 (6)0.0375 (6)0.0335 (6)0.0027 (5)0.0093 (5)0.0055 (5)
C150.0492 (7)0.0432 (7)0.0375 (7)0.0078 (6)0.0153 (6)0.0012 (5)
C160.0398 (6)0.0398 (7)0.0445 (7)0.0063 (5)0.0150 (6)0.0048 (5)
C170.0321 (6)0.0491 (7)0.0505 (8)0.0038 (5)0.0102 (5)0.0068 (6)
C180.0337 (6)0.0440 (7)0.0382 (7)0.0030 (5)0.0085 (5)0.0040 (5)
C190.0336 (6)0.0360 (6)0.0338 (6)0.0007 (5)0.0090 (5)0.0030 (5)
N10.0419 (6)0.0427 (6)0.0350 (6)0.0037 (5)0.0041 (4)0.0041 (4)
N20.0374 (5)0.0354 (5)0.0412 (6)0.0004 (4)0.0112 (4)0.0036 (4)
O10.0480 (5)0.0411 (5)0.0337 (5)0.0089 (4)0.0027 (4)0.0012 (4)
O20.0455 (5)0.0683 (7)0.0460 (6)0.0028 (5)0.0020 (4)0.0096 (5)
O30.0470 (5)0.0467 (5)0.0485 (6)0.0123 (4)0.0070 (4)0.0074 (4)
O40.0571 (6)0.0454 (5)0.0479 (6)0.0059 (4)0.0099 (5)0.0100 (4)
Geometric parameters (Å, º) top
C1—C61.386 (2)C10—H10B0.9600
C1—C21.387 (2)C10—H10C0.9600
C1—C71.509 (2)C11—C121.5030 (17)
C2—C31.3854 (19)C11—C191.5034 (17)
C2—H20.9300C11—H110.9800
C3—C41.3846 (17)C12—N21.3840 (16)
C3—H30.9300C12—C131.3915 (17)
C4—C51.3879 (18)C13—N11.3141 (16)
C4—C111.5318 (16)C13—O11.3557 (15)
C5—C61.3806 (19)C14—C191.3275 (17)
C5—H50.9300C14—O11.3857 (15)
C6—H60.9300C14—C151.4891 (18)
C7—H7A0.9600C15—C161.5342 (18)
C7—H7B0.9600C15—H15A0.9700
C7—H7C0.9600C15—H15B0.9700
C8—N11.4528 (18)C16—C171.527 (2)
C8—H8A0.9600C17—C181.5043 (19)
C8—H8B0.9600C17—H17A0.9700
C8—H8C0.9600C17—H17B0.9700
C9—C161.5281 (19)C18—O21.2165 (16)
C9—H9A0.9600C18—C191.4767 (17)
C9—H9B0.9600N1—H10.8600
C9—H9C0.9600N2—O41.2421 (14)
C10—C161.5299 (19)N2—O31.2626 (14)
C10—H10A0.9600
C6—C1—C2117.69 (13)C19—C11—C4109.86 (10)
C6—C1—C7120.63 (15)C12—C11—H11108.7
C2—C1—C7121.66 (15)C19—C11—H11108.7
C3—C2—C1121.24 (13)C4—C11—H11108.7
C3—C2—H2119.4N2—C12—C13119.94 (11)
C1—C2—H2119.4N2—C12—C11117.14 (11)
C4—C3—C2120.73 (13)C13—C12—C11122.74 (11)
C4—C3—H3119.6N1—C13—O1112.05 (11)
C2—C3—H3119.6N1—C13—C12127.95 (12)
C3—C4—C5118.18 (12)O1—C13—C12120.00 (11)
C3—C4—C11121.74 (11)C19—C14—O1122.61 (11)
C5—C4—C11120.07 (11)C19—C14—C15126.15 (12)
C6—C5—C4120.87 (12)O1—C14—C15111.22 (11)
C6—C5—H5119.6C14—C15—C16111.57 (11)
C4—C5—H5119.6C14—C15—H15A109.3
C5—C6—C1121.27 (13)C16—C15—H15A109.3
C5—C6—H6119.4C14—C15—H15B109.3
C1—C6—H6119.4C16—C15—H15B109.3
C1—C7—H7A109.5H15A—C15—H15B108.0
C1—C7—H7B109.5C17—C16—C9109.58 (12)
H7A—C7—H7B109.5C17—C16—C10109.86 (11)
C1—C7—H7C109.5C9—C16—C10109.80 (12)
H7A—C7—H7C109.5C17—C16—C15108.66 (11)
H7B—C7—H7C109.5C9—C16—C15108.98 (11)
N1—C8—H8A109.5C10—C16—C15109.95 (11)
N1—C8—H8B109.5C18—C17—C16115.30 (10)
H8A—C8—H8B109.5C18—C17—H17A108.5
N1—C8—H8C109.5C16—C17—H17A108.5
H8A—C8—H8C109.5C18—C17—H17B108.5
H8B—C8—H8C109.5C16—C17—H17B108.5
C16—C9—H9A109.5H17A—C17—H17B107.5
C16—C9—H9B109.5O2—C18—C19120.16 (12)
H9A—C9—H9B109.5O2—C18—C17122.13 (12)
C16—C9—H9C109.5C19—C18—C17117.67 (11)
H9A—C9—H9C109.5C14—C19—C18118.79 (12)
H9B—C9—H9C109.5C14—C19—C11122.48 (11)
C16—C10—H10A109.5C18—C19—C11118.69 (11)
C16—C10—H10B109.5C13—N1—C8124.91 (12)
H10A—C10—H10B109.5C13—N1—H1117.5
C16—C10—H10C109.5C8—N1—H1117.5
H10A—C10—H10C109.5O4—N2—O3120.52 (11)
H10B—C10—H10C109.5O4—N2—C12118.63 (11)
C12—C11—C19108.85 (10)O3—N2—C12120.85 (11)
C12—C11—C4111.92 (10)C13—O1—C14119.87 (10)
C6—C1—C2—C30.1 (2)C9—C16—C17—C18169.54 (12)
C7—C1—C2—C3178.62 (16)C10—C16—C17—C1869.75 (15)
C1—C2—C3—C41.1 (2)C15—C16—C17—C1850.56 (15)
C2—C3—C4—C51.85 (19)C16—C17—C18—O2157.41 (13)
C2—C3—C4—C11177.78 (12)C16—C17—C18—C1924.66 (17)
C3—C4—C5—C61.36 (19)O1—C14—C19—C18176.46 (11)
C11—C4—C5—C6178.27 (12)C15—C14—C19—C185.1 (2)
C4—C5—C6—C10.2 (2)O1—C14—C19—C116.08 (19)
C2—C1—C6—C50.6 (2)C15—C14—C19—C11172.31 (12)
C7—C1—C6—C5178.14 (16)O2—C18—C19—C14173.35 (13)
C3—C4—C11—C12119.44 (13)C17—C18—C19—C144.61 (18)
C5—C4—C11—C1260.18 (15)O2—C18—C19—C119.09 (18)
C3—C4—C11—C19119.52 (12)C17—C18—C19—C11172.94 (11)
C5—C4—C11—C1960.86 (14)C12—C11—C19—C1418.29 (16)
C19—C11—C12—N2166.69 (10)C4—C11—C19—C14104.58 (13)
C4—C11—C12—N271.68 (13)C12—C11—C19—C18164.25 (10)
C19—C11—C12—C1318.20 (16)C4—C11—C19—C1872.88 (13)
C4—C11—C12—C13103.42 (13)O1—C13—N1—C81.70 (18)
N2—C12—C13—N10.7 (2)C12—C13—N1—C8178.21 (13)
C11—C12—C13—N1174.26 (12)C13—C12—N2—O4179.94 (11)
N2—C12—C13—O1179.19 (11)C11—C12—N2—O44.82 (16)
C11—C12—C13—O15.84 (18)C13—C12—N2—O30.15 (18)
C19—C14—C15—C1623.05 (19)C11—C12—N2—O3175.40 (11)
O1—C14—C15—C16155.49 (11)N1—C13—O1—C14170.87 (11)
C14—C15—C16—C1748.46 (15)C12—C13—O1—C149.05 (17)
C14—C15—C16—C9167.81 (12)C19—C14—O1—C139.14 (18)
C14—C15—C16—C1071.80 (15)C15—C14—O1—C13172.26 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.982.6024 (15)129
C5—H5···O3i0.932.583.0685 (17)113
C10—H10A···O4ii0.962.543.4335 (19)154
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.982.6024 (15)129
C5—H5···O3i0.932.583.0685 (17)113
C10—H10A···O4ii0.962.543.4335 (19)154
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInglebert, S. A., Kamalraja, J., Sethusankar, K. & Vasuki, G. (2014). Acta Cryst. E70, o579–o580.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931–o932.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZonouzi, A., Mirzazadeh, R., Safavi, M., Ardestani, S. K., Emami, S. & Foroumadi, A. (2013). IJPR, 12, 679–685.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o710-o711
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds