organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o702-o703

4-(Pyrimidin-2-yl)piperazin-1-ium (E)-3-carb­­oxy­prop-2-enoate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 18 May 2014; accepted 18 May 2014; online 24 May 2014)

In the cation of the title salt, C8H13N4+·C4H3O4, the piperazinium ring adopts a slightly distorteded chair conformation. In the crystal, a single strong O—H⋯O inter­molecular hydrogen bond links the anions, forming chains along the c-axis direction. The chains of anions are linked by the cations, via N—H⋯O hydrogen bonds, forming sheets parallel to (100). These layers are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional structure. In addition, there are weak ππ inter­actions [centroid–centroid distance = 3.820 (9) Å] present involving inversion-related pyrimidine rings.

Related literature

For heterocyclic compounds that exhibit a broad spectrum of biological activities see: Amin et al. (2009[Amin, K. M., Hanna, M. M., Abo-Youssef, H. E., Riham, F. & George, R. F. (2009). Eur. J. Med. Chem., 44, 4572-4584.]); Clark et al. (2007[Clark, M. P., George, K. M. & Bookland, R. G. (2007). Bioorg. Med. Chem. Lett., 17, 1250-1253.]); Ibrahim & El-Metwally (2010[Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158-1166.]); Kim et al. (2010[Kim, J. Y., Kim, D. & Kang, S. Y. (2010). Bioorg. Med. Chem. Lett. 20, 6439-6442.]); Kuyper et al. (1996[Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D. K. & Beddell, C. R. (1996). Bioorg. Med. Chem. 4, 593-602.]); Padmaja et al. (2009[Padmaja, A., Payani, T., Reddy, G. D., Dinneswara Reddy, G. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557-4566.]); Pandey et al. (2004[Pandey, S., Suryawanshi, S. N., Suman Gupta. & Srivastava, V. M. L. (2004). Eur. J. Med. Chem. 39, 969-973.]). For piperazine-based compounds of biological and chemotherapeutic importance, see: Abdel-Jalil et al. (2010[Abdel-Jalil, R. J., El Momani, E. Q., Hamad, M., Voelter, W., Mubarak, M. S., Smith, B. H. & Peters, D. G. (2010). Monatsh. Chem. 141, 251-258.]). For piperazine derivatives that have reached the stage of clinical application among the known drugs to treat anxiety, see: Tollefson et al. (1991[Tollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991). Psychopharmacol. Bull. 27, 163-170.]). For related structures, see: Betz et al. (2011[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Thomas, S. (2011). Acta Cryst. E67, o2945-o2946.]); Fun et al. (2012[Fun, H.-K., Chantrapromma, S., Dayananda, A. S., Yathirajan, H. S. & Thomas, S. (2012). Acta Cryst. E68, o792-o793.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o411-o412.], 2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011). Acta Cryst. E67, o483-o484.]); Kavitha et al. (2013[Kavitha, C. N., Yildirim, S. Ō. ¯, Jasinski, J. P., Yathirajan, H. S. & Butcher, R. J. (2013). Acta Cryst. E69, o142-o143.]); Ravikumar & Sridhar (2005[Ravikumar, K. & Sridhar, B. (2005). Acta Cryst. E61, o3245-o3248.]); Siddegowda et al. (2011[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011). Acta Cryst. E67, o2017-o2018.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H13N4+·C4H3O4

  • Mr = 280.29

  • Monoclinic, P 21 /c

  • a = 12.3425 (5) Å

  • b = 7.0365 (3) Å

  • c = 14.7178 (6) Å

  • β = 94.213 (3)°

  • V = 1274.77 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.94 mm−1

  • T = 173 K

  • 0.22 × 0.16 × 0.06 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]). Tmin = 0.840, Tmax = 1.000

  • 8262 measured reflections

  • 2455 independent reflections

  • 2090 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.06

  • 2455 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O2Bi 0.99 1.79 2.7601 (15) 166
N1A—H1AB⋯O4Bii 0.99 1.78 2.7493 (16) 167
C8A—H8A⋯O2Biii 0.95 2.53 3.3133 (18) 140
O1B—H1B⋯O3Biv 1.12 (3) 1.35 (3) 2.4679 (13) 176 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Pyrimidine derivatives have attracted organic chemists due to their biological and chemotherapeutic importance. Related fused heterocycles are important classes of heterocyclic compounds that exhibit a broad spectrum of biological activities such as anticancer (Amin et al., 2009; Pandey et al., 2004), antiviral (Ibrahim & El-Metwally, 2010), antibacterial (Kuyper et al., 1996), antioxidant (Padmaja et al. , 2009), antidepressant (Kim et al., 2010) and anti-inflammatory (Clark et al., 2007). Piperazine-based compounds have been employed as antibacterial, antidepressant, and antitumor drugs, and as α adrenoceptor antagonists, CCR5 receptor antagonists, 5-HT7 receptor antagonists, and adenosine A2a receptor antagonists (Abdel-Jalil et al., 2010). Several piperazine derivatives have reached the stage of clinical application among the known drugs that are used to treat anxiety including the pyrimidinyl piperazinyl compounds, buspirone and BuSpar (Tollefson et al., 1991). The incorporation of two moieties increases biological activity of both the molecules. Our research group has published many papers on incorporated heterocyclic ring structures, viz; imatinibium dipicrate [systematic name: 1-methyl-4-(4-{4-methyl-3- [4-(3-pyridyl)pyrimidin-2-ylamino]anilinocarbonyl}benzyl)piperazine-1,4- diium dipicrate, (Jasinski et al., 2010), 1-(2-hydroxyethyl)-4-{3-[(E)-2-(trifluoromethyl)-9H-thioxanthen-9- ylidene]propyl}piperazine-1,4-diium bis(3-carboxyprop-2-enoate) (Siddegowda et al., 2011), lomefloxacinium picrate (Jasinski et al., 2011), paliperidone: 3-{2-[4-(6-fluoro-1,2-benzoxazol-3- yl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-1,6,7,8,9,9a-hexahydropyrido [1,2-a]pyrimidin-4-one (Betz et al., 2011), 4-[3,5-bis(2-hydroxy phenyl)-1H-1,2,4-triazol-1-yl]benzoic acid dimethylformamide monosolvate (Fun et al., 2012), and other related crystal structures are quetiapine hemifumarate (systematic name: 1-[2-(2-hydroxyethoxy) ethyl]- 4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazinium hemifumarate (Ravikumar & Sridhar, 2005), Cinnarizinium fumarate (Kavitha et al., 2013). In view of the importance of the incorporated of heterocyclic ring compounds and derivative of pyrimidyl piperazines, this paper reports the crystal structure of the title salt.

The title salt crystallizes with one independent monoprotonated piperazinium cation (A) and one independent fumarate anion (B) in the asymmetric unit (Fig. 1). In the cation, the piperazinium ring adopts a slightly distorted chair conformation (puckering parameters Q, θ, and ϕ = 0.5738 (14) Å, 5.20 (14)° and 21.1 (16)° (Cremer & Pople, 1975). Bond lengths are in normal ranges (Allen et al., 1987).

In the crystal, a single strong short O1B—H1B···O3B hydrogen bond links the anions resulting in chains along the c axis (Table 1 and Fig. 2). The chains are linked via N—H···O hydrogen bonds to form sheets parallel to (100). A weak C8A—H8A···O2B hydrogen bond links the cations and anions forming a three-dimensional structure with alternate layers of cations and anions (Table 1 and Fig. 2). In addition, weak ππ interactions involving inversion related pyrimidine rings are present [Cg–Cgi = 3.820 (9) Å; symmetry code:(i) -x+2, -y+1, -z+1; Cg is the centroid of the pyrimidine ring N3A/N4A/C5A-C8A].

Related literature top

For heterocyclic compounds that exhibit a broad spectrum of biological activities see: Amin et al. (2009); Clark et al. (2007); Ibrahim & El-Metwally (2010); Kim et al. (2010); Kuyper et al. (1996); Padmaja et al. (2009); Pandey et al. (2004). For piperazine-based compounds of biological and chemotherapeutic importance, see: Abdel-Jalil et al. (2010). For piperazine derivatives that have reached the stage of clinical application among the known drugs to treat anxiety, see: Tollefson et al. (1991). For related structures, see: Betz et al. (2011); Fun et al. (2012); Jasinski et al. (2010, 2011); Kavitha et al. (2013); Ravikumar & Sridhar (2005); Siddegowda et al. (2011). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

1-(2-Pyrimidyl)piperazine (Sigma-Aldrich; 0.2 g, 1.2179 mmol) and fumaric acid (0.1412 g, 1.2179 mmol ) were dissolved in 10 ml of dimethylsulfoxide and stirred at 333 K for 20 minutes. After a few days, colourless block-like crystals were obtained on slow evaporation of the solvent [M.p: 433-438 K].

Refinement top

Atom H1B was freely refined and all of the remaining H atoms were placed in their calculated positions and refined using the riding model approach: N-H = 0.99 Å for NH2 H atoms, C—H = 0.95 and 0.99Å for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title salt. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
4-(Pyrimidin-2-yl)piperazin-1-ium (E)-3-carboxyprop-2-enoate top
Crystal data top
C8H13N4+·C4H3O4F(000) = 592
Mr = 280.29Dx = 1.460 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.3425 (5) ÅCell parameters from 3297 reflections
b = 7.0365 (3) Åθ = 3.6–71.5°
c = 14.7178 (6) ŵ = 0.94 mm1
β = 94.213 (3)°T = 173 K
V = 1274.77 (9) Å3Block, colourless
Z = 40.22 × 0.16 × 0.06 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
2455 independent reflections
Radiation source: Enhance (Cu) X-ray Source2090 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.039
ω scansθmax = 71.1°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012).
h = 1415
Tmin = 0.840, Tmax = 1.000k = 86
8262 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.2118P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.23 e Å3
2455 reflectionsΔρmin = 0.27 e Å3
186 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0012 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H13N4+·C4H3O4V = 1274.77 (9) Å3
Mr = 280.29Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.3425 (5) ŵ = 0.94 mm1
b = 7.0365 (3) ÅT = 173 K
c = 14.7178 (6) Å0.22 × 0.16 × 0.06 mm
β = 94.213 (3)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
2455 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012).
2090 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 1.000Rint = 0.039
8262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
2455 reflectionsΔρmin = 0.27 e Å3
186 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.73318 (9)0.69373 (17)0.20819 (8)0.0218 (3)
H1AA0.68820.74510.15540.026*
H1AB0.69680.57880.22990.026*
N2A0.91562 (9)0.69808 (17)0.33676 (8)0.0212 (3)
N3A0.98791 (10)0.77052 (18)0.48251 (9)0.0244 (3)
N4A1.09665 (9)0.62261 (18)0.37363 (9)0.0248 (3)
C1A0.74267 (11)0.8382 (2)0.28219 (10)0.0223 (3)
H1AC0.66940.87390.29970.027*
H1AD0.77850.95390.26050.027*
C2A0.80895 (11)0.7569 (2)0.36402 (10)0.0214 (3)
H2AA0.81790.85400.41270.026*
H2AB0.77070.64630.38820.026*
C3A0.91155 (11)0.5639 (2)0.26058 (9)0.0230 (3)
H3AA0.88060.44180.27980.028*
H3AB0.98610.53950.24290.028*
C4A0.84275 (11)0.6420 (2)0.17953 (10)0.0232 (3)
H4AA0.87820.75570.15540.028*
H4AB0.83550.54530.13060.028*
C5A1.00316 (11)0.69522 (19)0.40052 (10)0.0186 (3)
C6A1.07633 (13)0.7795 (2)0.54032 (11)0.0281 (4)
H6A1.06950.83470.59850.034*
C7A1.17713 (12)0.7133 (2)0.52036 (12)0.0287 (4)
H7A1.23900.72240.56250.034*
C8A1.18203 (12)0.6329 (2)0.43523 (12)0.0285 (4)
H8A1.24950.58230.41940.034*
O1B0.45437 (8)0.79460 (16)0.54884 (7)0.0247 (3)
O2B0.62685 (8)0.69817 (16)0.54483 (7)0.0274 (3)
O3B0.48860 (8)0.68609 (15)0.21591 (6)0.0227 (3)
O4B0.33707 (8)0.85812 (15)0.22066 (6)0.0228 (3)
C1B0.53605 (11)0.73177 (19)0.50805 (9)0.0170 (3)
C2B0.51599 (11)0.70263 (19)0.40767 (9)0.0173 (3)
H2B0.56050.61570.37790.021*
C3B0.43843 (11)0.79386 (19)0.35918 (9)0.0174 (3)
H3B0.39180.87400.39060.021*
C4B0.41910 (10)0.77939 (19)0.25776 (9)0.0159 (3)
H1B0.473 (2)0.801 (4)0.624 (2)0.091 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0163 (6)0.0294 (7)0.0188 (6)0.0046 (5)0.0057 (5)0.0051 (5)
N2A0.0132 (6)0.0313 (7)0.0186 (6)0.0027 (4)0.0023 (4)0.0025 (5)
N3A0.0187 (6)0.0321 (7)0.0216 (7)0.0000 (5)0.0037 (5)0.0027 (5)
N4A0.0156 (6)0.0291 (7)0.0294 (7)0.0033 (5)0.0019 (5)0.0006 (5)
C1A0.0141 (6)0.0272 (7)0.0249 (7)0.0001 (5)0.0025 (5)0.0018 (6)
C2A0.0128 (6)0.0314 (7)0.0194 (7)0.0014 (5)0.0014 (5)0.0016 (6)
C3A0.0208 (7)0.0297 (8)0.0180 (7)0.0028 (5)0.0019 (5)0.0023 (6)
C4A0.0214 (7)0.0312 (8)0.0165 (7)0.0020 (6)0.0009 (5)0.0003 (6)
C5A0.0145 (6)0.0202 (7)0.0204 (7)0.0013 (5)0.0031 (5)0.0030 (5)
C6A0.0260 (8)0.0332 (8)0.0236 (8)0.0031 (6)0.0082 (6)0.0005 (6)
C7A0.0209 (7)0.0297 (8)0.0333 (9)0.0019 (6)0.0125 (6)0.0050 (6)
C8A0.0149 (7)0.0286 (8)0.0409 (9)0.0023 (5)0.0054 (6)0.0016 (7)
O1B0.0196 (5)0.0454 (7)0.0092 (5)0.0021 (4)0.0008 (4)0.0006 (4)
O2B0.0216 (5)0.0433 (7)0.0163 (5)0.0075 (4)0.0064 (4)0.0044 (4)
O3B0.0221 (5)0.0362 (6)0.0094 (5)0.0091 (4)0.0006 (4)0.0012 (4)
O4B0.0183 (5)0.0329 (6)0.0164 (5)0.0056 (4)0.0043 (4)0.0029 (4)
C1B0.0173 (6)0.0209 (7)0.0126 (7)0.0017 (5)0.0007 (5)0.0011 (5)
C2B0.0166 (6)0.0241 (7)0.0111 (6)0.0008 (5)0.0009 (5)0.0004 (5)
C3B0.0170 (6)0.0244 (7)0.0109 (6)0.0008 (5)0.0020 (5)0.0020 (5)
C4B0.0153 (6)0.0206 (7)0.0115 (6)0.0012 (5)0.0001 (5)0.0001 (5)
Geometric parameters (Å, º) top
N1A—H1AA0.9900C3A—C4A1.5157 (19)
N1A—H1AB0.9900C4A—H4AA0.9900
N1A—C1A1.4883 (19)C4A—H4AB0.9900
N1A—C4A1.4909 (18)C6A—H6A0.9500
N2A—C2A1.4640 (17)C6A—C7A1.380 (2)
N2A—C3A1.4637 (18)C7A—H7A0.9500
N2A—C5A1.3782 (17)C7A—C8A1.380 (2)
N3A—C5A1.3438 (19)C8A—H8A0.9500
N3A—C6A1.3351 (19)O1B—C1B1.2890 (17)
N4A—C5A1.3477 (18)O1B—H1B1.12 (3)
N4A—C8A1.3407 (19)O2B—C1B1.2311 (17)
C1A—H1AC0.9900O3B—C4B1.2742 (16)
C1A—H1AD0.9900O4B—C4B1.2445 (16)
C1A—C2A1.5173 (19)C1B—C2B1.4941 (17)
C2A—H2AA0.9900C2B—H2B0.9500
C2A—H2AB0.9900C2B—C3B1.3181 (19)
C3A—H3AA0.9900C3B—H3B0.9500
C3A—H3AB0.9900C3B—C4B1.4977 (17)
H1AA—N1A—H1AB108.1N1A—C4A—H4AA109.8
C1A—N1A—H1AA109.6N1A—C4A—H4AB109.8
C1A—N1A—H1AB109.6C3A—C4A—H4AA109.8
C1A—N1A—C4A110.45 (10)C3A—C4A—H4AB109.8
C4A—N1A—H1AA109.6H4AA—C4A—H4AB108.2
C4A—N1A—H1AB109.6N3A—C5A—N2A116.82 (12)
C3A—N2A—C2A114.29 (11)N3A—C5A—N4A126.34 (13)
C5A—N2A—C2A119.56 (12)N4A—C5A—N2A116.80 (13)
C5A—N2A—C3A119.55 (11)N3A—C6A—H6A118.1
C6A—N3A—C5A115.41 (13)N3A—C6A—C7A123.76 (15)
C8A—N4A—C5A115.36 (13)C7A—C6A—H6A118.1
N1A—C1A—H1AC109.8C6A—C7A—H7A122.2
N1A—C1A—H1AD109.8C8A—C7A—C6A115.59 (14)
N1A—C1A—C2A109.39 (11)C8A—C7A—H7A122.2
H1AC—C1A—H1AD108.2N4A—C8A—C7A123.47 (14)
C2A—C1A—H1AC109.8N4A—C8A—H8A118.3
C2A—C1A—H1AD109.8C7A—C8A—H8A118.3
N2A—C2A—C1A109.41 (12)C1B—O1B—H1B111.6 (15)
N2A—C2A—H2AA109.8O1B—C1B—C2B115.42 (12)
N2A—C2A—H2AB109.8O2B—C1B—O1B125.37 (12)
C1A—C2A—H2AA109.8O2B—C1B—C2B119.20 (12)
C1A—C2A—H2AB109.8C1B—C2B—H2B119.0
H2AA—C2A—H2AB108.2C3B—C2B—C1B121.98 (13)
N2A—C3A—H3AA109.5C3B—C2B—H2B119.0
N2A—C3A—H3AB109.5C2B—C3B—H3B117.9
N2A—C3A—C4A110.78 (12)C2B—C3B—C4B124.24 (12)
H3AA—C3A—H3AB108.1C4B—C3B—H3B117.9
C4A—C3A—H3AA109.5O3B—C4B—C3B116.94 (11)
C4A—C3A—H3AB109.5O4B—C4B—O3B124.90 (12)
N1A—C4A—C3A109.46 (11)O4B—C4B—C3B118.15 (12)
N1A—C1A—C2A—N2A57.34 (15)C5A—N3A—C6A—C7A1.5 (2)
N2A—C3A—C4A—N1A54.53 (16)C5A—N4A—C8A—C7A0.6 (2)
N3A—C6A—C7A—C8A0.6 (2)C6A—N3A—C5A—N2A174.86 (13)
C1A—N1A—C4A—C3A59.07 (15)C6A—N3A—C5A—N4A2.9 (2)
C2A—N2A—C3A—C4A54.41 (16)C6A—C7A—C8A—N4A1.8 (2)
C2A—N2A—C5A—N3A8.22 (19)C8A—N4A—C5A—N2A175.90 (13)
C2A—N2A—C5A—N4A173.80 (12)C8A—N4A—C5A—N3A1.9 (2)
C3A—N2A—C2A—C1A55.43 (16)O1B—C1B—C2B—C3B23.25 (19)
C3A—N2A—C5A—N3A158.13 (13)O2B—C1B—C2B—C3B155.66 (14)
C3A—N2A—C5A—N4A23.89 (19)C1B—C2B—C3B—C4B176.05 (12)
C4A—N1A—C1A—C2A60.83 (14)C2B—C3B—C4B—O3B6.6 (2)
C5A—N2A—C2A—C1A153.15 (13)C2B—C3B—C4B—O4B173.29 (13)
C5A—N2A—C3A—C4A154.17 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O2Bi0.991.792.7601 (15)166
N1A—H1AB···O4Bii0.991.782.7493 (16)167
C8A—H8A···O2Biii0.952.533.3133 (18)140
O1B—H1B···O3Biv1.12 (3)1.35 (3)2.4679 (13)176 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O2Bi0.991.792.7601 (15)166
N1A—H1AB···O4Bii0.991.782.7493 (16)167
C8A—H8A···O2Biii0.952.533.3133 (18)140
O1B—H1B···O3Biv1.12 (3)1.35 (3)2.4679 (13)176 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAbdel-Jalil, R. J., El Momani, E. Q., Hamad, M., Voelter, W., Mubarak, M. S., Smith, B. H. & Peters, D. G. (2010). Monatsh. Chem. 141, 251–258.  CAS Google Scholar
First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmin, K. M., Hanna, M. M., Abo-Youssef, H. E., Riham, F. & George, R. F. (2009). Eur. J. Med. Chem., 44, 4572–4584.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Thomas, S. (2011). Acta Cryst. E67, o2945–o2946.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClark, M. P., George, K. M. & Bookland, R. G. (2007). Bioorg. Med. Chem. Lett., 17, 1250–1253.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Dayananda, A. S., Yathirajan, H. S. & Thomas, S. (2012). Acta Cryst. E68, o792–o793.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationIbrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158–1166.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o411–o412.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011). Acta Cryst. E67, o483–o484.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKavitha, C. N., Yildirim, S. Ō. ¯, Jasinski, J. P., Yathirajan, H. S. & Butcher, R. J. (2013). Acta Cryst. E69, o142–o143.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKim, J. Y., Kim, D. & Kang, S. Y. (2010). Bioorg. Med. Chem. Lett. 20, 6439–6442.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D. K. & Beddell, C. R. (1996). Bioorg. Med. Chem. 4, 593–602.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPadmaja, A., Payani, T., Reddy, G. D., Dinneswara Reddy, G. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557–4566.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPandey, S., Suryawanshi, S. N., Suman Gupta. & Srivastava, V. M. L. (2004). Eur. J. Med. Chem. 39, 969–973.  Google Scholar
First citationRavikumar, K. & Sridhar, B. (2005). Acta Cryst. E61, o3245–o3248.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011). Acta Cryst. E67, o2017–o2018.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991). Psychopharmacol. Bull. 27, 163–170.  PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o702-o703
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds