organic compounds
4-(Pyrimidin-2-yl)piperazin-1-ium (E)-3-carboxyprop-2-enoate
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
In the cation of the title salt, C8H13N4+·C4H3O4−, the piperazinium ring adopts a slightly distorteded chair conformation. In the crystal, a single strong O—H⋯O intermolecular hydrogen bond links the anions, forming chains along the c-axis direction. The chains of anions are linked by the cations, via N—H⋯O hydrogen bonds, forming sheets parallel to (100). These layers are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional structure. In addition, there are weak π–π interactions [centroid–centroid distance = 3.820 (9) Å] present involving inversion-related pyrimidine rings.
CCDC reference: 1003662
Related literature
For et al. (2009); Clark et al. (2007); Ibrahim & El-Metwally (2010); Kim et al. (2010); Kuyper et al. (1996); Padmaja et al. (2009); Pandey et al. (2004). For piperazine-based compounds of biological and chemotherapeutic importance, see: Abdel-Jalil et al. (2010). For piperazine derivatives that have reached the stage of clinical application among the known drugs to treat anxiety, see: Tollefson et al. (1991). For related structures, see: Betz et al. (2011); Fun et al. (2012); Jasinski et al. (2010, 2011); Kavitha et al. (2013); Ravikumar & Sridhar (2005); Siddegowda et al. (2011). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).
that exhibit a broad spectrum of biological activities see: AminExperimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1003662
10.1107/S1600536814011489/su2736sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814011489/su2736Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814011489/su2736Isup3.cml
1-(2-Pyrimidyl)piperazine (Sigma-Aldrich; 0.2 g, 1.2179 mmol) and fumaric acid (0.1412 g, 1.2179 mmol ) were dissolved in 10 ml of dimethylsulfoxide and stirred at 333 K for 20 minutes. After a few days, colourless block-like crystals were obtained on slow evaporation of the solvent [M.p: 433-438 K].
Atom H1B was freely refined and all of the remaining H atoms were placed in their calculated positions and refined using the riding model approach: N-H = 0.99 Å for NH2 H atoms, C—H = 0.95 and 0.99Å for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2Ueq(N,C).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. A view of the molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A view along the b axis of the crystal packing of the title salt. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity). |
C8H13N4+·C4H3O4− | F(000) = 592 |
Mr = 280.29 | Dx = 1.460 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 12.3425 (5) Å | Cell parameters from 3297 reflections |
b = 7.0365 (3) Å | θ = 3.6–71.5° |
c = 14.7178 (6) Å | µ = 0.94 mm−1 |
β = 94.213 (3)° | T = 173 K |
V = 1274.77 (9) Å3 | Block, colourless |
Z = 4 | 0.22 × 0.16 × 0.06 mm |
Agilent Xcalibur Eos Gemini diffractometer | 2455 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2090 reflections with I > 2σ(I) |
Detector resolution: 16.0416 pixels mm-1 | Rint = 0.039 |
ω scans | θmax = 71.1°, θmin = 3.6° |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012). | h = −14→15 |
Tmin = 0.840, Tmax = 1.000 | k = −8→6 |
8262 measured reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0626P)2 + 0.2118P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.111 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.23 e Å−3 |
2455 reflections | Δρmin = −0.27 e Å−3 |
186 parameters | Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0012 (3) |
Primary atom site location: structure-invariant direct methods |
C8H13N4+·C4H3O4− | V = 1274.77 (9) Å3 |
Mr = 280.29 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 12.3425 (5) Å | µ = 0.94 mm−1 |
b = 7.0365 (3) Å | T = 173 K |
c = 14.7178 (6) Å | 0.22 × 0.16 × 0.06 mm |
β = 94.213 (3)° |
Agilent Xcalibur Eos Gemini diffractometer | 2455 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012). | 2090 reflections with I > 2σ(I) |
Tmin = 0.840, Tmax = 1.000 | Rint = 0.039 |
8262 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.23 e Å−3 |
2455 reflections | Δρmin = −0.27 e Å−3 |
186 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.73318 (9) | 0.69373 (17) | 0.20819 (8) | 0.0218 (3) | |
H1AA | 0.6882 | 0.7451 | 0.1554 | 0.026* | |
H1AB | 0.6968 | 0.5788 | 0.2299 | 0.026* | |
N2A | 0.91562 (9) | 0.69808 (17) | 0.33676 (8) | 0.0212 (3) | |
N3A | 0.98791 (10) | 0.77052 (18) | 0.48251 (9) | 0.0244 (3) | |
N4A | 1.09665 (9) | 0.62261 (18) | 0.37363 (9) | 0.0248 (3) | |
C1A | 0.74267 (11) | 0.8382 (2) | 0.28219 (10) | 0.0223 (3) | |
H1AC | 0.6694 | 0.8739 | 0.2997 | 0.027* | |
H1AD | 0.7785 | 0.9539 | 0.2605 | 0.027* | |
C2A | 0.80895 (11) | 0.7569 (2) | 0.36402 (10) | 0.0214 (3) | |
H2AA | 0.8179 | 0.8540 | 0.4127 | 0.026* | |
H2AB | 0.7707 | 0.6463 | 0.3882 | 0.026* | |
C3A | 0.91155 (11) | 0.5639 (2) | 0.26058 (9) | 0.0230 (3) | |
H3AA | 0.8806 | 0.4418 | 0.2798 | 0.028* | |
H3AB | 0.9861 | 0.5395 | 0.2429 | 0.028* | |
C4A | 0.84275 (11) | 0.6420 (2) | 0.17953 (10) | 0.0232 (3) | |
H4AA | 0.8782 | 0.7557 | 0.1554 | 0.028* | |
H4AB | 0.8355 | 0.5453 | 0.1306 | 0.028* | |
C5A | 1.00316 (11) | 0.69522 (19) | 0.40052 (10) | 0.0186 (3) | |
C6A | 1.07633 (13) | 0.7795 (2) | 0.54032 (11) | 0.0281 (4) | |
H6A | 1.0695 | 0.8347 | 0.5985 | 0.034* | |
C7A | 1.17713 (12) | 0.7133 (2) | 0.52036 (12) | 0.0287 (4) | |
H7A | 1.2390 | 0.7224 | 0.5625 | 0.034* | |
C8A | 1.18203 (12) | 0.6329 (2) | 0.43523 (12) | 0.0285 (4) | |
H8A | 1.2495 | 0.5823 | 0.4194 | 0.034* | |
O1B | 0.45437 (8) | 0.79460 (16) | 0.54884 (7) | 0.0247 (3) | |
O2B | 0.62685 (8) | 0.69817 (16) | 0.54483 (7) | 0.0274 (3) | |
O3B | 0.48860 (8) | 0.68609 (15) | 0.21591 (6) | 0.0227 (3) | |
O4B | 0.33707 (8) | 0.85812 (15) | 0.22066 (6) | 0.0228 (3) | |
C1B | 0.53605 (11) | 0.73177 (19) | 0.50805 (9) | 0.0170 (3) | |
C2B | 0.51599 (11) | 0.70263 (19) | 0.40767 (9) | 0.0173 (3) | |
H2B | 0.5605 | 0.6157 | 0.3779 | 0.021* | |
C3B | 0.43843 (11) | 0.79386 (19) | 0.35918 (9) | 0.0174 (3) | |
H3B | 0.3918 | 0.8740 | 0.3906 | 0.021* | |
C4B | 0.41910 (10) | 0.77939 (19) | 0.25776 (9) | 0.0159 (3) | |
H1B | 0.473 (2) | 0.801 (4) | 0.624 (2) | 0.091 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0163 (6) | 0.0294 (7) | 0.0188 (6) | −0.0046 (5) | −0.0057 (5) | 0.0051 (5) |
N2A | 0.0132 (6) | 0.0313 (7) | 0.0186 (6) | 0.0027 (4) | −0.0023 (4) | −0.0025 (5) |
N3A | 0.0187 (6) | 0.0321 (7) | 0.0216 (7) | 0.0000 (5) | −0.0037 (5) | −0.0027 (5) |
N4A | 0.0156 (6) | 0.0291 (7) | 0.0294 (7) | 0.0033 (5) | −0.0019 (5) | −0.0006 (5) |
C1A | 0.0141 (6) | 0.0272 (7) | 0.0249 (7) | 0.0001 (5) | −0.0025 (5) | 0.0018 (6) |
C2A | 0.0128 (6) | 0.0314 (7) | 0.0194 (7) | 0.0014 (5) | −0.0014 (5) | −0.0016 (6) |
C3A | 0.0208 (7) | 0.0297 (8) | 0.0180 (7) | 0.0028 (5) | −0.0019 (5) | −0.0023 (6) |
C4A | 0.0214 (7) | 0.0312 (8) | 0.0165 (7) | −0.0020 (6) | −0.0009 (5) | 0.0003 (6) |
C5A | 0.0145 (6) | 0.0202 (7) | 0.0204 (7) | −0.0013 (5) | −0.0031 (5) | 0.0030 (5) |
C6A | 0.0260 (8) | 0.0332 (8) | 0.0236 (8) | −0.0031 (6) | −0.0082 (6) | −0.0005 (6) |
C7A | 0.0209 (7) | 0.0297 (8) | 0.0333 (9) | −0.0019 (6) | −0.0125 (6) | 0.0050 (6) |
C8A | 0.0149 (7) | 0.0286 (8) | 0.0409 (9) | 0.0023 (5) | −0.0054 (6) | 0.0016 (7) |
O1B | 0.0196 (5) | 0.0454 (7) | 0.0092 (5) | 0.0021 (4) | 0.0008 (4) | −0.0006 (4) |
O2B | 0.0216 (5) | 0.0433 (7) | 0.0163 (5) | 0.0075 (4) | −0.0064 (4) | −0.0044 (4) |
O3B | 0.0221 (5) | 0.0362 (6) | 0.0094 (5) | 0.0091 (4) | −0.0006 (4) | −0.0012 (4) |
O4B | 0.0183 (5) | 0.0329 (6) | 0.0164 (5) | 0.0056 (4) | −0.0043 (4) | −0.0029 (4) |
C1B | 0.0173 (6) | 0.0209 (7) | 0.0126 (7) | −0.0017 (5) | −0.0007 (5) | 0.0011 (5) |
C2B | 0.0166 (6) | 0.0241 (7) | 0.0111 (6) | −0.0008 (5) | 0.0009 (5) | −0.0004 (5) |
C3B | 0.0170 (6) | 0.0244 (7) | 0.0109 (6) | 0.0008 (5) | 0.0020 (5) | −0.0020 (5) |
C4B | 0.0153 (6) | 0.0206 (7) | 0.0115 (6) | −0.0012 (5) | −0.0001 (5) | 0.0001 (5) |
N1A—H1AA | 0.9900 | C3A—C4A | 1.5157 (19) |
N1A—H1AB | 0.9900 | C4A—H4AA | 0.9900 |
N1A—C1A | 1.4883 (19) | C4A—H4AB | 0.9900 |
N1A—C4A | 1.4909 (18) | C6A—H6A | 0.9500 |
N2A—C2A | 1.4640 (17) | C6A—C7A | 1.380 (2) |
N2A—C3A | 1.4637 (18) | C7A—H7A | 0.9500 |
N2A—C5A | 1.3782 (17) | C7A—C8A | 1.380 (2) |
N3A—C5A | 1.3438 (19) | C8A—H8A | 0.9500 |
N3A—C6A | 1.3351 (19) | O1B—C1B | 1.2890 (17) |
N4A—C5A | 1.3477 (18) | O1B—H1B | 1.12 (3) |
N4A—C8A | 1.3407 (19) | O2B—C1B | 1.2311 (17) |
C1A—H1AC | 0.9900 | O3B—C4B | 1.2742 (16) |
C1A—H1AD | 0.9900 | O4B—C4B | 1.2445 (16) |
C1A—C2A | 1.5173 (19) | C1B—C2B | 1.4941 (17) |
C2A—H2AA | 0.9900 | C2B—H2B | 0.9500 |
C2A—H2AB | 0.9900 | C2B—C3B | 1.3181 (19) |
C3A—H3AA | 0.9900 | C3B—H3B | 0.9500 |
C3A—H3AB | 0.9900 | C3B—C4B | 1.4977 (17) |
H1AA—N1A—H1AB | 108.1 | N1A—C4A—H4AA | 109.8 |
C1A—N1A—H1AA | 109.6 | N1A—C4A—H4AB | 109.8 |
C1A—N1A—H1AB | 109.6 | C3A—C4A—H4AA | 109.8 |
C1A—N1A—C4A | 110.45 (10) | C3A—C4A—H4AB | 109.8 |
C4A—N1A—H1AA | 109.6 | H4AA—C4A—H4AB | 108.2 |
C4A—N1A—H1AB | 109.6 | N3A—C5A—N2A | 116.82 (12) |
C3A—N2A—C2A | 114.29 (11) | N3A—C5A—N4A | 126.34 (13) |
C5A—N2A—C2A | 119.56 (12) | N4A—C5A—N2A | 116.80 (13) |
C5A—N2A—C3A | 119.55 (11) | N3A—C6A—H6A | 118.1 |
C6A—N3A—C5A | 115.41 (13) | N3A—C6A—C7A | 123.76 (15) |
C8A—N4A—C5A | 115.36 (13) | C7A—C6A—H6A | 118.1 |
N1A—C1A—H1AC | 109.8 | C6A—C7A—H7A | 122.2 |
N1A—C1A—H1AD | 109.8 | C8A—C7A—C6A | 115.59 (14) |
N1A—C1A—C2A | 109.39 (11) | C8A—C7A—H7A | 122.2 |
H1AC—C1A—H1AD | 108.2 | N4A—C8A—C7A | 123.47 (14) |
C2A—C1A—H1AC | 109.8 | N4A—C8A—H8A | 118.3 |
C2A—C1A—H1AD | 109.8 | C7A—C8A—H8A | 118.3 |
N2A—C2A—C1A | 109.41 (12) | C1B—O1B—H1B | 111.6 (15) |
N2A—C2A—H2AA | 109.8 | O1B—C1B—C2B | 115.42 (12) |
N2A—C2A—H2AB | 109.8 | O2B—C1B—O1B | 125.37 (12) |
C1A—C2A—H2AA | 109.8 | O2B—C1B—C2B | 119.20 (12) |
C1A—C2A—H2AB | 109.8 | C1B—C2B—H2B | 119.0 |
H2AA—C2A—H2AB | 108.2 | C3B—C2B—C1B | 121.98 (13) |
N2A—C3A—H3AA | 109.5 | C3B—C2B—H2B | 119.0 |
N2A—C3A—H3AB | 109.5 | C2B—C3B—H3B | 117.9 |
N2A—C3A—C4A | 110.78 (12) | C2B—C3B—C4B | 124.24 (12) |
H3AA—C3A—H3AB | 108.1 | C4B—C3B—H3B | 117.9 |
C4A—C3A—H3AA | 109.5 | O3B—C4B—C3B | 116.94 (11) |
C4A—C3A—H3AB | 109.5 | O4B—C4B—O3B | 124.90 (12) |
N1A—C4A—C3A | 109.46 (11) | O4B—C4B—C3B | 118.15 (12) |
N1A—C1A—C2A—N2A | 57.34 (15) | C5A—N3A—C6A—C7A | −1.5 (2) |
N2A—C3A—C4A—N1A | −54.53 (16) | C5A—N4A—C8A—C7A | −0.6 (2) |
N3A—C6A—C7A—C8A | −0.6 (2) | C6A—N3A—C5A—N2A | −174.86 (13) |
C1A—N1A—C4A—C3A | 59.07 (15) | C6A—N3A—C5A—N4A | 2.9 (2) |
C2A—N2A—C3A—C4A | 54.41 (16) | C6A—C7A—C8A—N4A | 1.8 (2) |
C2A—N2A—C5A—N3A | −8.22 (19) | C8A—N4A—C5A—N2A | 175.90 (13) |
C2A—N2A—C5A—N4A | 173.80 (12) | C8A—N4A—C5A—N3A | −1.9 (2) |
C3A—N2A—C2A—C1A | −55.43 (16) | O1B—C1B—C2B—C3B | 23.25 (19) |
C3A—N2A—C5A—N3A | −158.13 (13) | O2B—C1B—C2B—C3B | −155.66 (14) |
C3A—N2A—C5A—N4A | 23.89 (19) | C1B—C2B—C3B—C4B | 176.05 (12) |
C4A—N1A—C1A—C2A | −60.83 (14) | C2B—C3B—C4B—O3B | −6.6 (2) |
C5A—N2A—C2A—C1A | 153.15 (13) | C2B—C3B—C4B—O4B | 173.29 (13) |
C5A—N2A—C3A—C4A | −154.17 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1AA···O2Bi | 0.99 | 1.79 | 2.7601 (15) | 166 |
N1A—H1AB···O4Bii | 0.99 | 1.78 | 2.7493 (16) | 167 |
C8A—H8A···O2Biii | 0.95 | 2.53 | 3.3133 (18) | 140 |
O1B—H1B···O3Biv | 1.12 (3) | 1.35 (3) | 2.4679 (13) | 176 (3) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, −y+1, −z+1; (iv) x, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1AA···O2Bi | 0.99 | 1.79 | 2.7601 (15) | 166 |
N1A—H1AB···O4Bii | 0.99 | 1.78 | 2.7493 (16) | 167 |
C8A—H8A···O2Biii | 0.95 | 2.53 | 3.3133 (18) | 140 |
O1B—H1B···O3Biv | 1.12 (3) | 1.35 (3) | 2.4679 (13) | 176 (3) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, −y+1, −z+1; (iv) x, −y+3/2, z+1/2. |
Acknowledgements
TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Abdel-Jalil, R. J., El Momani, E. Q., Hamad, M., Voelter, W., Mubarak, M. S., Smith, B. H. & Peters, D. G. (2010). Monatsh. Chem. 141, 251–258. CAS Google Scholar
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Amin, K. M., Hanna, M. M., Abo-Youssef, H. E., Riham, F. & George, R. F. (2009). Eur. J. Med. Chem., 44, 4572–4584. Web of Science CrossRef PubMed CAS Google Scholar
Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Thomas, S. (2011). Acta Cryst. E67, o2945–o2946. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Clark, M. P., George, K. M. & Bookland, R. G. (2007). Bioorg. Med. Chem. Lett., 17, 1250–1253. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Chantrapromma, S., Dayananda, A. S., Yathirajan, H. S. & Thomas, S. (2012). Acta Cryst. E68, o792–o793. CSD CrossRef CAS IUCr Journals Google Scholar
Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158–1166. Web of Science CrossRef CAS PubMed Google Scholar
Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o411–o412. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011). Acta Cryst. E67, o483–o484. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kavitha, C. N., Yildirim, S. Ō. ¯, Jasinski, J. P., Yathirajan, H. S. & Butcher, R. J. (2013). Acta Cryst. E69, o142–o143. CSD CrossRef CAS IUCr Journals Google Scholar
Kim, J. Y., Kim, D. & Kang, S. Y. (2010). Bioorg. Med. Chem. Lett. 20, 6439–6442. Web of Science CrossRef CAS PubMed Google Scholar
Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D. K. & Beddell, C. R. (1996). Bioorg. Med. Chem. 4, 593–602. CrossRef CAS PubMed Web of Science Google Scholar
Padmaja, A., Payani, T., Reddy, G. D., Dinneswara Reddy, G. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557–4566. Web of Science CrossRef PubMed CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pandey, S., Suryawanshi, S. N., Suman Gupta. & Srivastava, V. M. L. (2004). Eur. J. Med. Chem. 39, 969–973. Google Scholar
Ravikumar, K. & Sridhar, B. (2005). Acta Cryst. E61, o3245–o3248. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011). Acta Cryst. E67, o2017–o2018. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Tollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991). Psychopharmacol. Bull. 27, 163–170. PubMed CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine derivatives have attracted organic chemists due to their biological and chemotherapeutic importance. Related fused heterocycles are important classes of heterocyclic compounds that exhibit a broad spectrum of biological activities such as anticancer (Amin et al., 2009; Pandey et al., 2004), antiviral (Ibrahim & El-Metwally, 2010), antibacterial (Kuyper et al., 1996), antioxidant (Padmaja et al. , 2009), antidepressant (Kim et al., 2010) and anti-inflammatory (Clark et al., 2007). Piperazine-based compounds have been employed as antibacterial, antidepressant, and antitumor drugs, and as α adrenoceptor antagonists, CCR5 receptor antagonists, 5-HT7 receptor antagonists, and adenosine A2a receptor antagonists (Abdel-Jalil et al., 2010). Several piperazine derivatives have reached the stage of clinical application among the known drugs that are used to treat anxiety including the pyrimidinyl piperazinyl compounds, buspirone and BuSpar (Tollefson et al., 1991). The incorporation of two moieties increases biological activity of both the molecules. Our research group has published many papers on incorporated heterocyclic ring structures, viz; imatinibium dipicrate [systematic name: 1-methyl-4-(4-{4-methyl-3- [4-(3-pyridyl)pyrimidin-2-ylamino]anilinocarbonyl}benzyl)piperazine-1,4- diium dipicrate, (Jasinski et al., 2010), 1-(2-hydroxyethyl)-4-{3-[(E)-2-(trifluoromethyl)-9H-thioxanthen-9- ylidene]propyl}piperazine-1,4-diium bis(3-carboxyprop-2-enoate) (Siddegowda et al., 2011), lomefloxacinium picrate (Jasinski et al., 2011), paliperidone: 3-{2-[4-(6-fluoro-1,2-benzoxazol-3- yl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-1,6,7,8,9,9a-hexahydropyrido [1,2-a]pyrimidin-4-one (Betz et al., 2011), 4-[3,5-bis(2-hydroxy phenyl)-1H-1,2,4-triazol-1-yl]benzoic acid dimethylformamide monosolvate (Fun et al., 2012), and other related crystal structures are quetiapine hemifumarate (systematic name: 1-[2-(2-hydroxyethoxy) ethyl]- 4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazinium hemifumarate (Ravikumar & Sridhar, 2005), Cinnarizinium fumarate (Kavitha et al., 2013). In view of the importance of the incorporated of heterocyclic ring compounds and derivative of pyrimidyl piperazines, this paper reports the crystal structure of the title salt.
The title salt crystallizes with one independent monoprotonated piperazinium cation (A) and one independent fumarate anion (B) in the asymmetric unit (Fig. 1). In the cation, the piperazinium ring adopts a slightly distorted chair conformation (puckering parameters Q, θ, and ϕ = 0.5738 (14) Å, 5.20 (14)° and 21.1 (16)° (Cremer & Pople, 1975). Bond lengths are in normal ranges (Allen et al., 1987).
In the crystal, a single strong short O1B—H1B···O3B hydrogen bond links the anions resulting in chains along the c axis (Table 1 and Fig. 2). The chains are linked via N—H···O hydrogen bonds to form sheets parallel to (100). A weak C8A—H8A···O2B hydrogen bond links the cations and anions forming a three-dimensional structure with alternate layers of cations and anions (Table 1 and Fig. 2). In addition, weak π–π interactions involving inversion related pyrimidine rings are present [Cg–Cgi = 3.820 (9) Å; symmetry code:(i) -x+2, -y+1, -z+1; Cg is the centroid of the pyrimidine ring N3A/N4A/C5A-C8A].