organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o726-o727

4-{[4-(Di­methyl­amino)­benzyl­­idene]amino}­benzene­sulfonamide

aDepartment of Chemistry, Harran University, 63300 Şanlıurfa, Turkey, bScience Education Department, Aksaray University, 68100 Aksaray, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 21 May 2014; accepted 26 May 2014; online 31 May 2014)

The title Schiff base compound, C15H17N3O2S, is non-planar with a dihedral angle of 69.88 (4)° between the planes of the benzene rings. In the crystal, pairs of N—H⋯N hydrogen bonds, between the sulfonamide nitro­gen-H atom and the azomethine N atom, link the mol­ecules into inversion dimers, forming R22(16) ring motifs. These dimers are linked by N—H⋯O hydrogen bonds, between the sulfonamide nitro­gen-H atom and one sulfonamide O atom, forming sheets lying parallel to (100). Within the sheets there are weak parallel slipped ππ inter­actions involving inversion-related benzene­sulfonamide rings [centroid–centroid distance = 3.8800 (9) Å; normal distance = 3.4796 (6) Å; slippage = 1.717 Å].

Related literature

For the biological and physical properties of sulfonamides and their derivatives and for their pharmacological applications, see: Chohan & Shad (2012[Chohan, Z. H. & Shad, H. A. (2012). J. Enzyme Inhib. Med. Chem. 27, 403-412.]); Domagk (1935[Domagk, G. (1935). Dtsch. Med. Wocheschr. 61, 250-254.]); Khalil et al. (2009[Khalil, R. A., Jalil, A. H. & Abd-Alrazzak, A. Y. (2009). J. Iran Chem. Soc. 6, 345-352.]); Sharaby (2007[Sharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271-1278.]); Lin et al. (2008[Lin, S. J., Tsai, W. J., Chiou, W. F., Yang, T. H. & Yang, L. M. (2008). Bioorg. Med. Chem. 16, 2697-2706.]); Maren (1967[Maren, T. H. (1967). Physiol. Rev. 47, 595-781.]); Mohamed et al. (2013[Mohamed, S. S., Tamer, A. R., Bensaber, S. M., Jaeda, M. I., Ermeli, N. B., Allafi, A. A., Mrema, I. A., Erhuma, M., Hermann, A. & Gbaj, A. M. (2013). Naunyn-Schmiedeberg's Arch. Pharmacol., 386, 813-822.]); Saluja et al. (2014[Saluja, A. K., Tiwari, M., Vullo, D. & Supuran, C. T. (2014). Bioorg. Med. Chem. Lett. 24, 1310-1314.]); Supuran et al. (1996[Supuran, C. T., Nicolae, A. & Popescu, A. (1996). Eur. J. Med. Chem. 31, 431-438.]); Türkmen et al. (2005[Türkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 367-372.]). For related structures, see: Idemudia et al. (2012[Idemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1599.]); Loughrey et al. (2009[Loughrey, B. T., Williams, M. L. & Healy, P. C. (2009). Acta Cryst. E65, o2087.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3O2S

  • Mr = 303.38

  • Monoclinic, P 21 /c

  • a = 16.8982 (5) Å

  • b = 9.0273 (3) Å

  • c = 9.8405 (3) Å

  • β = 101.552 (3)°

  • V = 1470.71 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.35 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.987

  • 19398 measured reflections

  • 3644 independent reflections

  • 3133 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.08

  • 3644 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯N2i 0.80 (3) 2.18 (3) 2.981 (2) 177 (2)
N3—H32⋯O2ii 0.832 (19) 2.494 (19) 3.321 (2) 174 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Many Schiff bases are prepared by condensation reactions of a sulfonamide with a substituted benzaldehyde derivative. Such compounds contain both azomethine (-HCN-) and sulfonamide (-SO2NH2) groups. Sulfonamide derivatives are very important because of their varied structures and biological activities (Domagk, 1935). This type of derivative displays interesting enzymatic inhibition towards the carbonic anhydrase (CA) isozymes CA I, II, IV, IX and XII (Supuran et al., 1996; Türkmen et al., 2005; Saluja et al., 2014) and the cyclo-oxygenase (COX) enzymes COX-1 and COX-2 (Lin et al., 2008) are still widely used as antimicrobial drugs, antithyroid agents, antibacterial, antifungal, antitumor, antibiotics, acid-base indicator, potential anticancer agents (Maren, 1967; Khalil et al., 2009; Sharaby, 2007; Mohamed et al., 2013; Chohan & Shad, 2012). The title compound was synthesized and its crystal structure is reported on herein.

In the molecule of the title compound (Fig. 1) the bond lengths are within normal ranges (Allen et al., 1987). The azomethine (-HCN-) group is rotated out of the plane of the dimethylamino benzaldehyde and benzenesulfonamide benzene rings with torsion angles C5–C6–C9–N2 = -15.4 (2)° and C11–C10–N2–c9 = -53.6 (2)°. The two benzene rings A (C3—C8) and B (C10—C15) are oriented at a dihedral angle of 69.88 (4)°. Atoms N1, N2, C1, C2, C9 and C10 atoms are displaced from the plane of ring A by 0.034 (2), -0.302 (1), -0.045 (2), 0.106 (2), -0.018 (2) and -0.146 (2) Å, respectively, while atoms S1 and N2 are displaced from ring B by -0.0181 (4) and 0.026 (1) Å, respectively.

In the crystal, pairs of N—H···N hydrogen bonds link the molecules into inversion dimers forming R22(16) ring motifs (Table 1 and Fig. 2; Bernstein et al., 1995). These dimers are linked by N—H···O hydrogen bonds (Table 1) forming sheets lying parallel to (100). A π···π contact between inversion related the benzenesulfonamide benzene rings in the sheet, Cg2—Cg2i [symmetry code: (i) - x+1, - y+ 2, - z; where Cg2 is the centroid of ring B] may further stabilize the structure, with a centroid-centroid distance of 3.8800 (9) Å.

Related literature top

For the biological and physical properties of sulfonamides and their derivatives and for their pharmacological applications, see: Chohan & Shad (2012); Domagk (1935); Khalil et al. (2009); Sharaby (2007); Lin et al. (2008); Maren (1967); Mohamed et al. (2013); Saluja et al. (2014); Supuran et al. (1996); Türkmen et al. (2005). For related structures, see: Idemudia et al. (2012); Loughrey et al. (2009). For bond-length data, see: Allen et al. (1987). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the literature method with some modifications (Khalil et al., 2009; Sharaby, 2007; Lin et al., 2008; Supuran et al., 1996; Mohamed et al., 2013). Sulfonamide (0.172 g, 1.0 mmol) in absolute ethanol (20 ml) was added to 4-(dimethylamino)benzaldehyde (0.149 g, 1.0 mmol) in absolute ethanol (20 ml), and 2 drops of formic acid were added as catalyst. The mixture was refluxed for 3-4 h, followed by cooling to room temperature. The resulting crystals were filtered in vacuum (yield: 85%). Crystals suitable for X-ray analysis were grown by slow evaporation of a methanol/ethanol/chloroform (3:1:1) solution, giving yellow prismatic crystals.

Refinement top

Atoms H31, H32 (for NH2) and H9 (for CH) were located in a difference Fourier map and freely refined. The remaining C-bound H-atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound. The N—H···N hydrogen bonds, linking the molecules into inversion dimes and forming R22(16) ring motifs, are shown as dashed lines (see Table 1 for details; C bound H atoms have been omitted for clarity).
4-{[4-(Dimethylamino)benzylidene]amino}benzenesulfonamide top
Crystal data top
C15H17N3O2SF(000) = 640
Mr = 303.38Dx = 1.370 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9899 reflections
a = 16.8982 (5) Åθ = 2.3–28.3°
b = 9.0273 (3) ŵ = 0.23 mm1
c = 9.8405 (3) ÅT = 296 K
β = 101.552 (3)°Prism, yellow
V = 1470.71 (8) Å30.35 × 0.22 × 0.15 mm
Z = 4
Data collection top
Bruker SMART BREEZE CCD
diffractometer
3644 independent reflections
Radiation source: fine-focus sealed tube3133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.3°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2222
Tmin = 0.924, Tmax = 0.987k = 712
19398 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.485P]
where P = (Fo2 + 2Fc2)/3
3644 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H17N3O2SV = 1470.71 (8) Å3
Mr = 303.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8982 (5) ŵ = 0.23 mm1
b = 9.0273 (3) ÅT = 296 K
c = 9.8405 (3) Å0.35 × 0.22 × 0.15 mm
β = 101.552 (3)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
3644 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3133 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.987Rint = 0.025
19398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.37 e Å3
3644 reflectionsΔρmin = 0.29 e Å3
204 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.329465 (19)0.28756 (4)0.08578 (4)0.03754 (13)
O10.30989 (7)0.13297 (14)0.08516 (15)0.0608 (4)
O20.31107 (7)0.37779 (18)0.19404 (13)0.0613 (4)
N11.05511 (8)0.16049 (17)0.10070 (15)0.0479 (3)
N20.68218 (7)0.32679 (14)0.09636 (13)0.0364 (3)
N30.28201 (7)0.35422 (17)0.05859 (14)0.0385 (3)
H310.2899 (12)0.441 (3)0.069 (2)0.058 (6)*
H320.2864 (13)0.300 (2)0.125 (2)0.059 (6)*
C11.10626 (9)0.0462 (2)0.17517 (18)0.0516 (4)
H1A1.15590.04140.14190.077*
H1B1.07910.04760.16060.077*
H1C1.11780.06900.27240.077*
C21.09209 (11)0.2638 (2)0.0203 (2)0.0611 (5)
H2A1.14510.22940.01480.092*
H2B1.09610.35930.06400.092*
H2C1.05970.27140.07150.092*
C30.97582 (8)0.17399 (17)0.10927 (15)0.0350 (3)
C40.92808 (9)0.29053 (16)0.04153 (18)0.0410 (3)
H40.95140.36030.00790.049*
C50.84765 (9)0.30314 (16)0.04715 (17)0.0394 (3)
H50.81780.38170.00210.047*
C60.81000 (8)0.20063 (16)0.11890 (15)0.0347 (3)
C70.85645 (9)0.08345 (18)0.18336 (16)0.0405 (3)
H70.83210.01190.22920.049*
C80.93761 (9)0.07021 (18)0.18125 (15)0.0405 (3)
H80.96720.00790.22770.049*
C90.72524 (8)0.21083 (16)0.12705 (16)0.0363 (3)
H90.7038 (10)0.128 (2)0.1561 (17)0.041 (4)*
C100.59860 (8)0.31581 (15)0.09662 (14)0.0321 (3)
C110.55164 (9)0.20677 (16)0.01965 (17)0.0408 (3)
H110.57550.13850.03050.049*
C120.46948 (9)0.19932 (17)0.01722 (18)0.0416 (3)
H120.43820.12600.03400.050*
C130.43431 (8)0.30106 (15)0.09101 (14)0.0321 (3)
C140.47978 (8)0.41333 (17)0.16501 (15)0.0363 (3)
H140.45540.48290.21290.044*
C150.56207 (8)0.42089 (17)0.16691 (15)0.0372 (3)
H150.59280.49650.21540.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02420 (17)0.0491 (2)0.0407 (2)0.00001 (13)0.00964 (14)0.00972 (15)
O10.0358 (6)0.0526 (7)0.0930 (10)0.0060 (5)0.0103 (6)0.0303 (7)
O20.0387 (6)0.1018 (11)0.0477 (7)0.0046 (7)0.0191 (5)0.0089 (7)
N10.0281 (6)0.0592 (8)0.0583 (8)0.0037 (6)0.0131 (6)0.0048 (7)
N20.0254 (5)0.0400 (6)0.0449 (7)0.0016 (5)0.0095 (5)0.0025 (5)
N30.0281 (6)0.0441 (7)0.0425 (7)0.0011 (5)0.0055 (5)0.0067 (6)
C10.0308 (7)0.0734 (12)0.0487 (9)0.0107 (7)0.0030 (6)0.0042 (8)
C20.0372 (8)0.0600 (11)0.0927 (15)0.0065 (8)0.0292 (9)0.0010 (10)
C30.0274 (6)0.0421 (7)0.0356 (7)0.0013 (5)0.0069 (5)0.0062 (6)
C40.0335 (7)0.0382 (8)0.0544 (9)0.0018 (6)0.0164 (6)0.0037 (6)
C50.0324 (7)0.0362 (7)0.0508 (9)0.0038 (5)0.0116 (6)0.0060 (6)
C60.0259 (6)0.0396 (7)0.0390 (7)0.0001 (5)0.0073 (5)0.0001 (6)
C70.0330 (7)0.0456 (8)0.0444 (8)0.0016 (6)0.0116 (6)0.0103 (6)
C80.0322 (7)0.0481 (8)0.0410 (8)0.0073 (6)0.0068 (6)0.0073 (6)
C90.0281 (6)0.0391 (8)0.0426 (8)0.0020 (5)0.0092 (6)0.0047 (6)
C100.0245 (6)0.0363 (7)0.0357 (7)0.0003 (5)0.0066 (5)0.0051 (5)
C110.0306 (7)0.0387 (8)0.0541 (9)0.0017 (5)0.0110 (6)0.0104 (6)
C120.0307 (7)0.0386 (8)0.0543 (9)0.0042 (5)0.0055 (6)0.0099 (6)
C130.0241 (6)0.0385 (7)0.0340 (7)0.0007 (5)0.0067 (5)0.0051 (5)
C140.0319 (7)0.0419 (7)0.0368 (7)0.0011 (6)0.0111 (5)0.0053 (6)
C150.0309 (6)0.0419 (8)0.0385 (7)0.0056 (6)0.0068 (5)0.0073 (6)
Geometric parameters (Å, º) top
S1—O11.4340 (13)C4—H40.9300
S1—O21.4239 (13)C5—H50.9300
S1—N31.6023 (13)C6—C51.393 (2)
S1—C131.7664 (13)C6—C71.392 (2)
N1—C11.447 (2)C6—C91.4534 (18)
N1—C21.444 (2)C7—C81.3809 (19)
N2—C91.2762 (19)C7—H70.9300
N2—C101.4163 (16)C8—H80.9300
N3—H310.81 (2)C9—H90.904 (18)
N3—H320.83 (2)C10—C151.389 (2)
C1—H1A0.9600C10—C111.390 (2)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C111.385 (2)
C2—H2A0.9600C12—H120.9300
C2—H2B0.9600C13—C121.377 (2)
C2—H2C0.9600C13—C141.3869 (19)
C3—N11.3647 (18)C14—C151.3887 (18)
C3—C41.409 (2)C14—H140.9300
C3—C81.407 (2)C15—H150.9300
C4—C51.376 (2)
O2—S1—O1118.37 (9)C4—C5—H5119.3
O1—S1—N3106.72 (8)C6—C5—H5119.3
O1—S1—C13107.24 (7)C5—C6—C9122.76 (13)
O2—S1—N3107.64 (8)C7—C6—C5117.57 (13)
O2—S1—C13107.86 (7)C7—C6—C9119.67 (13)
N3—S1—C13108.72 (7)C6—C7—H7119.0
C2—N1—C1117.24 (14)C8—C7—C6122.00 (14)
C3—N1—C1121.77 (14)C8—C7—H7119.0
C3—N1—C2120.95 (14)C3—C8—H8119.8
C9—N2—C10117.63 (12)C7—C8—C3120.48 (14)
S1—N3—H31114.2 (14)C7—C8—H8119.8
S1—N3—H32111.8 (14)N2—C9—C6124.09 (13)
H32—N3—H31116 (2)N2—C9—H9120.7 (11)
N1—C1—H1A109.5C6—C9—H9115.2 (11)
N1—C1—H1B109.5C11—C10—N2120.62 (13)
N1—C1—H1C109.5C15—C10—N2119.72 (12)
H1A—C1—H1B109.5C15—C10—C11119.52 (12)
H1A—C1—H1C109.5C10—C11—H11119.8
H1B—C1—H1C109.5C12—C11—C10120.31 (13)
N1—C2—H2A109.5C12—C11—H11119.8
N1—C2—H2B109.5C11—C12—H12120.2
N1—C2—H2C109.5C13—C12—C11119.69 (13)
H2A—C2—H2B109.5C13—C12—H12120.2
H2A—C2—H2C109.5C12—C13—S1118.35 (11)
H2B—C2—H2C109.5C12—C13—C14120.80 (12)
N1—C3—C4120.90 (14)C14—C13—S1120.84 (11)
N1—C3—C8121.80 (14)C13—C14—C15119.40 (13)
C8—C3—C4117.27 (12)C13—C14—H14120.3
C3—C4—H4119.4C15—C14—H14120.3
C5—C4—C3121.27 (13)C10—C15—H15119.9
C5—C4—H4119.4C14—C15—C10120.22 (13)
C4—C5—C6121.37 (14)C14—C15—H15119.9
O1—S1—C13—C1237.32 (14)C7—C6—C5—C40.9 (2)
O1—S1—C13—C14144.13 (13)C9—C6—C5—C4179.91 (14)
O2—S1—C13—C12165.83 (13)C5—C6—C7—C82.1 (2)
O2—S1—C13—C1415.62 (14)C9—C6—C7—C8178.63 (14)
N3—S1—C13—C1277.72 (14)C5—C6—C9—N215.4 (2)
N3—S1—C13—C14100.83 (13)C7—C6—C9—N2165.43 (16)
C10—N2—C9—C6174.08 (13)C6—C7—C8—C31.9 (2)
C9—N2—C10—C1153.6 (2)N2—C10—C11—C12178.14 (14)
C9—N2—C10—C15130.68 (15)C15—C10—C11—C122.5 (2)
C4—C3—N1—C1176.79 (15)N2—C10—C15—C14178.40 (13)
C4—C3—N1—C21.0 (2)C11—C10—C15—C142.7 (2)
C8—C3—N1—C15.5 (2)C13—C12—C11—C100.3 (2)
C8—C3—N1—C2176.71 (16)S1—C13—C12—C11179.80 (12)
N1—C3—C4—C5178.58 (15)C14—C13—C12—C111.7 (2)
C8—C3—C4—C50.8 (2)S1—C13—C14—C15179.94 (11)
N1—C3—C8—C7177.33 (15)C12—C13—C14—C151.4 (2)
C4—C3—C8—C70.4 (2)C13—C14—C15—C100.8 (2)
C3—C4—C5—C60.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···N2i0.80 (3)2.18 (3)2.981 (2)177 (2)
N3—H32···O2ii0.832 (19)2.494 (19)3.321 (2)174 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···N2i0.80 (3)2.18 (3)2.981 (2)177 (2)
N3—H32···O2ii0.832 (19)2.494 (19)3.321 (2)174 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization), and the Unit of Scientific Research Projects of Harran University, Şanlıurfa, Turkey for a research grant (HUBAK grant No. 12040).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Shad, H. A. (2012). J. Enzyme Inhib. Med. Chem. 27, 403–412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDomagk, G. (1935). Dtsch. Med. Wocheschr. 61, 250–254.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIdemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1599.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalil, R. A., Jalil, A. H. & Abd-Alrazzak, A. Y. (2009). J. Iran Chem. Soc. 6, 345–352.  CrossRef CAS Google Scholar
First citationLin, S. J., Tsai, W. J., Chiou, W. F., Yang, T. H. & Yang, L. M. (2008). Bioorg. Med. Chem. 16, 2697–2706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoughrey, B. T., Williams, M. L. & Healy, P. C. (2009). Acta Cryst. E65, o2087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaren, T. H. (1967). Physiol. Rev. 47, 595–781.  CAS PubMed Web of Science Google Scholar
First citationMohamed, S. S., Tamer, A. R., Bensaber, S. M., Jaeda, M. I., Ermeli, N. B., Allafi, A. A., Mrema, I. A., Erhuma, M., Hermann, A. & Gbaj, A. M. (2013). Naunyn-Schmiedeberg's Arch. Pharmacol., 386, 813–822.  Web of Science CrossRef CAS Google Scholar
First citationSaluja, A. K., Tiwari, M., Vullo, D. & Supuran, C. T. (2014). Bioorg. Med. Chem. Lett. 24, 1310–1314.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSharaby, C. M. (2007). Spectrochim. Acta Part A, 66, 1271–1278.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Nicolae, A. & Popescu, A. (1996). Eur. J. Med. Chem. 31, 431–438.  CrossRef CAS Web of Science Google Scholar
First citationTürkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 367–372.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o726-o727
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds