organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o736-o737

3-(4-Fluoro­benzo­yl)-4-(4-fluoro­phen­yl)-4-hy­dr­oxy-2,6-di­phenyl­cyclo­hexane-1,1-dicarbo­nitrile

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Studies in Chemistry, Industrial Chemistry Section, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 25 May 2014; accepted 26 May 2014; online 31 May 2014)

In the title compound, C33H24F2N2O2, the cyclo­hexane ring adopts a slightly distorted chair conformation. The dihedral angle between the planes of the phenyl rings is 71.80 (9)°, while the planes of the fluoro­phenyl and fluoro­benzoyl rings are inclined to one another by 31.04 (10)°. The dihedral angles between the planes of the phenyl ring adjacent to the 4-hydroxy group and those of the the fluoro­phenyl and fluoro­benzoyl rings are 51.64 (10) and 34.31 (10)°, respectively, while the corresponding angles for the phenyl ring adjacent to the 3-(4-fluorobenzoyl) group are 57.51 (9) and 85.02 (10)°, respectively. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of O—H⋯N hydrogen bonds, forming inversion dimers. The dimers are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming chains along the c-axis direction. C—H⋯F hydrogen bonds link the chains into sheets lying parallel to the bc plane.

Related literature

For related structures, see: Sadikhova et al. (2011[Sadikhova, N. D., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o1801.]); Echeverria et al. (1995[Echeverria, G., Punte, G., Rivero, B. E. & Barón, M. (1995). Acta Cryst. C51, 1023-1026.]). For ring puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C33H24F2N2O2

  • Mr = 518.54

  • Triclinic, [P \overline 1]

  • a = 10.9336 (10) Å

  • b = 11.5258 (4) Å

  • c = 11.8490 (7) Å

  • α = 89.440 (4)°

  • β = 62.687 (7)°

  • γ = 89.296 (5)°

  • V = 1326.60 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 173 K

  • 0.44 × 0.32 × 0.14 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.884, Tmax = 1.000

  • 8616 measured reflections

  • 5042 independent reflections

  • 4307 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.06

  • 5042 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 2.14 2.8086 (16) 136
O1—H1⋯N1i 0.84 2.55 3.2071 (18) 136
C15—H15⋯N2ii 0.95 2.55 3.388 (2) 148
C23—H23⋯O2i 0.95 2.49 3.394 (2) 160
C29—H29⋯O1i 0.95 2.49 3.398 (2) 160
C24—H24⋯F2iii 0.95 2.58 3.443 (2) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z; (iii) x+1, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]).; program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In order to prepare the pyran derivative, (2E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one was reacted with malanonitrile in the presence of a catalytic amount of ethanoic KOH. Instead of the pyran derivative, the title compound was obtained and we report herein on its crystal structure. The crystal structures of related compounds have been reported (Sadikhova et al., 2011; Echeverria et al., 1995).

In the molecule of the title compound, Fig. 1, the cyclohexane ring adopts a slightly distorted chair conformation [puckering parameters Q, θ, and ϕ = 0.5873 (17) Å, 7.19 (17)° and 50.9 (13)°, respectively; Cremer & Pople, 1975]. The dihedral angle between the phenyl rings (C22-C27 and C28-C33) is 71.80 (9)° while the fluorophenyl (C14–C19) and fluorobenzoyl (C8–C13) rings are inclined to one another by 31.04 (10)°. The dihedral angle between the phenyl ring adjacent to the 4-hydroxy group [C22–C27] and the fluorophenyl and fluorobenzoyl rings is 51.64 (10) and 34.31 (10) °, respectively, while the corresponding angles for the phenyl ring adjacent to the 3-(4-fluorobenzoyl) group [C8–C13] are 57.51 (9) and 85.02 (10) °, respectively. Bond lengths are in normal ranges (Allen et al., 1987). There is an intramolecular O—H···O hydrogen bond generating an S(6) ring motif (Table 1).

In the crystal, molecules are linked via O-H···N hydrogen bonds forming inversion dimers. The dimers are linked via C-H···N and C-H···O hydrogen bonds forming chains along [001]. C-H···F hydrogen bonds link the chains to form sheets lying parallel to the bc plane (Table 1 and Fig. 2).

Related literature top

For related structures, see: Sadikhova et al. (2011); Echeverria et al. (1995). For ring puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of (2E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (4.52g, 0.02 mol) and malanonitrile (0.55ml, 0.01 mol) in 30 ml ethanol in the presence of a catalytic amount of ethanoic KOH was stirred at room temperature for 6 h. The precipitate obtained was collected by filtration and purified by recrystallization from ethanol. Prismatic colourless crystals were grown from ethanol by the slow evaporation method (M.p. 497–499 K).

Refinement top

All of the H atoms were placed in calculated positions and refined using the riding model approximation: O-H = 0.84 Å, C-H = 0.95 - 1.00 Å with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012).; program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
[Figure 3] Fig. 3. Reaction scheme.
3-(4-Fluorobenzoyl)-4-(4-fluorophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,1-dicarbonitrile top
Crystal data top
C33H24F2N2O2Z = 2
Mr = 518.54F(000) = 540
Triclinic, P1Dx = 1.298 Mg m3
a = 10.9336 (10) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.5258 (4) ÅCell parameters from 3787 reflections
c = 11.8490 (7) Åθ = 4.2–71.1°
α = 89.440 (4)°µ = 0.74 mm1
β = 62.687 (7)°T = 173 K
γ = 89.296 (5)°Prism, colourless
V = 1326.60 (17) Å30.44 × 0.32 × 0.14 mm
Data collection top
Agilent Eos Gemini
diffractometer
5042 independent reflections
Radiation source: Enhance (Cu) X-ray Source4307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 3.8°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1114
Tmin = 0.884, Tmax = 1.000l = 1414
8616 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.0921P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5042 reflectionsΔρmax = 0.26 e Å3
353 parametersΔρmin = 0.35 e Å3
0 restraints
Crystal data top
C33H24F2N2O2γ = 89.296 (5)°
Mr = 518.54V = 1326.60 (17) Å3
Triclinic, P1Z = 2
a = 10.9336 (10) ÅCu Kα radiation
b = 11.5258 (4) ŵ = 0.74 mm1
c = 11.8490 (7) ÅT = 173 K
α = 89.440 (4)°0.44 × 0.32 × 0.14 mm
β = 62.687 (7)°
Data collection top
Agilent Eos Gemini
diffractometer
5042 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
4307 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 1.000Rint = 0.032
8616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
5042 reflectionsΔρmin = 0.35 e Å3
353 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.65588 (15)0.61176 (9)0.08267 (12)0.0527 (3)
F20.0999 (2)0.57543 (13)0.28697 (16)0.0852 (6)
O10.61907 (11)0.13809 (9)0.36838 (10)0.0253 (2)
H10.55150.16900.42960.038*
O20.33370 (12)0.17874 (10)0.49569 (10)0.0308 (3)
N10.48277 (16)0.29229 (12)0.38019 (14)0.0352 (3)
N20.53932 (15)0.12783 (12)0.02494 (13)0.0311 (3)
C10.60207 (15)0.14872 (12)0.25657 (14)0.0215 (3)
C20.70686 (15)0.06396 (12)0.16162 (14)0.0232 (3)
H2A0.69710.06430.08260.028*
H2B0.80110.09000.14000.028*
C30.68724 (15)0.05931 (12)0.21500 (14)0.0218 (3)
H30.69020.05560.29800.026*
C40.53892 (15)0.10161 (12)0.24409 (13)0.0201 (3)
C50.42239 (14)0.01457 (12)0.33284 (13)0.0199 (3)
H50.42220.01660.41730.024*
C60.45335 (15)0.11141 (12)0.28391 (13)0.0201 (3)
H60.44250.12020.20490.024*
C70.35273 (15)0.19258 (13)0.38643 (14)0.0226 (3)
C80.28789 (16)0.29313 (13)0.35439 (15)0.0257 (3)
C90.26159 (17)0.29536 (14)0.25023 (16)0.0298 (3)
H90.28930.23160.19340.036*
C100.1954 (2)0.38977 (16)0.22861 (18)0.0383 (4)
H100.17330.39030.15980.046*
C110.1624 (3)0.48256 (18)0.3094 (2)0.0505 (5)
C120.1893 (3)0.48520 (19)0.4114 (2)0.0634 (7)
H120.16620.55140.46460.076*
C130.2511 (2)0.38869 (16)0.43501 (19)0.0432 (5)
H130.26860.38770.50650.052*
C140.62655 (15)0.27342 (13)0.20554 (14)0.0236 (3)
C150.62491 (18)0.29980 (14)0.09165 (16)0.0305 (4)
H150.61660.23910.04200.037*
C160.63534 (19)0.41405 (15)0.04940 (17)0.0362 (4)
H160.63310.43230.02800.043*
C170.64891 (19)0.49973 (14)0.12255 (18)0.0357 (4)
C180.65521 (19)0.47700 (14)0.23296 (17)0.0349 (4)
H180.66760.53800.28000.042*
C190.64313 (17)0.36259 (14)0.27536 (16)0.0289 (3)
H190.64620.34530.35260.035*
C200.50902 (16)0.21300 (13)0.31558 (14)0.0238 (3)
C210.53569 (15)0.11907 (12)0.12229 (14)0.0224 (3)
C220.79960 (15)0.14352 (12)0.13101 (15)0.0233 (3)
C230.84552 (17)0.22849 (14)0.18758 (16)0.0309 (4)
H230.80690.23220.27750.037*
C240.9467 (2)0.30747 (17)0.1143 (2)0.0414 (4)
H240.97720.36470.15420.050*
C251.00376 (18)0.30363 (17)0.01680 (19)0.0401 (4)
H251.07200.35880.06690.048*
C260.96054 (18)0.21879 (16)0.07436 (17)0.0362 (4)
H261.00020.21510.16440.043*
C270.85967 (17)0.13917 (14)0.00128 (16)0.0299 (4)
H270.83120.08100.04180.036*
C280.28095 (15)0.05464 (12)0.35494 (14)0.0224 (3)
C290.19609 (17)0.11291 (14)0.46728 (15)0.0289 (3)
H290.22500.12300.53110.035*
C300.06992 (18)0.15621 (16)0.48680 (17)0.0364 (4)
H300.01320.19590.56360.044*
C310.02670 (18)0.14177 (16)0.39486 (18)0.0382 (4)
H310.05920.17220.40790.046*
C320.10845 (19)0.08298 (16)0.28384 (18)0.0359 (4)
H320.07820.07260.22090.043*
C330.23493 (16)0.03880 (14)0.26357 (15)0.0277 (3)
H330.29010.00230.18730.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0756 (9)0.0239 (5)0.0491 (7)0.0014 (5)0.0205 (6)0.0086 (5)
F20.1270 (15)0.0601 (9)0.0865 (11)0.0545 (10)0.0655 (11)0.0114 (8)
O10.0276 (6)0.0271 (5)0.0248 (6)0.0020 (4)0.0152 (5)0.0027 (4)
O20.0343 (6)0.0367 (6)0.0200 (6)0.0061 (5)0.0114 (5)0.0030 (5)
N10.0416 (9)0.0254 (7)0.0315 (8)0.0019 (6)0.0107 (7)0.0033 (6)
N20.0353 (8)0.0363 (7)0.0242 (7)0.0007 (6)0.0158 (6)0.0030 (6)
C10.0218 (7)0.0222 (7)0.0214 (7)0.0019 (6)0.0105 (6)0.0003 (6)
C20.0187 (7)0.0239 (7)0.0242 (7)0.0012 (5)0.0074 (6)0.0007 (6)
C30.0203 (7)0.0242 (7)0.0216 (7)0.0010 (5)0.0100 (6)0.0012 (6)
C40.0215 (7)0.0201 (7)0.0187 (7)0.0008 (5)0.0092 (6)0.0003 (5)
C50.0193 (7)0.0216 (7)0.0175 (7)0.0002 (5)0.0074 (6)0.0010 (5)
C60.0200 (7)0.0225 (7)0.0174 (7)0.0006 (5)0.0083 (6)0.0007 (5)
C70.0189 (7)0.0253 (7)0.0221 (7)0.0019 (5)0.0081 (6)0.0003 (6)
C80.0209 (7)0.0266 (7)0.0261 (8)0.0009 (6)0.0076 (6)0.0001 (6)
C90.0290 (8)0.0316 (8)0.0272 (8)0.0024 (6)0.0117 (7)0.0003 (6)
C100.0396 (10)0.0409 (10)0.0353 (9)0.0035 (8)0.0183 (8)0.0073 (8)
C110.0601 (14)0.0403 (10)0.0533 (12)0.0219 (10)0.0285 (11)0.0013 (9)
C120.096 (2)0.0423 (12)0.0606 (14)0.0374 (13)0.0443 (15)0.0228 (10)
C130.0575 (13)0.0383 (10)0.0399 (10)0.0170 (9)0.0279 (10)0.0109 (8)
C140.0183 (7)0.0238 (7)0.0255 (8)0.0018 (5)0.0071 (6)0.0007 (6)
C150.0342 (9)0.0288 (8)0.0308 (9)0.0084 (7)0.0166 (7)0.0041 (7)
C160.0398 (10)0.0347 (9)0.0342 (9)0.0067 (7)0.0171 (8)0.0102 (7)
C170.0368 (9)0.0224 (8)0.0386 (10)0.0018 (7)0.0094 (8)0.0066 (7)
C180.0396 (10)0.0235 (8)0.0349 (9)0.0010 (7)0.0112 (8)0.0060 (7)
C190.0297 (8)0.0269 (8)0.0269 (8)0.0008 (6)0.0102 (7)0.0032 (6)
C200.0241 (8)0.0225 (7)0.0238 (7)0.0023 (6)0.0101 (6)0.0028 (6)
C210.0192 (7)0.0207 (7)0.0258 (8)0.0005 (5)0.0090 (6)0.0009 (6)
C220.0177 (7)0.0249 (7)0.0271 (8)0.0014 (6)0.0101 (6)0.0027 (6)
C230.0272 (8)0.0362 (9)0.0305 (8)0.0049 (7)0.0143 (7)0.0017 (7)
C240.0358 (10)0.0400 (10)0.0497 (11)0.0127 (8)0.0209 (9)0.0040 (8)
C250.0219 (8)0.0429 (10)0.0466 (11)0.0084 (7)0.0079 (8)0.0146 (8)
C260.0249 (8)0.0440 (10)0.0314 (9)0.0023 (7)0.0055 (7)0.0085 (7)
C270.0252 (8)0.0343 (8)0.0269 (8)0.0001 (6)0.0090 (7)0.0004 (6)
C280.0188 (7)0.0221 (7)0.0235 (7)0.0004 (5)0.0072 (6)0.0008 (6)
C290.0252 (8)0.0333 (8)0.0251 (8)0.0021 (6)0.0090 (7)0.0038 (6)
C300.0235 (8)0.0406 (9)0.0356 (9)0.0096 (7)0.0054 (7)0.0099 (7)
C310.0216 (8)0.0444 (10)0.0459 (11)0.0093 (7)0.0131 (8)0.0020 (8)
C320.0299 (9)0.0445 (10)0.0393 (10)0.0051 (7)0.0211 (8)0.0027 (8)
C330.0232 (8)0.0327 (8)0.0270 (8)0.0044 (6)0.0113 (7)0.0036 (6)
Geometric parameters (Å, º) top
F1—C171.3616 (19)C13—H130.9500
F2—C111.352 (2)C14—C151.388 (2)
O1—H10.8400C14—C191.390 (2)
O1—C11.4236 (17)C15—H150.9500
O2—C71.2224 (18)C15—C161.391 (2)
N1—C201.138 (2)C16—H160.9500
N2—C211.141 (2)C16—C171.374 (3)
C1—C21.531 (2)C17—C181.364 (3)
C1—C61.5700 (19)C18—H180.9500
C1—C141.5320 (19)C18—C191.393 (2)
C2—H2A0.9900C19—H190.9500
C2—H2B0.9900C22—C231.394 (2)
C2—C31.5265 (19)C22—C271.395 (2)
C3—H31.0000C23—H230.9500
C3—C41.5778 (19)C23—C241.384 (2)
C3—C221.520 (2)C24—H240.9500
C4—C51.5797 (19)C24—C251.383 (3)
C4—C201.4858 (19)C25—H250.9500
C4—C211.4755 (19)C25—C261.384 (3)
C5—H51.0000C26—H260.9500
C5—C61.5410 (18)C26—C271.386 (2)
C5—C281.5222 (19)C27—H270.9500
C6—H61.0000C28—C291.396 (2)
C6—C71.5270 (19)C28—C331.397 (2)
C7—C81.486 (2)C29—H290.9500
C8—C91.390 (2)C29—C301.388 (2)
C8—C131.394 (2)C30—H300.9500
C9—H90.9500C30—C311.380 (3)
C9—C101.386 (2)C31—H310.9500
C10—H100.9500C31—C321.381 (3)
C10—C111.373 (3)C32—H320.9500
C11—C121.369 (3)C32—C331.393 (2)
C12—H120.9500C33—H330.9500
C12—C131.386 (3)
C1—O1—H1109.5C12—C13—H13119.8
O1—C1—C2105.23 (11)C15—C14—C1120.12 (13)
O1—C1—C6110.58 (12)C15—C14—C19119.04 (14)
O1—C1—C14111.36 (11)C19—C14—C1120.74 (14)
C2—C1—C6109.00 (11)C14—C15—H15119.6
C2—C1—C14111.67 (12)C14—C15—C16120.78 (15)
C14—C1—C6108.96 (11)C16—C15—H15119.6
C1—C2—H2A109.3C15—C16—H16120.9
C1—C2—H2B109.3C17—C16—C15118.26 (16)
H2A—C2—H2B107.9C17—C16—H16120.9
C3—C2—C1111.75 (12)F1—C17—C16118.23 (17)
C3—C2—H2A109.3F1—C17—C18119.05 (16)
C3—C2—H2B109.3C18—C17—C16122.72 (16)
C2—C3—H3107.2C17—C18—H18120.7
C2—C3—C4108.79 (11)C17—C18—C19118.67 (16)
C4—C3—H3107.2C19—C18—H18120.7
C22—C3—C2113.62 (12)C14—C19—C18120.49 (16)
C22—C3—H3107.2C14—C19—H19119.8
C22—C3—C4112.40 (11)C18—C19—H19119.8
C3—C4—C5112.19 (11)N1—C20—C4173.64 (16)
C20—C4—C3109.57 (11)N2—C21—C4175.91 (16)
C20—C4—C5105.38 (11)C23—C22—C3119.12 (14)
C21—C4—C3108.45 (12)C23—C22—C27118.28 (15)
C21—C4—C5111.69 (11)C27—C22—C3122.60 (14)
C21—C4—C20109.51 (12)C22—C23—H23119.6
C4—C5—H5106.8C24—C23—C22120.80 (16)
C6—C5—C4111.92 (11)C24—C23—H23119.6
C6—C5—H5106.8C23—C24—H24119.8
C28—C5—C4111.19 (11)C25—C24—C23120.40 (17)
C28—C5—H5106.8C25—C24—H24119.8
C28—C5—C6113.01 (11)C24—C25—H25120.3
C1—C6—H6109.7C24—C25—C26119.45 (17)
C5—C6—C1111.93 (11)C26—C25—H25120.3
C5—C6—H6109.7C25—C26—H26119.8
C7—C6—C1106.85 (11)C25—C26—C27120.32 (17)
C7—C6—C5108.83 (11)C27—C26—H26119.8
C7—C6—H6109.7C22—C27—H27119.6
O2—C7—C6118.56 (13)C26—C27—C22120.74 (16)
O2—C7—C8119.71 (14)C26—C27—H27119.6
C8—C7—C6121.51 (13)C29—C28—C5119.55 (14)
C9—C8—C7123.35 (14)C29—C28—C33118.54 (14)
C9—C8—C13119.38 (15)C33—C28—C5121.87 (13)
C13—C8—C7117.27 (15)C28—C29—H29119.6
C8—C9—H9119.7C30—C29—C28120.76 (16)
C10—C9—C8120.56 (16)C30—C29—H29119.6
C10—C9—H9119.7C29—C30—H30119.9
C9—C10—H10120.9C31—C30—C29120.13 (16)
C11—C10—C9118.12 (17)C31—C30—H30119.9
C11—C10—H10120.9C30—C31—H31120.0
F2—C11—C10118.07 (19)C30—C31—C32119.92 (15)
F2—C11—C12118.70 (19)C32—C31—H31120.0
C12—C11—C10123.23 (17)C31—C32—H32119.8
C11—C12—H12120.9C31—C32—C33120.39 (16)
C11—C12—C13118.27 (19)C33—C32—H32119.8
C13—C12—H12120.9C28—C33—H33119.9
C8—C13—H13119.8C32—C33—C28120.25 (15)
C12—C13—C8120.37 (18)C32—C33—H33119.9
F1—C17—C18—C19177.76 (16)C6—C7—C8—C929.1 (2)
F2—C11—C12—C13178.8 (3)C6—C7—C8—C13151.58 (16)
O1—C1—C2—C356.14 (14)C7—C8—C9—C10177.16 (16)
O1—C1—C6—C558.60 (15)C7—C8—C13—C12179.6 (2)
O1—C1—C6—C760.44 (14)C8—C9—C10—C112.9 (3)
O1—C1—C14—C15175.19 (13)C9—C8—C13—C120.2 (3)
O1—C1—C14—C198.3 (2)C9—C10—C11—F2178.9 (2)
O2—C7—C8—C9156.39 (16)C9—C10—C11—C121.4 (4)
O2—C7—C8—C1322.9 (2)C10—C11—C12—C130.9 (4)
C1—C2—C3—C461.16 (15)C11—C12—C13—C81.7 (4)
C1—C2—C3—C22172.82 (12)C13—C8—C9—C102.2 (3)
C1—C6—C7—O274.24 (16)C14—C1—C2—C3177.09 (11)
C1—C6—C7—C8100.34 (15)C14—C1—C6—C5178.70 (11)
C1—C14—C15—C16174.53 (15)C14—C1—C6—C762.26 (14)
C1—C14—C19—C18175.25 (15)C14—C15—C16—C170.8 (3)
C2—C1—C6—C556.61 (15)C15—C14—C19—C181.2 (2)
C2—C1—C6—C7175.65 (11)C15—C16—C17—F1178.49 (16)
C2—C1—C14—C1557.88 (18)C15—C16—C17—C181.3 (3)
C2—C1—C14—C19125.66 (15)C16—C17—C18—C192.0 (3)
C2—C3—C4—C554.00 (15)C17—C18—C19—C140.7 (3)
C2—C3—C4—C20170.68 (12)C19—C14—C15—C162.0 (2)
C2—C3—C4—C2169.84 (14)C20—C4—C5—C6169.33 (11)
C2—C3—C22—C23142.45 (14)C20—C4—C5—C2863.23 (14)
C2—C3—C22—C2737.27 (19)C21—C4—C5—C671.85 (14)
C3—C4—C5—C650.17 (15)C21—C4—C5—C2855.59 (15)
C3—C4—C5—C28177.60 (11)C22—C3—C4—C5179.27 (11)
C3—C22—C23—C24179.36 (15)C22—C3—C4—C2062.59 (15)
C3—C22—C27—C26179.05 (14)C22—C3—C4—C2156.89 (15)
C4—C3—C22—C2393.46 (16)C22—C23—C24—C250.3 (3)
C4—C3—C22—C2786.82 (17)C23—C22—C27—C261.2 (2)
C4—C5—C6—C151.18 (15)C23—C24—C25—C261.1 (3)
C4—C5—C6—C7169.05 (11)C24—C25—C26—C270.8 (3)
C4—C5—C28—C2999.48 (16)C25—C26—C27—C220.4 (3)
C4—C5—C28—C3378.01 (17)C27—C22—C23—C240.9 (2)
C5—C6—C7—O246.79 (17)C28—C5—C6—C1177.63 (12)
C5—C6—C7—C8138.62 (13)C28—C5—C6—C764.50 (15)
C5—C28—C29—C30176.31 (15)C28—C29—C30—C310.2 (3)
C5—C28—C33—C32176.00 (15)C29—C28—C33—C321.5 (2)
C6—C1—C2—C362.48 (15)C29—C30—C31—C320.7 (3)
C6—C1—C14—C1562.57 (18)C30—C31—C32—C330.5 (3)
C6—C1—C14—C19113.89 (15)C31—C32—C33—C280.7 (3)
C6—C5—C28—C29133.68 (14)C33—C28—C29—C301.3 (2)
C6—C5—C28—C3348.83 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.142.8086 (16)136
O1—H1···N1i0.842.553.2071 (18)136
C15—H15···N2ii0.952.553.388 (2)148
C23—H23···O2i0.952.493.394 (2)160
C29—H29···O1i0.952.493.398 (2)160
C24—H24···F2iii0.952.583.443 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.142.8086 (16)136
O1—H1···N1i0.842.553.2071 (18)136
C15—H15···N2ii0.952.553.388 (2)148
C23—H23···O2i0.952.493.394 (2)160
C29—H29···O1i0.952.493.398 (2)160
C24—H24···F2iii0.952.583.443 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y1, z.
 

Acknowledgements

BN thanks the UGC for financial assistance through the SAP and a BSR one-time grant for the purchase of chemicals. MS thanks the DST, New Delhi, for providing financial help for the research work through the INSPIRE Research Fellowship scheme. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEcheverria, G., Punte, G., Rivero, B. E. & Barón, M. (1995). Acta Cryst. C51, 1023–1026.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSadikhova, N. D., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o1801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o736-o737
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds