metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m198-m199

Poly[[di­aqua­[μ-1,4-bis­(pyridin-4-ylmeth­yl)piperazine-κ2N:N′]{μ-2,2′-[(1,4-phenyl­ene)bis­(­­oxy)]di­acetato-κ2O:O′}cobalt(II)] penta­hydrate]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 15 April 2014; accepted 17 April 2014; online 3 May 2014)

In the title compound, {[Co(C10H8O6)(C16H20N4)(H2O)2]·5H2O}n, octa­hedrally coordinated CoII ions on crystallographic inversion centres are bound by trans O atoms belonging to two hydro­quinone-O,O′-di­acetate (hqda) anions {systematic name: 2,2′-[(1,4-phenyl­ene)bis­(­oxy)]di­acetate}, two trans-pyridine N-donor atoms from two bis­(pyridin-4-ylmeth­yl)piperazine (4-bpmp) ligands, and two trans aqua ligands. The exobidentate hqda and 4-bpmp ligands form [Co(hqda)(4-bpmp)(H2O)2]n coordination polymer layers parallel to (110) that are anchored into the full crystal structure by O—H⋯O hydrogen bonding between aqua ligands and ligated hqda O atoms. Disordered water mol­ecules of crystallization occupy incipient channels along [100]. However, these could not modeled reliably and so they were treated with SQUEEZE in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]; the crystal data take the presence of these mol­ecules into account. The crystal under investigation was twinned by non-merohedry, the twin fraction of the components being 53.3% and 46.7%. Only data from the major twin component were used in the refinement.

Related literature

For the preparation of bis­(4-pyridymeth­yl)piperazine, see: Niu et al. (2001[Niu, Y., Hou, H., Wei, Y., Fan, Y., Zhu, Y., Du, C. & Xin, X. (2001). Inorg. Chem. Commun. 4, 358-361.]). For the preparation of divalent metal terephthalate coordination polymers containing 4-bpmp, see: Farnum et al. (2013[Farnum, G. A., Murray, N. H. & LaDuca, R. L. (2013). Inorg. Chim. Acta, 406, 65—72.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8O6)(C16H20N4)(H2O)2]·5H2O

  • Mr = 677.57

  • Triclinic, [P \overline 1]

  • a = 5.7727 (8) Å

  • b = 10.3421 (15) Å

  • c = 13.1675 (19) Å

  • α = 87.175 (2)°

  • β = 78.856 (2)°

  • γ = 81.474 (2)°

  • V = 762.61 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 173 K

  • 0.19 × 0.17 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2003[Sheldrick, G. M. (2003). TWINABS. University of Göttingen, Germany.]) Tmin = 0.676, Tmax = 0.745

  • 13385 measured reflections

  • 2786 independent reflections

  • 2032 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.228

  • S = 1.10

  • 2786 reflections

  • 179 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.91 2.28 2.945 (7) 130
O4—H4B⋯O2 0.91 1.85 2.636 (7) 143
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Chemical context top

Some divalent metal terephthalate coordination polymers with bis­(pyridin-4-yl­methyl)­piperazine (4-bpmp) coligands show intriguing entangled topologies. (Farnum et al., 2013). We hoped to expand the scope of these materials by using a para aromatic di­carboxyl­ate with longer pendant arms, such as hydro­quinone-O,O'-di­acetic acid (H2hqda). The title compound was obtained as pink crystals through the hydro­thermal reaction of cobalt nitrate, H2hqda, and 4-bpmp.

Structural commentary top

The asymmetric unit of the title compound contains a divalent cobalt atom on a crystallographic inversion centre, an aqua ligand, half of a hqda ligand whose centroid rests on another crystallographic inversion centre, and one half of a 4-bpmp ligand whose centroid rests on a third crystallographic inversion centre.

The cobalt atom is o­cta­hedrally coordinated (Fig. 1), with the equatorial plane containing trans pyridyl N atom donors from two 4-bpmp ligands and trans O atom donors from monodentate carboxyl­ate groups belonging to two hqda ligands. The aqua ligands are located in the axial positions.

The Co atoms are connected by exobidentate, bis­(monodentate) hqda ligands to form [Co(hqda)(H2O)2]n coordination polymer chains that are oriented parallel to [0 1 0]. Each individual chain is linked to two others by tethering 4-bpmp ligands, to construct [Co(hqda)(4-bpmp)(H2O)2]n coordination polymer layers parallel to (110) (Fig. 2). As each cobalt atom is connected to four others, the underlying topology of the layer is a (4,4) re­cta­ngular grid. The inter­nuclear Co···Co through-space distances across the grid apertures are 13.17 Å and 25.14 Å.

Supra­molecular features top

Individual [Co(hqda)(4-bpmp)(H2O)2]n layers stack in a AAA pattern along the a crystal direction (Fig. 3). The supra­molecular O—H···O hydrogen bonding between aqua ligands in one layer and ligated hqda O atoms in two others provides the impetus for the formation of the three-dimensional crystal structure of the title compound.

Disordered water molecules of crystallization occupy incipient channels along [1 0 0]. These could not be refined well, and thus their electron density was modeled using the SQUEEZE subroutine of PLATON (Spek, 2009). The resulting analysis indicated the presence of approximately five water molecules per unit cell, in a region comprising 20.6% of the total unit cell volume.

Database survey top

This compound was not previously reported in the CCDC.

Synthesis and crystallization top

Cobalt(II) nitrate hexahydrate and hydro­quinone-O,O'-di­acetic acid (H2hqda) were obtained commercially. Bis(4-pyridymethyl)­piperazine (4-bpmp) was prepared via a published procedure (Niu et al., 2001). A mixture of cobalt(II) nitrate hexahydrate (68 mg, 0.23 mmol), H2hqda (84 mg, 0.37 mmol), 4-bpmp (99 mg, 0.37 mmol), 0.25 ml of a 1.0 M NaOH solution and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 24 h. Pink plates of the title compound were obtained in a multi-phase mixture.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95–0.99 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms within the aqua ligand were found in a difference Fourier map, restrained with O—H = 0.85 Å and refined with Uiso = 1.5Ueq(O).

Related literature top

For the preparation of bis(4-pyridymethyl)piperazine, see: Niu et al. (2001). For the preparation of divalent metal terephthalate coordination polymers containing bis(4-pyridymethyl)piperazine, see: Farnum et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The octahedral coordination environment of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as gray sticks. Color codes: dark blue Co, red O, light blue N, black C. Symmetry code: (i) -x + 1, -y, -z.
[Figure 2] Fig. 2. A single [Co(hqda)(4-bpmp)(H2O)2]n coordination polymer layer.
[Figure 3] Fig. 3. Stacking of coordination polymer layers within the title compound.
Poly[[diaqua[µ-1,4-bis(pyridin-4-ylmethyl)piperazine-κ2N:N']{µ-2,2'-[(1,4-phenylene)bis(oxy)]diacetato-κ2O:O'}cobalt(II)] pentahydrate] top
Crystal data top
[Co(C10H8O6)(C16H20N4)(H2O)2]·5H2OZ = 1
Mr = 677.57F(000) = 357
Triclinic, P1Dx = 1.475 Mg m3
a = 5.7727 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3421 (15) ÅCell parameters from 2300 reflections
c = 13.1675 (19) Åθ = 2.5–25.0°
α = 87.175 (2)°µ = 0.63 mm1
β = 78.856 (2)°T = 173 K
γ = 81.474 (2)°Plate, pink
V = 762.61 (19) Å30.19 × 0.17 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
2786 independent reflections
Radiation source: fine-focus sealed tube2032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.4°, θmin = 2.0°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2003)
h = 66
Tmin = 0.676, Tmax = 0.745k = 1212
13385 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0164P)2 + 9.3P]
where P = (Fo2 + 2Fc2)/3
2786 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Co(C10H8O6)(C16H20N4)(H2O)2]·5H2Oγ = 81.474 (2)°
Mr = 677.57V = 762.61 (19) Å3
Triclinic, P1Z = 1
a = 5.7727 (8) ÅMo Kα radiation
b = 10.3421 (15) ŵ = 0.63 mm1
c = 13.1675 (19) ÅT = 173 K
α = 87.175 (2)°0.19 × 0.17 × 0.05 mm
β = 78.856 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2786 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2003)
2032 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.745Rint = 0.053
13385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0930 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 1.10Δρmax = 0.71 e Å3
2786 reflectionsΔρmin = 0.89 e Å3
179 parameters
Special details top

Experimental. TWINABS-2012/1 (Bruker,2012) was used for absorption correction.

For component 1: wR2(int) was 0.0549 before and 0.0460 after correction. The Ratio of minimum to maximum transmission is 0.91. The λ/2 correction factor is Not present

For component 2: wR2(int) was 0.0664 before and 0.0469 after correction. The Ratio of minimum to maximum transmission not present. The λ/2 correction factor is Not present

Final HKLF 4 output contains 13385 reflections, Rint = 0.0533 (6718 with I > 3sig(I), Rint = 0.0400)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.00000.0217 (4)
O40.8245 (8)0.0527 (5)0.0875 (4)0.0259 (11)
H4A0.91160.08610.04680.039*
H4B0.79740.11480.13720.039*
O10.2947 (8)0.1293 (4)0.0851 (4)0.0284 (12)
O20.5742 (10)0.1838 (6)0.2164 (4)0.0437 (15)
O30.0339 (10)0.3206 (5)0.1427 (5)0.0442 (15)
N10.4646 (10)0.1467 (5)0.1144 (5)0.0262 (14)
N20.1474 (11)0.4777 (6)0.4001 (5)0.0335 (15)
C130.3664 (14)0.1882 (7)0.1687 (6)0.0318 (18)
C120.1723 (15)0.2740 (8)0.2163 (7)0.043 (2)
H12A0.24010.34980.25280.052*
H12B0.12440.22270.26840.052*
C100.0057 (15)0.4091 (8)0.0716 (8)0.042 (2)
C90.2010 (14)0.4424 (8)0.0052 (8)0.042 (2)
H90.33970.40180.00880.051*
C50.6335 (14)0.1602 (8)0.1688 (7)0.038 (2)
H50.77800.10090.15710.046*
C10.2635 (13)0.2314 (7)0.1348 (6)0.0335 (18)
H10.13900.22310.09880.040*
C60.3746 (14)0.4588 (9)0.3307 (6)0.0380 (19)
H6A0.50280.44400.37190.046*
H6B0.39440.53960.28830.046*
C80.1075 (14)0.6027 (8)0.4482 (6)0.0378 (19)
H8A0.11560.67250.39390.045*
H8B0.23500.60770.48780.045*
C70.1316 (15)0.3748 (8)0.4801 (6)0.040 (2)
H7A0.26050.37450.52000.048*
H7B0.15240.28860.44750.048*
C110.1974 (15)0.4660 (8)0.0770 (7)0.042 (2)
H110.33320.44240.12950.051*
C20.2273 (13)0.3304 (7)0.2053 (6)0.0305 (17)
H20.08120.38830.21660.037*
C30.4032 (13)0.3448 (7)0.2590 (6)0.0301 (17)
C40.6070 (14)0.2550 (8)0.2401 (7)0.043 (2)
H40.73110.25930.27730.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0171 (7)0.0232 (7)0.0226 (8)0.0000 (5)0.0008 (5)0.0004 (5)
O40.022 (3)0.031 (3)0.025 (3)0.006 (2)0.003 (2)0.008 (2)
O10.027 (3)0.022 (2)0.036 (3)0.002 (2)0.011 (2)0.003 (2)
O20.036 (3)0.059 (4)0.035 (3)0.018 (3)0.001 (3)0.022 (3)
O30.035 (3)0.037 (3)0.066 (4)0.006 (3)0.024 (3)0.007 (3)
N10.021 (3)0.023 (3)0.031 (4)0.001 (2)0.000 (3)0.002 (3)
N20.036 (4)0.035 (4)0.026 (4)0.001 (3)0.001 (3)0.004 (3)
C130.037 (5)0.033 (4)0.027 (4)0.010 (4)0.009 (4)0.007 (3)
C120.046 (5)0.043 (5)0.046 (6)0.021 (4)0.017 (4)0.028 (4)
C100.036 (5)0.027 (4)0.070 (7)0.010 (4)0.024 (4)0.019 (4)
C90.023 (4)0.028 (4)0.078 (7)0.004 (3)0.019 (4)0.012 (4)
C50.028 (4)0.041 (5)0.047 (5)0.004 (4)0.012 (4)0.013 (4)
C10.027 (4)0.034 (4)0.037 (5)0.009 (3)0.010 (3)0.003 (3)
C60.035 (4)0.054 (5)0.025 (4)0.010 (4)0.000 (3)0.012 (4)
C80.035 (5)0.040 (5)0.034 (5)0.001 (4)0.001 (4)0.004 (4)
C70.038 (5)0.040 (5)0.039 (5)0.014 (4)0.012 (4)0.009 (4)
C110.033 (5)0.035 (5)0.059 (6)0.004 (4)0.010 (4)0.009 (4)
C20.024 (4)0.033 (4)0.030 (4)0.008 (3)0.001 (3)0.002 (3)
C30.027 (4)0.034 (4)0.025 (4)0.008 (3)0.008 (3)0.000 (3)
C40.027 (4)0.045 (5)0.058 (6)0.002 (4)0.012 (4)0.019 (4)
Geometric parameters (Å, º) top
Co1—O42.131 (4)C9—H90.9500
Co1—O4i2.131 (4)C9—C11ii1.375 (12)
Co1—O12.084 (5)C5—H50.9500
Co1—O1i2.084 (5)C5—C41.363 (11)
Co1—N12.151 (6)C1—H10.9500
Co1—N1i2.151 (6)C1—C21.382 (10)
O4—H4A0.9131C6—H6A0.9900
O4—H4B0.9130C6—H6B0.9900
O1—C131.260 (9)C6—C31.517 (10)
O2—C131.237 (9)C8—H8A0.9900
O3—C121.421 (11)C8—H8B0.9900
O3—C101.388 (10)C8—C7iii1.508 (11)
N1—C51.343 (10)C7—C8iii1.508 (11)
N1—C11.337 (9)C7—H7A0.9900
N2—C61.440 (10)C7—H7B0.9900
N2—C81.435 (10)C11—C9ii1.375 (12)
N2—C71.461 (10)C11—H110.9500
C13—C121.535 (11)C2—H20.9500
C12—H12A0.9900C2—C31.373 (11)
C12—H12B0.9900C3—C41.376 (11)
C10—C91.376 (13)C4—H40.9500
C10—C111.377 (11)
O4—Co1—O4i180.0C11ii—C9—C10120.6 (8)
O4—Co1—N1i85.7 (2)C11ii—C9—H9119.7
O4i—Co1—N1i94.3 (2)N1—C5—H5118.5
O4—Co1—N194.3 (2)N1—C5—C4123.0 (7)
O4i—Co1—N185.7 (2)C4—C5—H5118.5
O1i—Co1—O487.77 (19)N1—C1—H1118.2
O1—Co1—O4i87.77 (18)N1—C1—C2123.5 (7)
O1i—Co1—O4i92.23 (19)C2—C1—H1118.2
O1—Co1—O492.23 (19)N2—C6—H6A108.9
O1i—Co1—O1180.0N2—C6—H6B108.9
O1i—Co1—N1i90.1 (2)N2—C6—C3113.4 (7)
O1—Co1—N190.1 (2)H6A—C6—H6B107.7
O1i—Co1—N189.9 (2)C3—C6—H6A108.9
O1—Co1—N1i89.9 (2)C3—C6—H6B108.9
N1—Co1—N1i180.0 (3)N2—C8—H8A109.3
Co1—O4—H4A112.0N2—C8—H8B109.3
Co1—O4—H4B111.7N2—C8—C7iii111.8 (7)
H4A—O4—H4B106.8H8A—C8—H8B107.9
C13—O1—Co1127.2 (5)C7iii—C8—H8A109.3
C10—O3—C12116.7 (7)C7iii—C8—H8B109.3
C5—N1—Co1124.3 (5)N2—C7—C8iii110.0 (6)
C1—N1—Co1119.6 (5)N2—C7—H7A109.7
C1—N1—C5116.2 (6)N2—C7—H7B109.7
C6—N2—C7111.1 (6)C8iii—C7—H7A109.7
C8—N2—C6110.9 (7)C8iii—C7—H7B109.7
C8—N2—C7109.3 (6)H7A—C7—H7B108.2
O1—C13—C12115.8 (7)C10—C11—H11120.5
O2—C13—O1127.3 (7)C9ii—C11—C10119.1 (9)
O2—C13—C12116.9 (7)C9ii—C11—H11120.5
O3—C12—C13113.7 (7)C1—C2—H2120.1
O3—C12—H12A108.8C3—C2—C1119.8 (7)
O3—C12—H12B108.8C3—C2—H2120.1
C13—C12—H12A108.8C2—C3—C6120.6 (7)
C13—C12—H12B108.8C2—C3—C4116.6 (7)
H12A—C12—H12B107.7C4—C3—C6122.8 (7)
C9—C10—O3115.6 (7)C5—C4—C3121.0 (8)
C9—C10—C11120.3 (9)C5—C4—H4119.5
C11—C10—O3124.1 (9)C3—C4—H4119.5
C10—C9—H9119.7
Co1—O1—C13—O21.8 (12)N1—C1—C2—C30.3 (12)
Co1—O1—C13—C12177.7 (5)N2—C6—C3—C248.1 (10)
Co1—N1—C5—C4179.3 (7)N2—C6—C3—C4135.2 (8)
Co1—N1—C1—C2178.6 (6)C12—O3—C10—C9173.6 (7)
O4—Co1—O1—C1312.3 (6)C12—O3—C10—C118.8 (11)
O4i—Co1—O1—C13167.7 (6)C10—O3—C12—C1366.9 (9)
O4i—Co1—N1—C5125.5 (6)C9—C10—C11—C9ii0.8 (13)
O4—Co1—N1—C554.5 (6)C5—N1—C1—C21.5 (12)
O4—Co1—N1—C1125.6 (6)C1—N1—C5—C40.8 (12)
O4i—Co1—N1—C154.4 (6)C1—C2—C3—C6175.3 (7)
O1i—Co1—N1—C533.2 (6)C1—C2—C3—C41.6 (12)
O1—Co1—N1—C5146.8 (6)C6—N2—C8—C7iii179.1 (7)
O1—Co1—N1—C133.3 (6)C6—N2—C7—C8iii179.8 (7)
O1i—Co1—N1—C1146.7 (6)C6—C3—C4—C5174.6 (8)
O1—C13—C12—O326.2 (10)C8—N2—C6—C3166.4 (7)
O2—C13—C12—O3154.2 (7)C8—N2—C7—C8iii57.0 (10)
O3—C10—C9—C11ii176.9 (7)C7—N2—C6—C371.8 (9)
O3—C10—C11—C9ii176.7 (7)C7—N2—C8—C7iii58.1 (9)
N1—Co1—O1—C13106.6 (6)C11—C10—C9—C11ii0.8 (13)
N1i—Co1—O1—C1373.4 (6)C2—C3—C4—C52.2 (13)
N1—C5—C4—C31.1 (14)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1iv0.912.282.945 (7)130
O4—H4B···O20.911.852.636 (7)143
Symmetry code: (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.912.282.945 (7)130
O4—H4B···O20.911.852.636 (7)143
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge Lyman Briggs College of Michigan State University for funding this work.

References

First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarnum, G. A., Murray, N. H. & LaDuca, R. L. (2013). Inorg. Chim. Acta, 406, 65—72.  Web of Science CSD CrossRef Google Scholar
First citationNiu, Y., Hou, H., Wei, Y., Fan, Y., Zhu, Y., Du, C. & Xin, X. (2001). Inorg. Chem. Commun. 4, 358–361.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m198-m199
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds