organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o647-o648

(Z)-1-[(2E)-3,4-Di­phenyl-2,3-di­hydro-1,3-thia­zol-2-yl­­idene]-2-[1-(4-hy­dr­oxy­phen­yl)ethyl­­idene]hydrazinium bromide including an unknown solvate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 29 April 2014; accepted 5 May 2014; online 10 May 2014)

In the title compound, C23H20N3OS+·Br, the di­hydro­thia­zole ring (r.m.s. deviation = 0.015 Å) is twisted with respect to each of the C- and N-bound phenyl rings and the hy­droxy­benzene ring, making dihedral angles of 76.0 (2), 71.2 (2) and 9.8 (2)°, respectively. In the crystal, inversion-related mol­ecules are linked by association of the bromide ions with the cations via N—H⋯Br and O—H⋯Br hydrogen-bonding inter­actions. These mol­ecules run in channels parallel to the a axis through face-to-face ππ stacking inter­actions between the hy­droxy­benzene rings [centroid–centroid distances = 3.785 (3) Å] which, in turn, are connected into layers parallel to (110) by weak C—H⋯π inter­actions. A small region of electron density well removed from the main mol­ecule and appearing disordered over a center of symmetry was removed with PLATON SQUEEZE [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–15] following unsuccessful attempts to model it as plausible solvent molecule. The nature of the solvent was not known and hence, this is not taken into account when calculating Mr and related data.

Related literature

For general medicinal and industrial applications of five-membered S,N-heterocycles thia­zolines, see: Abhinit et al. (2009[Abhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47-64.]). For chemical and diverse medicinal properties of thia­zoles, see: Sreedevi et al. (2013[Sreedevi, M., Prasad, A. R. G., Spoorthy, Y. N. & Ravindranath, L. R. K. R. (2013). Adv. Pharm. Bull. 3, 227-230.]); Milne (2000[Milne, G. W. A. (2000). In Ashgate Handbook of Antineoplastic Agents. London: Wiley.]); De Souza & De Almeida (2003[De Souza, M. V. N. & De Almeida, M. V. (2003). Quim. Nova, 26, 366-372.]); Lednicer et al. (1990[Lednicer, D., Mitscher, L. A. G. I. & George, G. I. (1990). The Organic Chemistry of Drug Synthesis, Vol. 4, pp. 95-97. New York: Wiley.]); Rehman et al. (2005[Rehman, M. Z., Anwar, C. J. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1775.]); Knadler et al. (1986[Knadler, M. P., Bergstrom, R. F., Callaghan, J. T. & Rubin, A. (1986). Drug Metab. Dispos. 14, 175-182.]). For a similar structure, see: Mague et al. (2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Abd El-Alaziz, A. T. & Albayati, M. R. (2014). Acta Cryst. E70, o328-o329.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20N3OS+·Br

  • Mr = 466.39

  • Triclinic, [P \overline 1]

  • a = 7.5987 (12) Å

  • b = 12.3017 (19) Å

  • c = 13.786 (2) Å

  • α = 68.0760 (17)°

  • β = 88.1540 (18)°

  • γ = 72.6540 (18)°

  • V = 1136.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 220 K

  • 0.17 × 0.17 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.56, Tmax = 0.80

  • 11044 measured reflections

  • 5146 independent reflections

  • 3398 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.157

  • S = 1.01

  • 5146 reflections

  • 263 parameters

  • 73 restraints

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Br1i 0.83 2.50 3.328 (4) 178
N2—H2⋯Br1ii 0.91 2.88 3.570 (3) 134
C5—H5⋯Cg4iii 0.94 2.76 3.610 (5) 152
Symmetry codes: (i) x-1, y+1, z+1; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

Synthesis of five-membered S,N-heterocycles thia­zolines has received intensive inter­est from chemists and biologists due to their wide spectrum of medicinal and industrial applications (Abhinit et al., 2009). Thia­zoles are stable and non-carcinogenic aromatic compounds with relatively small size (Sreedevi et al., 2013). Many biologically active products, such as Bleomycin and Tiazofurin (anti­neoplastic agents) (Milne, 2000), Ritonavir (anti-HIV drug) (De Souza & De Almeida, 2003), Fanetizole and Meloxicam (anti-inflammatory agents) (Lednicer et al., 1990; Rehman et al., 2005), Nizatidine (anti­ulcer agent) (Knadler et al., 1986) and penicillin (anti­biotic) are some examples of thia­zole-bearing compounds.

In the title molecule (I), shown in Fig. 1, the 5-membered heterocycle (S1/N1/C1–C3) is planar to within 0.013 (3) Å for N1 and the phenyl rings C4–C9 and C10–C15 make dihedral angles with it of 76.0 (2)° and 71.2 (2)°, respectively. The dihedral angle between the ring C18–C23 and the heterocycle (S1/N1/C1–C3) is 9.8 (2)°. The N1–C3–N2–N3, C3–N2–N3–C18, N2–N3–C16–C18 torsion angles are 173.6 (4), 166.3 (4) and -177.1 (3)°, respectively. All bond lengths and bond angles in (I) are normal and are comparable with those found in a similar structure (Mague et al., 2014).

In the crystal, inversion-related molecules are linked by association of the bromide ions with the cations via N—H···Br and O—H···Br hydrogen bonding inter­actions (Table 1, Fig. 2). These molecules run in channels parallel to the a axis through the face-to-face ππ stacking inter­actions [centroid-to-centroid distances = 3.785 (3) Å] between the hydroxyl­benzene rings: these are connected into layers parallel to (110) by weak C5—H5···Cg(C18–C23) inter­actions, Table 1.

Synthesis and crystallization top

The title compound was prepared according to our reported method (Mague et al., 2014). The crude product has been crystallized from ethanol to afford colorless crystals suitable for X-ray diffraction (m.p.: 533 – 535 K).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H= 0.94–0.97 Å, N–H = 0.91 Å and O–H = 0.83 Å, and with Uiso(H)= 1.2Ueq(C,N) and 1.5 Ueq(O). A small region of electron density well–removed from the main molecule and appearing disordered over a center of symmetry was removed with PLATON SQUEEZE following unsuccessful attempts to model it as plausible lattice solvent (Spek, 2009).

Related literature top

For general medicinal and industrial applications of five-membered S,N-heterocycles thiazolines, see: Abhinit et al. (2009). For chemical and diverse medicinal properties of thiazoles, see: Sreedevi et al. (2013); Milne (2000); De Souza & De Almeida (2003); Lednicer et al. (1990); Rehman et al. (2005); Knadler et al. (1986). For a similar structure, see: Mague et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the a axis and showing O—H···Br interactions.
(Z)-1-[(2E)-3,4-Diphenyl-2,3-dihydro-1,3-thiazol-2-ylidene]-2-[1-(4-hydroxyphenyl)ethylidene]hydrazinium bromide top
Crystal data top
C23H20N3OS+·BrZ = 2
Mr = 466.39F(000) = 476
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5987 (12) ÅCell parameters from 4151 reflections
b = 12.3017 (19) Åθ = 2.8–26.7°
c = 13.786 (2) ŵ = 1.92 mm1
α = 68.0760 (17)°T = 220 K
β = 88.1540 (18)°Block, colourless
γ = 72.6540 (18)°0.17 × 0.17 × 0.12 mm
V = 1136.6 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5146 independent reflections
Radiation source: fine-focus sealed tube3398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.3660 pixels mm-1θmax = 27.5°, θmin = 1.9°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1515
Tmin = 0.56, Tmax = 0.80l = 1717
11044 measured reflections
Refinement top
Refinement on F273 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0867P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5146 reflectionsΔρmax = 1.09 e Å3
263 parametersΔρmin = 0.48 e Å3
Crystal data top
C23H20N3OS+·Brγ = 72.6540 (18)°
Mr = 466.39V = 1136.6 (3) Å3
Triclinic, P1Z = 2
a = 7.5987 (12) ÅMo Kα radiation
b = 12.3017 (19) ŵ = 1.92 mm1
c = 13.786 (2) ÅT = 220 K
α = 68.0760 (17)°0.17 × 0.17 × 0.12 mm
β = 88.1540 (18)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5146 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3398 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.80Rint = 0.042
11044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05873 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.01Δρmax = 1.09 e Å3
5146 reflectionsΔρmin = 0.48 e Å3
263 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å. That attached to oxygen was placed in an idealized position and the C—C—O—H torsion angle refined (AFIX 147)·All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. A small region of electron density well removed from the main molecule and appearing disordered over a center of symmetry was removed with PLATON SQUEEZE following unsuccessful attempts to model it as plausible lattice solvent (Spek, 2014).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24831 (13)0.51039 (10)0.99502 (8)0.0418 (3)
O10.1920 (4)1.0140 (3)1.2638 (2)0.0599 (11)
N10.1776 (4)0.5582 (3)0.8008 (2)0.0376 (10)
N20.0083 (4)0.7072 (3)0.8605 (2)0.0427 (11)
N30.0284 (5)0.7434 (3)0.9459 (2)0.0434 (11)
C10.3784 (5)0.4108 (4)0.9384 (3)0.0433 (12)
C20.3282 (5)0.4476 (4)0.8368 (3)0.0399 (12)
C30.1253 (5)0.6024 (4)0.8761 (3)0.0393 (12)
C40.4141 (5)0.3930 (4)0.7614 (3)0.0398 (12)
C50.3820 (6)0.2897 (4)0.7589 (3)0.0480 (16)
C60.4610 (6)0.2396 (4)0.6870 (4)0.0510 (16)
C70.5711 (7)0.2920 (5)0.6183 (4)0.0604 (17)
C80.6055 (8)0.3930 (5)0.6209 (5)0.085 (3)
C90.5280 (7)0.4447 (5)0.6915 (4)0.070 (2)
C100.0904 (5)0.6216 (4)0.6942 (3)0.0389 (12)
C110.0203 (6)0.5700 (4)0.6591 (4)0.0543 (17)
C120.1016 (7)0.6310 (5)0.5574 (4)0.0689 (19)
C130.0764 (6)0.7396 (5)0.4938 (4)0.0608 (18)
C140.0333 (6)0.7896 (5)0.5299 (4)0.0576 (17)
C150.1188 (6)0.7291 (4)0.6313 (3)0.0495 (14)
C160.1282 (5)0.8544 (4)0.9258 (3)0.0380 (12)
C170.2232 (6)0.9401 (4)0.8202 (3)0.0478 (14)
C180.1445 (5)0.8977 (4)1.0145 (3)0.0388 (12)
C190.0230 (6)0.8316 (4)1.1041 (3)0.0443 (12)
C200.0409 (6)0.8719 (4)1.1875 (3)0.0480 (16)
C210.1813 (6)0.9791 (4)1.1794 (3)0.0446 (14)
C220.2998 (6)1.0452 (4)1.0906 (3)0.0470 (14)
C230.2808 (6)1.0045 (4)1.0093 (3)0.0451 (14)
Br10.46263 (6)0.27288 (4)0.21975 (3)0.0504 (2)
H10.474200.338400.975700.0520*
H1O0.278701.078701.251000.0900*
H20.091600.733600.804300.0510*
H50.305600.252800.806500.0570*
H60.438000.169000.686000.0620*
H70.623600.258700.569000.0730*
H80.683700.428300.573700.1020*
H90.552800.514900.692000.0830*
H110.039500.495800.703200.0650*
H120.175600.597000.531500.0830*
H130.134400.780400.425000.0730*
H140.050500.864500.486000.0690*
H150.195500.762200.656300.0590*
H17A0.268201.023300.818600.0720*
H17B0.326600.915600.806000.0720*
H17C0.136700.936900.767300.0720*
H190.071600.759701.109000.0530*
H200.041100.827001.248600.0580*
H220.393401.117801.085000.0570*
H230.362701.050600.948300.0540*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0397 (6)0.0478 (6)0.0404 (5)0.0129 (5)0.0012 (4)0.0197 (5)
O10.068 (2)0.069 (2)0.0568 (19)0.0195 (17)0.0135 (15)0.0413 (17)
N10.0332 (17)0.0438 (19)0.0401 (17)0.0070 (14)0.0016 (13)0.0244 (15)
N20.0413 (19)0.050 (2)0.0405 (18)0.0047 (15)0.0006 (14)0.0282 (16)
N30.050 (2)0.050 (2)0.0363 (17)0.0139 (17)0.0061 (14)0.0244 (16)
C10.038 (2)0.045 (2)0.047 (2)0.0093 (18)0.0020 (17)0.0202 (19)
C20.036 (2)0.040 (2)0.046 (2)0.0114 (17)0.0024 (16)0.0192 (18)
C30.036 (2)0.044 (2)0.044 (2)0.0112 (17)0.0021 (16)0.0243 (18)
C40.035 (2)0.036 (2)0.049 (2)0.0077 (17)0.0045 (16)0.0193 (18)
C50.047 (2)0.052 (3)0.057 (3)0.026 (2)0.0103 (19)0.026 (2)
C60.049 (3)0.045 (2)0.067 (3)0.009 (2)0.001 (2)0.034 (2)
C70.059 (3)0.058 (3)0.068 (3)0.008 (2)0.018 (2)0.037 (3)
C80.092 (4)0.073 (4)0.114 (5)0.043 (3)0.065 (4)0.054 (4)
C90.076 (4)0.059 (3)0.104 (4)0.038 (3)0.050 (3)0.054 (3)
C100.033 (2)0.046 (2)0.042 (2)0.0056 (17)0.0046 (16)0.0266 (18)
C110.052 (3)0.060 (3)0.055 (3)0.020 (2)0.000 (2)0.024 (2)
C120.060 (3)0.090 (4)0.070 (3)0.024 (3)0.013 (2)0.043 (3)
C130.045 (3)0.085 (4)0.044 (2)0.006 (2)0.0011 (19)0.026 (2)
C140.049 (3)0.062 (3)0.050 (3)0.011 (2)0.003 (2)0.013 (2)
C150.044 (2)0.060 (3)0.047 (2)0.020 (2)0.0041 (18)0.020 (2)
C160.031 (2)0.043 (2)0.045 (2)0.0111 (17)0.0097 (16)0.0230 (18)
C170.051 (3)0.049 (2)0.048 (2)0.016 (2)0.0018 (18)0.023 (2)
C180.038 (2)0.046 (2)0.043 (2)0.0223 (18)0.0144 (16)0.0223 (18)
C190.047 (2)0.048 (2)0.048 (2)0.0208 (19)0.0112 (18)0.025 (2)
C200.050 (3)0.055 (3)0.044 (2)0.022 (2)0.0069 (18)0.020 (2)
C210.049 (2)0.053 (3)0.050 (2)0.026 (2)0.0232 (19)0.033 (2)
C220.043 (2)0.055 (3)0.052 (2)0.015 (2)0.0135 (18)0.031 (2)
C230.041 (2)0.052 (3)0.051 (2)0.0170 (19)0.0138 (18)0.028 (2)
Br10.0562 (3)0.0514 (3)0.0488 (3)0.0152 (2)0.0025 (2)0.0252 (2)
Geometric parameters (Å, º) top
S1—C11.741 (5)C16—C181.494 (6)
S1—C31.710 (4)C18—C231.388 (7)
O1—C211.375 (5)C18—C191.384 (6)
O1—H1O0.8300C19—C201.401 (6)
N1—C31.341 (5)C20—C211.396 (7)
N1—C101.451 (5)C21—C221.365 (6)
N1—C21.418 (6)C22—C231.376 (6)
N2—C31.329 (6)C1—H10.9400
N2—N31.395 (4)C5—H50.9400
N3—C161.277 (6)C6—H60.9400
N2—H20.9100C7—H70.9400
C1—C21.331 (5)C8—H80.9400
C2—C41.474 (6)C9—H90.9400
C4—C91.378 (7)C11—H110.9400
C4—C51.376 (7)C12—H120.9400
C5—C61.386 (7)C13—H130.9400
C6—C71.352 (7)C14—H140.9400
C7—C81.357 (9)C15—H150.9400
C8—C91.379 (9)C17—H17A0.9700
C10—C111.385 (7)C17—H17B0.9700
C10—C151.360 (6)C17—H17C0.9700
C11—C121.380 (7)C19—H190.9400
C12—C131.363 (8)C20—H200.9400
C13—C141.372 (8)C22—H220.9400
C14—C151.387 (6)C23—H230.9400
C16—C171.490 (6)
C1—S1—C389.3 (2)O1—C21—C20116.9 (4)
C21—O1—H1O109.00C20—C21—C22120.5 (4)
C2—N1—C10125.3 (3)C21—C22—C23119.3 (5)
C3—N1—C10122.2 (4)C18—C23—C22122.1 (4)
C2—N1—C3112.5 (3)S1—C1—H1124.00
N3—N2—C3114.7 (3)C2—C1—H1123.00
N2—N3—C16115.3 (3)C4—C5—H5120.00
C3—N2—H2115.00C6—C5—H5120.00
N3—N2—H2128.00C5—C6—H6120.00
S1—C1—C2113.1 (4)C7—C6—H6120.00
N1—C2—C1111.8 (4)C6—C7—H7120.00
N1—C2—C4119.4 (3)C8—C7—H7120.00
C1—C2—C4128.7 (4)C7—C8—H8119.00
S1—C3—N1113.3 (3)C9—C8—H8119.00
N1—C3—N2123.7 (3)C4—C9—H9120.00
S1—C3—N2123.0 (3)C8—C9—H9120.00
C5—C4—C9118.5 (4)C10—C11—H11121.00
C2—C4—C5120.9 (4)C12—C11—H11121.00
C2—C4—C9120.6 (5)C11—C12—H12119.00
C4—C5—C6120.7 (4)C13—C12—H12119.00
C5—C6—C7120.1 (5)C12—C13—H13120.00
C6—C7—C8119.7 (5)C14—C13—H13120.00
C7—C8—C9121.2 (6)C13—C14—H14120.00
C4—C9—C8119.8 (6)C15—C14—H14120.00
C11—C10—C15121.6 (4)C10—C15—H15120.00
N1—C10—C11118.6 (4)C14—C15—H15120.00
N1—C10—C15119.8 (4)C16—C17—H17A109.00
C10—C11—C12117.9 (5)C16—C17—H17B109.00
C11—C12—C13121.2 (5)C16—C17—H17C109.00
C12—C13—C14120.1 (5)H17A—C17—H17B110.00
C13—C14—C15119.8 (5)H17A—C17—H17C110.00
C10—C15—C14119.4 (4)H17B—C17—H17C109.00
C17—C16—C18120.0 (4)C18—C19—H19120.00
N3—C16—C18116.5 (3)C20—C19—H19120.00
N3—C16—C17123.5 (4)C19—C20—H20120.00
C16—C18—C19120.4 (4)C21—C20—H20120.00
C16—C18—C23121.1 (4)C21—C22—H22120.00
C19—C18—C23118.5 (4)C23—C22—H22120.00
C18—C19—C20120.0 (4)C18—C23—H23119.00
C19—C20—C21119.6 (4)C22—C23—H23119.00
O1—C21—C22122.6 (4)
C3—S1—C1—C20.0 (4)C2—C4—C9—C8179.3 (5)
C1—S1—C3—N11.4 (3)C5—C4—C9—C80.4 (7)
C1—S1—C3—N2178.5 (4)C4—C5—C6—C70.1 (7)
C3—N1—C2—C12.3 (5)C5—C6—C7—C80.7 (8)
C3—N1—C2—C4174.3 (4)C6—C7—C8—C91.0 (9)
C10—N1—C2—C1179.8 (4)C7—C8—C9—C40.4 (9)
C10—N1—C2—C43.6 (6)N1—C10—C11—C12179.7 (4)
C2—N1—C3—S12.4 (4)C15—C10—C11—C120.2 (7)
C2—N1—C3—N2177.5 (4)N1—C10—C15—C14179.4 (4)
C10—N1—C3—S1179.6 (3)C11—C10—C15—C140.8 (7)
C10—N1—C3—N20.5 (6)C10—C11—C12—C131.0 (8)
C2—N1—C10—C1172.5 (5)C11—C12—C13—C140.9 (9)
C2—N1—C10—C15107.4 (5)C12—C13—C14—C150.1 (8)
C3—N1—C10—C11109.8 (5)C13—C14—C15—C100.9 (8)
C3—N1—C10—C1570.3 (5)N3—C16—C18—C1915.2 (6)
C3—N2—N3—C16166.3 (4)N3—C16—C18—C23164.8 (4)
N3—N2—C3—S16.3 (5)C17—C16—C18—C19163.8 (4)
N3—N2—C3—N1173.6 (4)C17—C16—C18—C2316.2 (6)
N2—N3—C16—C171.9 (6)C16—C18—C19—C20179.1 (4)
N2—N3—C16—C18177.1 (3)C23—C18—C19—C200.9 (7)
S1—C1—C2—N11.3 (5)C16—C18—C23—C22179.2 (4)
S1—C1—C2—C4175.0 (4)C19—C18—C23—C220.9 (7)
N1—C2—C4—C5105.2 (5)C18—C19—C20—C210.2 (7)
N1—C2—C4—C974.5 (6)C19—C20—C21—O1180.0 (4)
C1—C2—C4—C578.8 (6)C19—C20—C21—C220.6 (7)
C1—C2—C4—C9101.5 (6)O1—C21—C22—C23179.9 (4)
C2—C4—C5—C6179.1 (4)C20—C21—C22—C230.6 (7)
C9—C4—C5—C60.6 (7)C21—C22—C23—C180.1 (7)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···Br1i0.832.503.328 (4)178
N2—H2···Br1ii0.912.883.570 (3)134
C5—H5···Cg4iii0.942.763.610 (5)152
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···Br1i0.832.503.328 (4)178
N2—H2···Br1ii0.912.883.570 (3)134
C5—H5···Cg4iii0.942.763.610 (5)152
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z+2.
 

Acknowledgements

The support of Tulane University for the Tulane Crystallography Laboratory is gratefully acknowledged.

References

First citationAbhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47–64.  CAS Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Souza, M. V. N. & De Almeida, M. V. (2003). Quim. Nova, 26, 366–372.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKnadler, M. P., Bergstrom, R. F., Callaghan, J. T. & Rubin, A. (1986). Drug Metab. Dispos. 14, 175–182.  CAS PubMed Web of Science Google Scholar
First citationLednicer, D., Mitscher, L. A. G. I. & George, G. I. (1990). The Organic Chemistry of Drug Synthesis, Vol. 4, pp. 95–97. New York: Wiley.  Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Abd El-Alaziz, A. T. & Albayati, M. R. (2014). Acta Cryst. E70, o328–o329.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMilne, G. W. A. (2000). In Ashgate Handbook of Antineoplastic Agents. London: Wiley.  Google Scholar
First citationRehman, M. Z., Anwar, C. J. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1775.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreedevi, M., Prasad, A. R. G., Spoorthy, Y. N. & Ravindranath, L. R. K. R. (2013). Adv. Pharm. Bull. 3, 227–230.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o647-o648
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds