organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o700-o701

4-(Furan-2-carbon­yl)piperazin-1-ium 3,5-di­nitro­benzoate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: jjasinski@keene.edu

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 14 May 2014; accepted 15 May 2014; online 24 May 2014)

In the cation of the title salt, C9H13N2O2+·C7H3N2O6, the piperazine ring adopts a slightly distorted chair conformation. Twofold rotational disorder is exhibited by the furan ring in a 0.430 (4):0.570 (4) ratio. In the crystal, N—H⋯O hydrogen bonds link the ions into chains along [010]. Additional weak C—H⋯O inter­actions are observed, leading to a supra­molecular layer parallel to (011).

Related literature

For the synthesis of the drug Prazosin {systematic name: 2-[4-(2-furo­yl)piperazin-1-yl]-6,7-di­meth­oxy­quinazolin-4-amine}, see: Honkanen et al. (1980[Honkanen, E., Pippuri, A., Kairisalo, P., Koivisto, M. & Tuorni, S. (1980). J. Heterocycl. Chem. 17, 797-798.]). For the drug 1(2-furo­yl)piperazine, used in the treatment of high blood pressure and anxiety, see: Brogden et al. (1977[Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1977). Drugs, 14, 163-197.]). For therapeutic uses of piperazines, see: Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]). For the use of the piperazine moiety in the construction of bioactive mol­ecules, see: Choudhary et al. (2006[Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819-1826.]). For a related structure, see: Dayananda et al. (2012[Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165-o1166.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C9H13N2O2+·C7H3N2O6

  • Mr = 392.33

  • Orthorhombic, P b c a

  • a = 9.6060 (2) Å

  • b = 10.4572 (2) Å

  • c = 33.8766 (7) Å

  • V = 3402.97 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.08 mm−1

  • T = 173 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.863, Tmax = 1.000

  • 21195 measured reflections

  • 3352 independent reflections

  • 2915 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.02

  • 3352 reflections

  • 270 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2B—H2BA⋯O1Ai 0.99 2.51 3.1607 (16) 123
N2B—H2BA⋯O2Ai 0.99 1.72 2.7093 (16) 176
N2B—H2BB⋯O1Aii 0.99 1.77 2.7424 (16) 166
C5A—H5A⋯O2Aiii 0.95 2.47 3.3170 (18) 148
C9B—H9B⋯O6Aiv 0.95 2.44 3.183 (6) 134
C8BB—H8BB⋯O3Av 0.95 2.50 3.395 (5) 158
C2B—H2BC⋯O1Bi 0.99 2.59 3.2300 (19) 122
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (v) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

1(2-Furoyl)piperazine, used to synthesise the drug Prazosin (Honkanen et al., 1980), is the first of a new class of anti-hypertensives. It is a sympatholytic drug used to treat high blood pressure and anxiety (Brogden et al.,1977). Piperazines are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). The piperazine moiety is extensively employed to construct various bioactive molecules with anti-bacterial and anti-malarial activity, and as anti-psychotic agents (Choudhary et al., 2006). The crystal structures of a similar salt viz., cinnarizinium 3,5-di­nitro­salicylate (Dayananda et al., 2012) has been reported. In view of the above importance of piperazines, this paper reports the crystal structure of the title salt, (I) C9H13N2O2+. C7H3N2O6-.

The title compound, (I), crystallizes with one independent piperazinium cation and a 3,5-di­nitro­benzoate anion in the asymmetric unit (Fig. 1). In the cation, the piperazine ring adopts a slightly distorted chair conformation with puckering parameters Q, θ, and ϕ = 0.5552 (15)Å, 173.13 (14)° and 4.2 (14)°, respectively (Cremer & Pople, 1975). Two-fold rotational disorder is exhibited by the furan ring in a 0.430 (4):0.570 (4) ratio represents two different conformations of the molecule that exist in the same crystal form. N—H···O inter­molecular hydrogen bonds link the cations and anions into infinite 1-D chains along [0 1 0] (Fig. 2). Additional weak C—H···O inter­molecular inter­actions are observed (Table 1) forming chains along [0 0 1] resulting in a 2-D supra­molecular network structure.

Synthesis and crystallization top

1(2-Furoyl)piperazine (0.9 g, 0.005 mol) and 3,5-di­nitro­benzoic acid (1.0 g, 0.005 mol) were dissolved in N,N-di­methyl­formamide and stirred for 10 minutes at 333 K. The resulting solution was allowed to cool slowly at room temperature. The crystals of salt (I) (M.pt: 453–459 K) appeared after a few days.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95 Å (CH); 0.99 Å (CH2) and 0.92 Å (NH2), and with Uiso = 1.2 x Ueq(parent atom). Owing to poor agreement, the following reflections were omitted from the final cycles of refinement: (2 2 2), (1 2 3), (1 0 6), (0 2 2), (0 4 1), (2 3 0), (1 2 4), (2 1 2), (1 2 1), (2 3 2) and (1 1 13).

Related literature top

For the synthesis of the drug Prazosin {systematic name: 2-[4-(2-furoyl)piperazin-1-yl]-6,7-dimethoxyquinazolin-4-amine}, see: Honkanen et al. (1980). For the drug 1(2-furoyl)piperazine, used to treat high blood pressure and anxiety, see: Brogden et al. (1977). For therapeutic uses of piperazines, see: Brockunier et al. (2004); Bogatcheva et al. (2006). For the use of the piperazine moiety in the construction of bioactive molecules, see: Choudhary et al. (2006). For a related structure, see: Dayananda et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C9H13N2O2+. C7H3N2O6-) showing the labeling scheme with 30% probability displacement ellipsoids. Two-fold rotational disorder exhibited by the furan ring in a 0.430 (4):0.570 (4) ratio is displayed.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds forming infinite chain along the b axis and weak C—H···O intermolecular interactions. Only the major disordered component [0.570 (4)] of the furan ring is displayed. H atoms not involved in hydrogen bonding have been removed for clarity.
4-(Furan-2-carbonyl)piperazin-1-ium 3,5-dinitrobenzoate top
Crystal data top
C9H13N2O2+·C7H3N2O6Dx = 1.532 Mg m3
Mr = 392.33Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 7148 reflections
a = 9.6060 (2) Åθ = 3.9–72.3°
b = 10.4572 (2) ŵ = 1.08 mm1
c = 33.8766 (7) ÅT = 173 K
V = 3402.97 (13) Å3Irregular, colourless
Z = 80.28 × 0.22 × 0.18 mm
F(000) = 1632
Data collection top
Agilent Eos Gemini
diffractometer
2915 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.079
ω scansθmax = 72.4°, θmin = 5.2°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1011
Tmin = 0.863, Tmax = 1.000k = 1212
21195 measured reflectionsl = 3041
3352 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.8847P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.26 e Å3
3352 reflectionsΔρmin = 0.21 e Å3
270 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
10 restraintsExtinction coefficient: 0.0015 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C9H13N2O2+·C7H3N2O6V = 3402.97 (13) Å3
Mr = 392.33Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 9.6060 (2) ŵ = 1.08 mm1
b = 10.4572 (2) ÅT = 173 K
c = 33.8766 (7) Å0.28 × 0.22 × 0.18 mm
Data collection top
Agilent Eos Gemini
diffractometer
3352 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2915 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.079
21195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04310 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
3352 reflectionsΔρmin = 0.21 e Å3
270 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.36870 (12)0.57178 (10)0.63310 (3)0.0284 (3)
O2A0.28703 (12)0.69735 (10)0.68122 (3)0.0317 (3)
O3A0.42159 (14)0.60237 (15)0.81693 (3)0.0463 (4)
O4A0.58504 (14)0.46802 (13)0.82985 (3)0.0415 (3)
O5A0.82825 (13)0.26144 (13)0.72229 (4)0.0456 (3)
O6A0.77657 (15)0.31036 (13)0.66197 (4)0.0468 (4)
N1A0.51100 (13)0.52552 (13)0.80671 (4)0.0281 (3)
N2A0.75838 (14)0.31806 (13)0.69759 (4)0.0326 (3)
C1A0.36297 (15)0.60956 (14)0.66819 (4)0.0239 (3)
C2A0.45703 (14)0.54250 (13)0.69778 (4)0.0224 (3)
C3A0.44092 (15)0.56475 (13)0.73799 (4)0.0223 (3)
H3A0.37130.62170.74730.027*
C4A0.52856 (15)0.50207 (14)0.76415 (4)0.0233 (3)
C5A0.63161 (15)0.41803 (14)0.75234 (4)0.0252 (3)
H5A0.68910.37440.77080.030*
C6A0.64582 (15)0.40151 (14)0.71212 (4)0.0254 (3)
C7A0.56135 (15)0.46153 (14)0.68461 (4)0.0241 (3)
H7A0.57480.44740.65720.029*
O1B0.49213 (15)0.72567 (16)0.51522 (4)0.0557 (4)
O2B0.6605 (4)0.6627 (4)0.57013 (17)0.0347 (6)0.430 (4)
C6B0.672 (3)0.602 (3)0.5349 (8)0.023 (2)0.430 (4)
C7B0.7724 (9)0.5082 (8)0.53851 (19)0.0311 (8)0.430 (4)
H7B0.81080.45850.51770.037*0.430 (4)
C8B0.8067 (7)0.4998 (7)0.5786 (2)0.0392 (15)0.430 (4)
H8B0.86560.43880.59100.047*0.430 (4)
C9B0.7390 (6)0.5956 (6)0.59554 (18)0.0405 (9)0.430 (4)
H9B0.74540.61490.62290.049*0.430 (4)
O2BB0.7728 (4)0.5083 (4)0.52700 (8)0.0347 (6)0.570 (4)
C6BB0.6943 (19)0.613 (2)0.5349 (6)0.023 (2)0.570 (4)
C7BB0.6920 (4)0.6323 (4)0.57507 (17)0.0311 (8)0.570 (4)
H7BB0.63700.69360.58870.037*0.570 (4)
C8BB0.7856 (5)0.5455 (5)0.59227 (13)0.0392 (15)0.570 (4)
H8BB0.81150.53900.61930.047*0.570 (4)
C9BB0.8307 (4)0.4732 (4)0.56174 (14)0.0405 (9)0.570 (4)
H9BB0.89580.40540.56440.049*0.570 (4)
N1B0.62643 (12)0.65199 (13)0.46545 (3)0.0251 (3)
N2B0.69338 (13)0.67832 (11)0.38373 (3)0.0233 (3)
H2BA0.73110.72520.36070.028*
H2BB0.66030.59380.37450.028*
C1B0.75009 (15)0.58881 (15)0.44944 (4)0.0248 (3)
H1BA0.72640.50010.44170.030*
H1BB0.82330.58490.47000.030*
C2B0.80476 (15)0.66087 (15)0.41378 (4)0.0262 (3)
H2BC0.84000.74560.42220.031*
H2BD0.88320.61280.40200.031*
C3B0.57552 (16)0.75100 (15)0.40107 (4)0.0273 (3)
H3BA0.50160.76240.38100.033*
H3BB0.60790.83670.40940.033*
C4B0.51769 (15)0.67938 (17)0.43631 (4)0.0301 (4)
H4BA0.44350.73110.44880.036*
H4BB0.47560.59800.42730.036*
C5B0.59507 (16)0.66629 (16)0.50423 (4)0.0299 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0419 (6)0.0242 (5)0.0189 (5)0.0007 (4)0.0049 (4)0.0006 (4)
O2A0.0430 (6)0.0275 (6)0.0246 (5)0.0102 (5)0.0106 (4)0.0032 (4)
O3A0.0509 (8)0.0651 (9)0.0228 (6)0.0221 (7)0.0003 (5)0.0018 (5)
O4A0.0528 (8)0.0454 (7)0.0262 (6)0.0075 (6)0.0137 (5)0.0072 (5)
O5A0.0365 (7)0.0445 (7)0.0560 (8)0.0169 (6)0.0095 (6)0.0018 (6)
O6A0.0505 (8)0.0472 (8)0.0427 (7)0.0127 (6)0.0179 (6)0.0016 (6)
N1A0.0314 (6)0.0315 (7)0.0216 (6)0.0008 (5)0.0046 (5)0.0036 (5)
N2A0.0269 (6)0.0275 (7)0.0433 (8)0.0004 (5)0.0028 (6)0.0001 (6)
C1A0.0305 (7)0.0198 (7)0.0214 (7)0.0021 (6)0.0054 (6)0.0016 (5)
C2A0.0249 (7)0.0206 (7)0.0218 (7)0.0045 (5)0.0035 (5)0.0024 (5)
C3A0.0233 (7)0.0204 (7)0.0233 (7)0.0013 (5)0.0028 (5)0.0001 (5)
C4A0.0252 (7)0.0240 (7)0.0207 (6)0.0041 (6)0.0027 (5)0.0023 (5)
C5A0.0234 (7)0.0235 (7)0.0287 (7)0.0017 (5)0.0057 (6)0.0043 (6)
C6A0.0223 (7)0.0224 (7)0.0316 (7)0.0014 (5)0.0004 (6)0.0009 (6)
C7A0.0268 (7)0.0238 (7)0.0215 (7)0.0038 (6)0.0004 (5)0.0007 (5)
O1B0.0552 (8)0.0842 (11)0.0278 (6)0.0375 (8)0.0117 (6)0.0020 (6)
O2B0.0447 (11)0.0406 (11)0.0188 (11)0.0075 (8)0.0056 (12)0.0038 (13)
C6B0.019 (5)0.029 (3)0.0200 (7)0.010 (4)0.003 (3)0.0016 (14)
C7B0.0344 (14)0.0367 (15)0.022 (2)0.0009 (11)0.0054 (17)0.0024 (18)
C8B0.044 (2)0.049 (3)0.024 (2)0.016 (3)0.017 (2)0.015 (2)
C9B0.0447 (16)0.0482 (18)0.0284 (14)0.0067 (13)0.0148 (15)0.0141 (16)
O2BB0.0447 (11)0.0406 (11)0.0188 (11)0.0075 (8)0.0056 (12)0.0038 (13)
C6BB0.019 (5)0.029 (3)0.0200 (7)0.010 (4)0.003 (3)0.0016 (14)
C7BB0.0344 (14)0.0367 (15)0.022 (2)0.0009 (11)0.0054 (17)0.0024 (18)
C8BB0.044 (2)0.049 (3)0.024 (2)0.016 (3)0.017 (2)0.015 (2)
C9BB0.0447 (16)0.0482 (18)0.0284 (14)0.0067 (13)0.0148 (15)0.0141 (16)
N1B0.0236 (6)0.0343 (7)0.0174 (6)0.0045 (5)0.0012 (4)0.0017 (5)
N2B0.0292 (6)0.0245 (6)0.0163 (5)0.0049 (5)0.0008 (5)0.0003 (4)
C1B0.0267 (7)0.0294 (7)0.0184 (6)0.0052 (6)0.0015 (5)0.0009 (5)
C2B0.0242 (7)0.0351 (8)0.0192 (7)0.0006 (6)0.0010 (5)0.0008 (6)
C3B0.0303 (7)0.0289 (7)0.0227 (7)0.0020 (6)0.0026 (6)0.0030 (6)
C4B0.0233 (7)0.0444 (9)0.0227 (7)0.0024 (6)0.0003 (6)0.0059 (6)
C5B0.0330 (8)0.0354 (8)0.0212 (7)0.0056 (7)0.0042 (6)0.0007 (6)
Geometric parameters (Å, º) top
O1A—C1A1.2539 (17)C9B—H9B0.9500
O2A—C1A1.2529 (18)O2BB—C6BB1.35 (3)
O3A—N1A1.2261 (18)O2BB—C9BB1.352 (5)
O4A—N1A1.2173 (17)C6BB—C7BB1.38 (2)
O5A—N2A1.2251 (19)C6BB—C5B1.517 (9)
O6A—N2A1.2220 (19)C7BB—H7BB0.9500
N1A—C4A1.4722 (18)C7BB—C8BB1.405 (6)
N2A—C6A1.4741 (19)C8BB—H8BB0.9500
C1A—C2A1.5208 (19)C8BB—C9BB1.352 (6)
C2A—C3A1.3905 (19)C9BB—H9BB0.9500
C2A—C7A1.386 (2)N1B—C1B1.4634 (18)
C3A—H3A0.9500N1B—C4B1.4656 (18)
C3A—C4A1.387 (2)N1B—C5B1.3563 (19)
C4A—C5A1.383 (2)N2B—H2BA0.9900
C5A—H5A0.9500N2B—H2BB0.9900
C5A—C6A1.380 (2)N2B—C2B1.4880 (18)
C6A—C7A1.386 (2)N2B—C3B1.4848 (19)
C7A—H7A0.9500C1B—H1BA0.9900
O1B—C5B1.226 (2)C1B—H1BB0.9900
O2B—C6B1.36 (3)C1B—C2B1.5178 (19)
O2B—C9B1.342 (6)C2B—H2BC0.9900
C6B—C7B1.38 (3)C2B—H2BD0.9900
C6B—C5B1.444 (12)C3B—H3BA0.9900
C7B—H7B0.9500C3B—H3BB0.9900
C7B—C8B1.401 (8)C3B—C4B1.515 (2)
C8B—H8B0.9500C4B—H4BA0.9900
C8B—C9B1.325 (9)C4B—H4BB0.9900
O3A—N1A—C4A117.76 (12)C8BB—C7BB—H7BB126.2
O4A—N1A—O3A123.46 (13)C7BB—C8BB—H8BB127.8
O4A—N1A—C4A118.78 (13)C9BB—C8BB—C7BB104.4 (4)
O5A—N2A—C6A117.39 (14)C9BB—C8BB—H8BB127.8
O6A—N2A—O5A124.34 (14)O2BB—C9BB—H9BB123.7
O6A—N2A—C6A118.27 (13)C8BB—C9BB—O2BB112.5 (4)
O1A—C1A—C2A116.97 (13)C8BB—C9BB—H9BB123.7
O2A—C1A—O1A126.19 (13)C1B—N1B—C4B114.66 (11)
O2A—C1A—C2A116.84 (12)C5B—N1B—C1B126.09 (12)
C3A—C2A—C1A120.16 (13)C5B—N1B—C4B118.21 (12)
C7A—C2A—C1A119.94 (13)H2BA—N2B—H2BB108.2
C7A—C2A—C3A119.88 (13)C2B—N2B—H2BA109.7
C2A—C3A—H3A120.7C2B—N2B—H2BB109.7
C4A—C3A—C2A118.65 (13)C3B—N2B—H2BA109.7
C4A—C3A—H3A120.7C3B—N2B—H2BB109.7
C3A—C4A—N1A118.53 (13)C3B—N2B—C2B109.90 (11)
C5A—C4A—N1A118.11 (12)N1B—C1B—H1BA109.5
C5A—C4A—C3A123.36 (13)N1B—C1B—H1BB109.5
C4A—C5A—H5A122.1N1B—C1B—C2B110.59 (12)
C6A—C5A—C4A115.85 (13)H1BA—C1B—H1BB108.1
C6A—C5A—H5A122.1C2B—C1B—H1BA109.5
C5A—C6A—N2A118.44 (13)C2B—C1B—H1BB109.5
C5A—C6A—C7A123.33 (14)N2B—C2B—C1B110.90 (12)
C7A—C6A—N2A118.22 (13)N2B—C2B—H2BC109.5
C2A—C7A—C6A118.91 (13)N2B—C2B—H2BD109.5
C2A—C7A—H7A120.5C1B—C2B—H2BC109.5
C6A—C7A—H7A120.5C1B—C2B—H2BD109.5
C9B—O2B—C6B105.8 (9)H2BC—C2B—H2BD108.0
O2B—C6B—C7B108.3 (9)N2B—C3B—H3BA109.7
O2B—C6B—C5B112 (2)N2B—C3B—H3BB109.7
C7B—C6B—C5B139 (3)N2B—C3B—C4B109.78 (12)
C6B—C7B—H7B126.5H3BA—C3B—H3BB108.2
C6B—C7B—C8B107.1 (13)C4B—C3B—H3BA109.7
C8B—C7B—H7B126.5C4B—C3B—H3BB109.7
C7B—C8B—H8B127.6N1B—C4B—C3B111.47 (12)
C9B—C8B—C7B104.9 (5)N1B—C4B—H4BA109.3
C9B—C8B—H8B127.6N1B—C4B—H4BB109.3
O2B—C9B—H9B123.4C3B—C4B—H4BA109.3
C8B—C9B—O2B113.2 (5)C3B—C4B—H4BB109.3
C8B—C9B—H9B123.4H4BA—C4B—H4BB108.0
C6BB—O2BB—C9BB106.0 (7)O1B—C5B—C6B115.6 (15)
O2BB—C6BB—C7BB109.0 (7)O1B—C5B—C6BB119.1 (10)
O2BB—C6BB—C5B120.9 (17)O1B—C5B—N1B121.96 (15)
C7BB—C6BB—C5B127.6 (18)N1B—C5B—C6B122.1 (15)
C6BB—C7BB—H7BB126.2N1B—C5B—C6BB118.8 (10)
C6BB—C7BB—C8BB107.6 (9)
O1A—C1A—C2A—C3A169.82 (13)C7B—C6B—C5B—N1B10 (4)
O1A—C1A—C2A—C7A11.8 (2)C7B—C8B—C9B—O2B2.0 (7)
O2A—C1A—C2A—C3A10.2 (2)C9B—O2B—C6B—C7B8 (2)
O2A—C1A—C2A—C7A168.20 (14)C9B—O2B—C6B—C5B178.6 (14)
O3A—N1A—C4A—C3A1.9 (2)O2BB—C6BB—C7BB—C8BB6.9 (14)
O3A—N1A—C4A—C5A178.35 (15)O2BB—C6BB—C5B—O1B153.1 (11)
O4A—N1A—C4A—C3A177.96 (14)O2BB—C6BB—C5B—C6B85 (17)
O4A—N1A—C4A—C5A1.8 (2)O2BB—C6BB—C5B—N1B29.8 (18)
O5A—N2A—C6A—C5A4.4 (2)C6BB—O2BB—C9BB—C8BB4.1 (10)
O5A—N2A—C6A—C7A176.94 (14)C6BB—C7BB—C8BB—C9BB4.2 (10)
O6A—N2A—C6A—C5A175.20 (14)C7BB—C6BB—C5B—O1B7 (2)
O6A—N2A—C6A—C7A3.5 (2)C7BB—C6BB—C5B—C6B75 (17)
N1A—C4A—C5A—C6A178.63 (12)C7BB—C6BB—C5B—N1B170.0 (13)
N2A—C6A—C7A—C2A178.59 (13)C7BB—C8BB—C9BB—O2BB0.1 (5)
C1A—C2A—C3A—C4A179.95 (12)C9BB—O2BB—C6BB—C7BB6.7 (14)
C1A—C2A—C7A—C6A179.97 (13)C9BB—O2BB—C6BB—C5B170.1 (11)
C2A—C3A—C4A—N1A179.82 (12)N1B—C1B—C2B—N2B54.25 (16)
C2A—C3A—C4A—C5A0.1 (2)N2B—C3B—C4B—N1B55.11 (17)
C3A—C2A—C7A—C6A1.6 (2)C1B—N1B—C4B—C3B52.13 (18)
C3A—C4A—C5A—C6A1.6 (2)C1B—N1B—C5B—O1B176.66 (17)
C4A—C5A—C6A—N2A177.02 (13)C1B—N1B—C5B—C6B9.7 (15)
C4A—C5A—C6A—C7A1.6 (2)C1B—N1B—C5B—C6BB0.3 (10)
C5A—C6A—C7A—C2A0.0 (2)C2B—N2B—C3B—C4B59.34 (15)
C7A—C2A—C3A—C4A1.6 (2)C3B—N2B—C2B—C1B59.48 (15)
O2B—C6B—C7B—C8B9 (2)C4B—N1B—C1B—C2B51.18 (17)
O2B—C6B—C5B—O1B29 (2)C4B—N1B—C5B—O1B15.7 (3)
O2B—C6B—C5B—C6BB87 (17)C4B—N1B—C5B—C6B157.9 (14)
O2B—C6B—C5B—N1B157.2 (12)C4B—N1B—C5B—C6BB167.3 (10)
C6B—O2B—C9B—C8B3.4 (14)C5B—C6B—C7B—C8B176 (3)
C6B—C7B—C8B—C9B6.6 (14)C5B—C6BB—C7BB—C8BB168.9 (14)
C7B—C6B—C5B—O1B164 (3)C5B—N1B—C1B—C2B140.79 (15)
C7B—C6B—C5B—C6BB80 (17)C5B—N1B—C4B—C3B138.83 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2B—H2BA···O1Ai0.992.513.1607 (16)123
N2B—H2BA···O2Ai0.991.722.7093 (16)176
N2B—H2BB···O1Aii0.991.772.7424 (16)166
C5A—H5A···O2Aiii0.952.473.3170 (18)148
C9B—H9B···O6Aiv0.952.443.183 (6)134
C8BB—H8BB···O3Av0.952.503.395 (5)158
C2B—H2BC···O1Bi0.992.593.2300 (19)122
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+3/2, y+1/2, z; (v) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2B—H2BA···O1Ai0.992.513.1607 (16)123
N2B—H2BA···O2Ai0.991.722.7093 (16)176
N2B—H2BB···O1Aii0.991.772.7424 (16)166
C5A—H5A···O2Aiii0.952.473.3170 (18)148
C9B—H9B···O6Aiv0.952.443.183 (6)134
C8BB—H8BB···O3Av0.952.503.395 (5)158
C2B—H2BC···O1Bi0.992.593.2300 (19)122
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+3/2, y+1/2, z; (v) x+1/2, y, z+3/2.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1977). Drugs, 14, 163–197.  CrossRef PubMed CAS Web of Science Google Scholar
First citationChoudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165–o1166.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHonkanen, E., Pippuri, A., Kairisalo, P., Koivisto, M. & Tuorni, S. (1980). J. Heterocycl. Chem. 17, 797–798.  CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o700-o701
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds