metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m238-m239

(1,6,7,12-Tetra­aza­perylene-κ2N,N′)bis­­(4,4′,5,5′-tetra­methyl-2,2′-bi­pyridyl-κ2N,N′)ruthenium(II) bis­­(hexa­fluorido­phosphate) aceto­nitrile tris­­olvate

aUniversität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
*Correspondence e-mail: us@chem.uni-potsdam.de

(Received 14 May 2014; accepted 22 May 2014; online 31 May 2014)

In the title compound, rac-[Ru(C14H16N2)2(C16H8N4)](PF6)2·3C2H3N, discrete dimers of complex cations, [Ru(tmbpy)2­tape]2+, of opposite chirality are formed (tmbpy = tetra­methyl­bipyridine; tape = tetraazaperylene), held together by ππ stacking inter­actions between the tetra­aza­perylene moieties with centroid–centroid distances in the range 3.563 (3)–3.837 (3) Å. These inter­actions exhibit a parallel displaced ππ stacking mode. Additional weak C—H⋯π-ring and C—H⋯N and C—H⋯F inter­actions are found, leading to a three-dimensional architecture. The RuII atom is coordinated in a distorted octa­hedral geometry. The counter-charge is provided by two hexa­fluorido­phosphate anions and the asymmetric unit is completed by three aceto­nitrile solvent mol­ecules of crystallization. Four F atoms of one PF6 anion are disordered over three sets of sites with occupancies of 0.517 (3):0.244 (3):0.239 (3). Two aceto­nitrile solvent mol­ecules are highly disordered and their estimated scattering contribution was subtracted from the observed diffraction data using the SQUEEZE option in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For related RuII complexes with tape and bpy-type ligands, see: Brietzke et al. (2012[Brietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788-2797.]). For background to the alkaloid eilatin, see: Rudia et al. (1988[Rudia, A., Benayahub, Y., Goldberg, I. & Kasham Eilatin, Y. (1988). Tetrahedron Lett. 29, 6655-6656.]). For RuII complexes including eilatin-type ligands, see: Gut et al. (2002[Gut, D., Rudi, A., Kopilov, J., Goldberg, I. & Kol, M. (2002). J. Am. Chem. Soc. 124, 5449-5456.]); Bergman et al. (2004[Bergman, S. D., Goldberg, I., Barbieri, A., Barigelletti, F. & Kol, M. (2004). Inorg. Chem. 43, 2355-2367.], 2005[Bergman, S. D., Goldberg, I., Barbieri, A. & Kol, M. (2005). Inorg. Chem. 44, 2513-2523.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C14H16N2)2(C16H8N4)](PF6)2·3C2H3N

  • Mr = 1195.01

  • Triclinic, [P \overline 1]

  • a = 12.7485 (5) Å

  • b = 13.6973 (7) Å

  • c = 17.3623 (9) Å

  • α = 105.786 (4)°

  • β = 92.858 (4)°

  • γ = 110.436 (3)°

  • V = 2698.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 210 K

  • 0.55 × 0.40 × 0.25 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.758, Tmax = 0.955

  • 17495 measured reflections

  • 8918 independent reflections

  • 6396 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 0.94

  • 8918 reflections

  • 743 parameters

  • 363 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

N1—Ru1 2.048 (3)
N4—Ru1 2.047 (3)
N5—Ru1 2.074 (3)
N6—Ru1 2.065 (3)
N7—Ru1 2.063 (3)
N8—Ru1 2.061 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 denote the centroids of the N7/C31–C35, N8/C36–C40 and N6/C22–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F10i 0.93 2.61 3.402 (7) 143
C3—H3⋯F10i 0.93 2.50 3.318 (8) 147
C6—H6⋯F8ii 0.93 2.58 3.218 (8) 126
C8—H8⋯N7 0.93 2.65 3.166 (5) 116
C20—H20⋯F1Aiii 0.93 2.41 3.320 (6) 166
C20—H20⋯F5Ciii 0.93 2.64 3.411 (15) 141
C23—H23⋯F1Aiii 0.93 2.55 3.479 (5) 177
C26—H26⋯N8 0.93 2.59 3.138 (5) 118
C31—H31⋯F6A 0.93 2.63 3.461 (13) 150
C34—H34⋯F5Aiv 0.93 2.29 3.170 (8) 158
C34—H34⋯F6Biv 0.93 2.30 3.129 (11) 148
C34—H34⋯F6Civ 0.93 2.55 3.295 (19) 137
C45—H45A⋯F11ii 0.96 2.49 3.343 (12) 148
C45—H45C⋯F11 0.96 2.58 3.388 (15) 142
C47—H47A⋯N9v 0.96 2.66 3.452 (14) 140
C47—H47B⋯F5Biii 0.96 2.55 3.343 (16) 140
C47—H47B⋯F5Ciii 0.96 2.59 3.293 (15) 131
C8—H8⋯Cg1 0.93 2.92 3.711 (5) 144
C26—H26⋯Cg2 0.93 2.90 3.708 (4) 146
C42—H42ACg3vi 0.96 2.79 3.339 (5) 117
Symmetry codes: (i) x+1, y+1, z; (ii) -x+1, -y, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) x, y+1, z; (vi) -x+1, -y+2, -z+1.

Data collection: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

The ligand 1,6,7,12-tetra­aza­perylene (tape) is a D2h-symmetric bis­(α,α'-di­imine) ligand containing an extended π-heteroaromatic system. Tape is closely related to the well known ligand 2,2'-bi­pyrimidine (bpym). However, building supra­molecular structures by ππ stacking inter­actions is an additional feature for complexes containing terminal tape ligands. Such behavior was described for RuII and OsII complexes of eilatin (dibenzo-[b,n]-1,6,7,12-tetra­aza­perylene) (Gut et al., 2002), isoeilatin (dibenzo-[b,k]-1,6,7,12-tetra­aza­perylene) (Bergman et al., 2005) and dibenzoeilatin (tetra­benzo-[b,e,k,n]-1,6,7,12-tetra­aza­perylene) (Bergman et al., 2004). Eilatin, an alkaloid first isolated from a Red Sea tunicate (Rudia et al., 1988), isoeilatin and dibenzoeilatin all have a tape core, mainly determining the electronic properties of these large surface ligands (Bergman et al., 2005). The synthesis of tape, as uncoordinated ligand, was first published in 2012 by our workgroup (Brietzke et al., 2012). In the same article, we compared UV-Vis absorption spectra, redox properties as well as structures for RuII complexes of the formula [Ru(L–L)tape]2+ (with L–L = phen, bpy, dmbpy (4,4'-di­methyl-2,2'-bi­pyridine), dtbbpy (4,4'-di-tert-butyl-2,2'-bi­pyridine) and tmbpy (4,4'5,5'-tetra­methyl-2,2'-bi­pyridine)). However, we could not present the structures of the RuII complexes with L–L = phen and tmpby in this first report, because there were no crystals suitable for X-ray diffraction. To fill one part of this gap, we present herein the structure of rac-[Ru(tmbpy)2tape](PF6)2·3MeCN, Fig. 1 & Table 1. The key feature in the crystal packing of this compound, and of the analogous complexes mentioned above, is the formation of discrete dimers, Fig. 2a. These are formed by complexes of opposite chirality, held together by strong ππ stacking inter­actions via the planar tetra­aza­perylene moieties with Cg···Cg distances between 3.563 (3) and 3.837 (3) Å. The root mean square (rms) deviation from planarity for the tape moiety was calculated to be 0.0472 Å. The ππ stacking modes are very similar to earlier observed behavior of analogous complexes (Brietzke et al., 2012). All arene rings of the tape ligand are involved in the ππ stacking, Fig. 2b. The dimer features an inter­planar tape separation of 3.33 Å. The Ru—N bond lengths formed by the tape and tmbpy ligands, Table 1, are very close to those of [Ru(L–L)tape]2+ (with L–L = bpy, dmbpy and dtbbpy), reported earlier (Brietzke et al., 2012). The three-dimensional structure is characterized by the parallel lying tape moieties. These are divided by tmbpy moieties. As a consequence large space is available, which is filled with hexafluoridophosphate and aceto­nitrile. Lots of non-classical hydrogen bonds connect cations, anions and solvent molecules to stabilize the crystal packing, Fig 3. Furthermore, these are supported by weak C—H···π-ring and C—H···N, F inter­actions (Table 2) .

Synthesis and crystallization top

The title compound was prepared as described earlier (Brietzke et al., 2012). Crystals suitable for X-ray structure analysis were obtained by vapor diffusion of di­ethyl ether into a saturated aceto­nitrile solution of [Ru(tmbpy)2tape](PF6)2. Thus, the solution was filled into a test tube, placed into a di­ethyl ether containing bottle. Dark green crystals began to form at ambient temperature within one week.

Refinement top

All hydrogen atoms were calculated in their expected positions and refined as riding atoms with Uiso(H)=1.2Ueq(C) and C—H distances of 0.93 Å for aromatic H atoms and with Uiso(H)=1.5Ueq(C) and distances of 0.96 Å for methyl hydrogen atoms. After unsuccessful attemps to model a disordered molecule of aceto­nitrile, the observed structure were modified by PLATON/SQUEEZE (Spek, 2009) to remove its contribution. PLATON/SQUEEZE calculated a solvent-accesible void volume in the unit cell of 305 Å3 (11.3 % of the total cell volume), corresponding to 44 electrons (residual electron density after the last refinement cycle) per unit cell. This number agrees with two molecules of aceto­nitrile (2 x 22 = 44). Four fluorines of one hexafluoridophosphate anion (on P1) are disordered over three sets of positions, with occupancies of 0.517 (3):0.244 (3):0.239 (3), respectively.

Related literature top

For related RuII complexes with tape and bpy-type ligands, see: Brietzke et al. (2012). For background to the alkaloid eilatin, see: Rudia et al. (1988). For RuII complexes including eilatin-type ligands, see: Gut et al. (2002); Bergman et al. (2004, 2005).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of Λ-[Ru(tmbpy)2(tape)]2+ in rac-[Ru(tmbpy)2(tape)](PF6)2·3MeCN with the atomic numbering scheme and 30% probability displacement ellipsoids. Anions and solvent molecules are omitted for clarity.
[Figure 2] Fig. 2. a: A side view of the dimer formed by Λ-[Ru(tmbpy)2(tape)]2+ and Δ-[Ru(tmbpy)2(tape)]2+ in rac-[Ru(tmbpy)2(tape)](PF6)2·3MeCN, featuring the stacking interactions via planar tape moieties. b: View along the normal of the tape-given r.m.s. plain, demonstrating the parallel-displaced ππ-stacking between the tape moieties. Anions, solvent molecules and hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. A packing diagram of the title compound is displayed along the c axis. Hydrogen bonds are shown as orange dashed lines.
(1,6,7,12-Tetraazaperylene-κ2N,N')bis(4,4',5,5'-tetramethyl-2,2'-bipyridyl-κ2N,N')ruthenium(II) bis(hexafluoridophosphate) acetonitrile trisolvate top
Crystal data top
[Ru(C14H16N2)2(C16H8N4)](PF6)2·3C2H3NZ = 2
Mr = 1195.01F(000) = 1216
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.7485 (5) ÅCell parameters from 17908 reflections
b = 13.6973 (7) Åθ = 1.2–27.1°
c = 17.3623 (9) ŵ = 0.44 mm1
α = 105.786 (4)°T = 210 K
β = 92.858 (4)°Prism, dark green
γ = 110.436 (3)°0.55 × 0.40 × 0.25 mm
V = 2698.3 (2) Å3
Data collection top
Stoe IPDS-2
diffractometer
8918 independent reflections
Radiation source: fine-focus sealed tube6396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scanθmax = 25.0°, θmin = 1.7°
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
h = 1515
Tmin = 0.758, Tmax = 0.955k = 1616
17495 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0767P)2]
where P = (Fo2 + 2Fc2)/3
8918 reflections(Δ/σ)max = 0.048
743 parametersΔρmax = 0.51 e Å3
363 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Ru(C14H16N2)2(C16H8N4)](PF6)2·3C2H3Nγ = 110.436 (3)°
Mr = 1195.01V = 2698.3 (2) Å3
Triclinic, P1Z = 2
a = 12.7485 (5) ÅMo Kα radiation
b = 13.6973 (7) ŵ = 0.44 mm1
c = 17.3623 (9) ÅT = 210 K
α = 105.786 (4)°0.55 × 0.40 × 0.25 mm
β = 92.858 (4)°
Data collection top
Stoe IPDS-2
diffractometer
8918 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
6396 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.955Rint = 0.044
17495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047363 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 0.94Δρmax = 0.51 e Å3
8918 reflectionsΔρmin = 0.54 e Å3
743 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9535 (4)0.5550 (3)0.7768 (3)0.0491 (10)
H10.96150.54710.72270.059*
C21.0166 (4)0.6518 (3)0.8328 (3)0.0535 (11)
H21.06520.70830.81650.064*
C31.0691 (4)0.7631 (4)0.9812 (3)0.0587 (12)
H31.11930.82510.97170.070*
C41.0525 (5)0.7629 (4)1.0582 (3)0.0651 (13)
H41.09350.82671.10020.078*
C50.7638 (4)0.4080 (4)1.1288 (3)0.0609 (12)
H50.75960.41131.18280.073*
C60.6955 (4)0.3138 (4)1.0720 (3)0.0607 (12)
H60.64580.25641.08690.073*
C70.6375 (4)0.2133 (4)0.9220 (3)0.0607 (12)
H70.58500.15130.93010.073*
C80.6524 (4)0.2154 (3)0.8455 (3)0.0526 (11)
H80.60920.15400.80230.063*
C90.8701 (3)0.4816 (3)0.8733 (2)0.0410 (9)
C100.9343 (4)0.5786 (3)0.9364 (2)0.0432 (9)
C110.9233 (4)0.5869 (3)1.0184 (2)0.0478 (10)
C120.8452 (4)0.4914 (3)1.0381 (2)0.0469 (10)
C130.7788 (4)0.3962 (3)0.9733 (2)0.0445 (9)
C140.7897 (3)0.3907 (3)0.8918 (2)0.0412 (9)
C151.0090 (4)0.6679 (3)0.9168 (3)0.0494 (10)
C160.7017 (4)0.3052 (4)0.9898 (3)0.0515 (10)
C170.5981 (4)0.4380 (3)0.7574 (3)0.0504 (10)
H170.58800.40960.80060.060*
C180.5422 (4)0.5060 (4)0.7492 (3)0.0597 (12)
C190.5588 (4)0.5515 (4)0.6870 (3)0.0592 (12)
C200.6286 (4)0.5230 (4)0.6332 (3)0.0545 (11)
H200.64100.55170.59020.065*
C210.6795 (4)0.4524 (3)0.6434 (2)0.0453 (10)
C220.7530 (3)0.4178 (3)0.5882 (2)0.0418 (9)
C230.7676 (4)0.4405 (3)0.5163 (2)0.0463 (10)
H230.73210.48320.50160.056*
C240.8338 (4)0.4018 (3)0.4652 (2)0.0471 (10)
C250.8860 (3)0.3373 (3)0.4896 (2)0.0438 (9)
C260.8688 (3)0.3188 (3)0.5624 (2)0.0421 (9)
H260.90510.27800.57900.051*
C270.4646 (5)0.5281 (5)0.8090 (4)0.0837 (17)
H27A0.46650.49150.84880.126*
H27B0.38850.50110.78080.126*
H27C0.48950.60550.83550.126*
C280.5044 (6)0.6280 (5)0.6749 (3)0.0866 (19)
H28A0.53740.69640.71760.130*
H28B0.42450.59630.67560.130*
H28C0.51640.64030.62360.130*
C290.8467 (5)0.4249 (4)0.3863 (3)0.0637 (13)
H29A0.81570.35730.34260.096*
H29B0.92560.46100.38460.096*
H29C0.80700.47130.38090.096*
C300.9579 (4)0.2884 (4)0.4384 (3)0.0611 (12)
H30A0.91150.23530.38910.092*
H30B0.99100.25330.46780.092*
H30C1.01690.34520.42580.092*
C310.5323 (3)0.1451 (3)0.6379 (2)0.0432 (9)
H310.50730.20280.64550.052*
C320.4521 (3)0.0394 (3)0.6086 (2)0.0428 (9)
C330.4911 (4)0.0465 (3)0.5967 (2)0.0468 (10)
C340.6065 (4)0.0215 (3)0.6128 (2)0.0470 (10)
H340.63370.07780.60350.056*
C350.6821 (3)0.0867 (3)0.6427 (2)0.0406 (9)
C360.8029 (3)0.1188 (3)0.6649 (2)0.0424 (9)
C370.8613 (4)0.0500 (3)0.6433 (3)0.0508 (10)
H370.82210.02230.61140.061*
C380.9769 (4)0.0865 (3)0.6681 (3)0.0520 (11)
C391.0332 (4)0.1945 (3)0.7174 (2)0.0471 (10)
C400.9713 (4)0.2604 (3)0.7350 (2)0.0434 (9)
H401.00930.33310.76650.052*
C410.3296 (4)0.0203 (4)0.5928 (3)0.0590 (11)
H41A0.30020.01900.53660.089*
H41B0.32070.08950.60620.089*
H41C0.28900.02170.62550.089*
C420.4105 (4)0.1637 (3)0.5686 (3)0.0629 (13)
H42A0.36310.17760.51900.094*
H42B0.36420.17800.60920.094*
H42C0.45260.21070.55950.094*
C431.0396 (5)0.0110 (4)0.6420 (4)0.0752 (15)
H43A1.08890.03540.60530.113*
H43B0.98610.06210.61530.113*
H43C1.08370.01170.68870.113*
C441.1565 (4)0.2395 (4)0.7511 (3)0.0655 (13)
H44A1.17760.31250.78730.098*
H44B1.19990.24100.70750.098*
H44C1.17130.19390.78000.098*
P10.28562 (13)0.29009 (10)0.53337 (8)0.0656 (4)
F1A0.3747 (3)0.4046 (3)0.5343 (2)0.1070 (13)
F2A0.1974 (3)0.1762 (3)0.5305 (2)0.1152 (13)
F3A0.2296 (13)0.3494 (9)0.5977 (9)0.187 (10)0.517 (3)
F4A0.2066 (10)0.2982 (11)0.4647 (8)0.100 (5)0.517 (3)
F5A0.3413 (12)0.2335 (8)0.4672 (11)0.168 (9)0.517 (3)
F6A0.3657 (11)0.2851 (10)0.6007 (9)0.170 (10)0.517 (3)
F3B0.3496 (11)0.2988 (11)0.6149 (6)0.052 (6)0.244 (3)
F4B0.2101 (12)0.3466 (11)0.5793 (11)0.107 (11)0.244 (3)
F5B0.2216 (13)0.2815 (13)0.4509 (8)0.082 (10)0.244 (3)
F6B0.3595 (13)0.2331 (11)0.4864 (9)0.144 (15)0.244 (3)
F3C0.3232 (18)0.3186 (15)0.6257 (6)0.096 (12)0.239 (3)
F4C0.1944 (12)0.3408 (11)0.550 (2)0.150 (18)0.239 (3)
F5C0.250 (2)0.2632 (16)0.4400 (7)0.19 (3)0.239 (3)
F6C0.3778 (14)0.2404 (13)0.516 (2)0.167 (18)0.239 (3)
P20.30495 (19)0.05892 (15)0.82144 (11)0.1025 (6)
F70.3074 (8)0.0519 (5)0.8355 (7)0.328 (7)
F80.3046 (7)0.1780 (4)0.8031 (5)0.240 (4)
F90.4063 (5)0.0332 (5)0.7752 (3)0.197 (3)
F100.2122 (6)0.0902 (6)0.8698 (4)0.271 (5)
F110.3925 (6)0.0232 (7)0.8972 (3)0.260 (5)
F120.2236 (6)0.1051 (6)0.7437 (4)0.243 (4)
N10.8782 (3)0.4674 (2)0.79498 (18)0.0410 (7)
N20.9818 (3)0.6779 (3)1.0784 (2)0.0575 (10)
N30.8370 (3)0.4969 (3)1.1151 (2)0.0547 (9)
N40.7285 (3)0.3040 (2)0.82864 (19)0.0417 (7)
N50.6659 (3)0.4114 (2)0.70604 (19)0.0413 (8)
N60.8028 (3)0.3555 (2)0.61199 (17)0.0388 (7)
N70.6437 (3)0.1696 (2)0.65597 (18)0.0411 (8)
N80.8593 (3)0.2260 (2)0.70947 (18)0.0385 (7)
Ru10.76414 (3)0.32203 (2)0.71845 (2)0.03817 (11)
C450.6212 (11)0.0934 (9)0.9095 (7)0.172 (4)
H45A0.64710.04050.96260.258*
H45B0.63310.15860.91020.258*
H45C0.54180.11090.89420.258*
C460.6826 (9)0.0492 (7)0.8529 (6)0.123 (3)
N90.7363 (9)0.0128 (7)0.8093 (6)0.167 (3)
C470.8808 (10)0.8156 (10)0.7475 (6)0.172 (5)
H47A0.85790.87330.74170.259*
H47B0.86110.75870.69640.259*
H47C0.96130.84420.76470.259*
C480.8237 (9)0.7712 (9)0.8072 (7)0.142 (3)
N100.7779 (10)0.7379 (9)0.8572 (6)0.181 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.048 (2)0.048 (2)0.015 (2)0.0124 (19)0.0115 (18)
C20.050 (3)0.043 (2)0.062 (3)0.008 (2)0.011 (2)0.019 (2)
C30.054 (3)0.046 (2)0.062 (3)0.010 (2)0.003 (2)0.007 (2)
C40.063 (4)0.050 (3)0.063 (3)0.013 (2)0.004 (2)0.000 (2)
C50.064 (4)0.085 (3)0.046 (2)0.037 (3)0.025 (2)0.026 (2)
C60.057 (3)0.072 (3)0.058 (3)0.024 (3)0.023 (2)0.026 (2)
C70.060 (3)0.054 (3)0.065 (3)0.014 (2)0.020 (2)0.022 (2)
C80.049 (3)0.049 (2)0.055 (2)0.014 (2)0.014 (2)0.0135 (19)
C90.037 (3)0.0408 (19)0.042 (2)0.0148 (18)0.0106 (17)0.0069 (16)
C100.038 (3)0.042 (2)0.043 (2)0.0150 (19)0.0058 (17)0.0043 (16)
C110.045 (3)0.048 (2)0.046 (2)0.021 (2)0.0094 (18)0.0029 (18)
C120.043 (3)0.055 (2)0.043 (2)0.023 (2)0.0103 (18)0.0109 (18)
C130.041 (3)0.049 (2)0.044 (2)0.018 (2)0.0143 (18)0.0118 (17)
C140.038 (3)0.042 (2)0.044 (2)0.0167 (19)0.0121 (17)0.0111 (17)
C150.045 (3)0.043 (2)0.054 (2)0.015 (2)0.0067 (19)0.0073 (18)
C160.049 (3)0.057 (2)0.053 (2)0.020 (2)0.019 (2)0.022 (2)
C170.047 (3)0.051 (2)0.056 (2)0.024 (2)0.016 (2)0.0095 (19)
C180.054 (3)0.059 (3)0.062 (3)0.032 (2)0.011 (2)0.002 (2)
C190.058 (3)0.058 (3)0.061 (3)0.034 (2)0.002 (2)0.002 (2)
C200.063 (3)0.055 (2)0.051 (2)0.033 (2)0.007 (2)0.0107 (19)
C210.044 (3)0.040 (2)0.050 (2)0.0174 (19)0.0086 (18)0.0060 (17)
C220.037 (3)0.0349 (18)0.047 (2)0.0114 (18)0.0036 (17)0.0062 (16)
C230.050 (3)0.039 (2)0.046 (2)0.017 (2)0.0047 (19)0.0070 (17)
C240.045 (3)0.039 (2)0.046 (2)0.0083 (19)0.0080 (18)0.0062 (17)
C250.036 (3)0.044 (2)0.041 (2)0.0104 (19)0.0050 (17)0.0031 (16)
C260.033 (3)0.045 (2)0.044 (2)0.0157 (19)0.0074 (17)0.0063 (16)
C270.080 (4)0.099 (4)0.093 (4)0.060 (4)0.037 (3)0.024 (3)
C280.108 (5)0.097 (4)0.078 (4)0.077 (4)0.017 (3)0.012 (3)
C290.075 (4)0.067 (3)0.049 (2)0.025 (3)0.018 (2)0.019 (2)
C300.060 (3)0.074 (3)0.050 (2)0.033 (3)0.019 (2)0.010 (2)
C310.034 (3)0.047 (2)0.050 (2)0.017 (2)0.0038 (17)0.0143 (17)
C320.032 (3)0.049 (2)0.044 (2)0.0112 (19)0.0049 (17)0.0145 (17)
C330.040 (3)0.046 (2)0.045 (2)0.011 (2)0.0032 (18)0.0077 (17)
C340.045 (3)0.039 (2)0.051 (2)0.016 (2)0.0014 (18)0.0044 (17)
C350.035 (3)0.043 (2)0.040 (2)0.0153 (19)0.0063 (16)0.0075 (16)
C360.038 (3)0.040 (2)0.045 (2)0.0142 (19)0.0034 (17)0.0065 (16)
C370.044 (3)0.042 (2)0.061 (3)0.020 (2)0.006 (2)0.0038 (18)
C380.042 (3)0.051 (2)0.064 (3)0.022 (2)0.011 (2)0.013 (2)
C390.036 (3)0.058 (2)0.046 (2)0.019 (2)0.0031 (18)0.0114 (18)
C400.037 (3)0.048 (2)0.040 (2)0.0132 (19)0.0027 (17)0.0089 (16)
C410.042 (3)0.061 (3)0.077 (3)0.017 (2)0.011 (2)0.028 (2)
C420.044 (3)0.045 (2)0.083 (3)0.008 (2)0.001 (2)0.007 (2)
C430.054 (4)0.064 (3)0.108 (4)0.035 (3)0.013 (3)0.011 (3)
C440.048 (3)0.075 (3)0.068 (3)0.027 (3)0.001 (2)0.009 (2)
P10.0775 (11)0.0526 (7)0.0667 (8)0.0315 (7)0.0020 (7)0.0117 (6)
F1A0.116 (3)0.0721 (19)0.110 (3)0.012 (2)0.037 (2)0.0338 (18)
F2A0.115 (4)0.079 (2)0.125 (3)0.002 (2)0.015 (2)0.042 (2)
F3A0.36 (3)0.203 (15)0.115 (10)0.214 (17)0.126 (15)0.073 (9)
F4A0.073 (7)0.140 (10)0.102 (9)0.040 (8)0.001 (8)0.065 (8)
F5A0.143 (13)0.093 (8)0.27 (2)0.070 (9)0.101 (14)0.013 (10)
F6A0.178 (15)0.080 (7)0.223 (18)0.018 (8)0.108 (14)0.069 (9)
F3B0.059 (12)0.089 (12)0.038 (7)0.055 (11)0.023 (7)0.025 (7)
F4B0.120 (19)0.21 (3)0.060 (10)0.14 (2)0.015 (10)0.041 (12)
F5B0.051 (14)0.14 (2)0.043 (10)0.037 (16)0.009 (10)0.015 (11)
F6B0.23 (3)0.23 (3)0.041 (9)0.19 (3)0.013 (11)0.022 (11)
F3C0.045 (11)0.14 (2)0.037 (7)0.019 (13)0.015 (8)0.004 (9)
F4C0.068 (15)0.078 (12)0.31 (5)0.027 (10)0.03 (2)0.077 (19)
F5C0.23 (5)0.16 (3)0.047 (12)0.09 (3)0.02 (2)0.025 (15)
F6C0.19 (4)0.17 (3)0.17 (3)0.11 (3)0.12 (3)0.03 (2)
P20.1084 (17)0.0854 (11)0.0800 (11)0.0078 (10)0.0051 (10)0.0333 (9)
F70.346 (13)0.100 (4)0.573 (18)0.103 (6)0.239 (13)0.106 (7)
F80.324 (11)0.128 (5)0.250 (8)0.050 (6)0.030 (7)0.082 (5)
F90.185 (7)0.242 (7)0.157 (5)0.050 (5)0.078 (5)0.084 (5)
F100.237 (9)0.240 (7)0.196 (6)0.064 (6)0.122 (6)0.039 (5)
F110.190 (7)0.362 (11)0.099 (4)0.014 (7)0.024 (4)0.035 (5)
F120.233 (9)0.265 (8)0.159 (5)0.029 (7)0.085 (5)0.064 (5)
N10.040 (2)0.0414 (17)0.0426 (17)0.0152 (16)0.0121 (14)0.0128 (14)
N20.057 (3)0.054 (2)0.048 (2)0.017 (2)0.0046 (17)0.0003 (17)
N30.053 (3)0.070 (2)0.0403 (18)0.027 (2)0.0151 (16)0.0100 (17)
N40.034 (2)0.0397 (17)0.0462 (18)0.0119 (15)0.0091 (14)0.0082 (14)
N50.038 (2)0.0381 (16)0.0453 (18)0.0160 (15)0.0135 (15)0.0064 (14)
N60.037 (2)0.0370 (16)0.0377 (16)0.0159 (15)0.0046 (14)0.0027 (13)
N70.039 (2)0.0395 (16)0.0421 (17)0.0149 (16)0.0077 (14)0.0077 (13)
N80.035 (2)0.0394 (16)0.0384 (16)0.0135 (15)0.0054 (14)0.0085 (13)
Ru10.0355 (2)0.03675 (17)0.03886 (17)0.01383 (14)0.00804 (12)0.00568 (12)
C450.202 (12)0.162 (9)0.177 (10)0.084 (9)0.077 (9)0.064 (8)
C460.144 (9)0.107 (6)0.124 (7)0.054 (6)0.043 (6)0.033 (5)
N90.178 (9)0.152 (7)0.188 (9)0.057 (7)0.074 (7)0.079 (6)
C470.200 (12)0.244 (12)0.139 (8)0.118 (10)0.087 (8)0.105 (9)
C480.124 (9)0.152 (8)0.149 (9)0.073 (7)0.009 (7)0.019 (7)
N100.178 (10)0.232 (11)0.154 (8)0.075 (8)0.054 (7)0.088 (8)
Geometric parameters (Å, º) top
C1—C21.351 (6)C31—C321.384 (6)
C1—N11.375 (5)C31—H310.9300
C1—H10.9300C32—C331.401 (5)
C2—C151.428 (6)C32—C411.487 (6)
C2—H20.9300C33—C341.383 (6)
C3—C41.365 (7)C33—C421.498 (6)
C3—C151.400 (6)C34—C351.389 (5)
C3—H30.9300C34—H340.9300
C4—N21.347 (6)C35—N71.357 (5)
C4—H40.9300C35—C361.446 (6)
C5—N31.342 (6)C36—N81.364 (5)
C5—C61.354 (7)C36—C371.382 (5)
C5—H50.9300C37—C381.383 (6)
C6—C161.407 (6)C37—H370.9300
C6—H60.9300C38—C391.395 (6)
C7—C81.359 (6)C38—C431.507 (6)
C7—C161.421 (6)C39—C401.379 (5)
C7—H70.9300C39—C441.493 (6)
C8—N41.379 (5)C40—N81.346 (5)
C8—H80.9300C40—H400.9300
C9—N11.335 (5)C41—H41A0.9600
C9—C101.412 (5)C41—H41B0.9600
C9—C141.437 (6)C41—H41C0.9600
C10—C151.402 (6)C42—H42A0.9600
C10—C111.415 (5)C42—H42B0.9600
C11—N21.327 (5)C42—H42C0.9600
C11—C121.479 (6)C43—H43A0.9600
C12—N31.328 (5)C43—H43B0.9600
C12—C131.421 (6)C43—H43C0.9600
C13—C161.404 (6)C44—H44A0.9600
C13—C141.413 (5)C44—H44B0.9600
C14—N41.334 (5)C44—H44C0.9600
C17—N51.340 (5)P1—F6A1.545 (7)
C17—C181.386 (6)P1—F3C1.550 (9)
C17—H170.9300P1—F5A1.551 (8)
C18—C191.376 (7)P1—F6B1.550 (9)
C18—C271.512 (6)P1—F3B1.551 (8)
C19—C201.395 (6)P1—F4C1.552 (9)
C19—C281.496 (6)P1—F3A1.552 (7)
C20—C211.381 (6)P1—F6C1.554 (9)
C20—H200.9300P1—F4B1.556 (8)
C21—N51.347 (5)P1—F2A1.559 (4)
C21—C221.475 (5)P1—F5C1.565 (9)
C22—N61.359 (5)P1—F5B1.567 (9)
C22—C231.372 (6)P2—F71.460 (5)
C23—C241.382 (6)P2—F101.493 (5)
C23—H230.9300P2—F121.496 (5)
C24—C251.409 (6)P2—F111.529 (6)
C24—C291.492 (6)P2—F91.542 (5)
C25—C261.369 (5)P2—F81.573 (6)
C25—C301.505 (5)N1—Ru12.048 (3)
C26—N61.354 (5)N4—Ru12.047 (3)
C26—H260.9300N5—Ru12.074 (3)
C27—H27A0.9600N6—Ru12.065 (3)
C27—H27B0.9600N7—Ru12.063 (3)
C27—H27C0.9600N8—Ru12.061 (3)
C28—H28A0.9600C45—C461.420 (12)
C28—H28B0.9600C45—H45A0.9600
C28—H28C0.9600C45—H45B0.9600
C29—H29A0.9600C45—H45C0.9600
C29—H29B0.9600C46—N91.143 (11)
C29—H29C0.9600C47—C481.444 (14)
C30—H30A0.9600C47—H47A0.9600
C30—H30B0.9600C47—H47B0.9600
C30—H30C0.9600C47—H47C0.9600
C31—N71.339 (5)C48—N101.176 (13)
C2—C1—N1123.9 (4)C37—C38—C39118.2 (4)
C2—C1—H1118.1C37—C38—C43120.5 (4)
N1—C1—H1118.1C39—C38—C43121.4 (4)
C1—C2—C15120.4 (4)C40—C39—C38118.0 (4)
C1—C2—H2119.8C40—C39—C44119.9 (4)
C15—C2—H2119.8C38—C39—C44122.1 (4)
C4—C3—C15118.6 (4)N8—C40—C39124.0 (4)
C4—C3—H3120.7N8—C40—H40118.0
C15—C3—H3120.7C39—C40—H40118.0
N2—C4—C3125.4 (4)C32—C41—H41A109.5
N2—C4—H4117.3C32—C41—H41B109.5
C3—C4—H4117.3H41A—C41—H41B109.5
N3—C5—C6126.4 (4)C32—C41—H41C109.5
N3—C5—H5116.8H41A—C41—H41C109.5
C6—C5—H5116.8H41B—C41—H41C109.5
C5—C6—C16118.2 (4)C33—C42—H42A109.5
C5—C6—H6120.9C33—C42—H42B109.5
C16—C6—H6120.9H42A—C42—H42B109.5
C8—C7—C16120.4 (4)C33—C42—H42C109.5
C8—C7—H7119.8H42A—C42—H42C109.5
C16—C7—H7119.8H42B—C42—H42C109.5
C7—C8—N4123.2 (4)C38—C43—H43A109.5
C7—C8—H8118.4C38—C43—H43B109.5
N4—C8—H8118.4H43A—C43—H43B109.5
N1—C9—C10124.1 (4)C38—C43—H43C109.5
N1—C9—C14116.0 (3)H43A—C43—H43C109.5
C10—C9—C14119.9 (3)H43B—C43—H43C109.5
C15—C10—C9119.0 (4)C39—C44—H44A109.5
C15—C10—C11120.0 (4)C39—C44—H44B109.5
C9—C10—C11121.0 (4)H44A—C44—H44B109.5
N2—C11—C10121.9 (4)C39—C44—H44C109.5
N2—C11—C12118.9 (4)H44A—C44—H44C109.5
C10—C11—C12119.3 (3)H44B—C44—H44C109.5
N3—C12—C13121.7 (4)F6A—P1—F5A90.7 (6)
N3—C12—C11119.8 (4)F6B—P1—F3B90.0 (6)
C13—C12—C11118.5 (3)F3C—P1—F4C90.5 (7)
C16—C13—C14118.9 (4)F6A—P1—F3A91.0 (6)
C16—C13—C12119.9 (4)F5A—P1—F3A177.9 (7)
C14—C13—C12121.2 (4)F3C—P1—F6C89.6 (7)
N4—C14—C13123.6 (4)F4C—P1—F6C179.4 (8)
N4—C14—C9116.4 (3)F6B—P1—F4B179.1 (8)
C13—C14—C9120.0 (4)F3B—P1—F4B90.8 (6)
C3—C15—C10117.0 (4)F6A—P1—F2A90.2 (4)
C3—C15—C2126.7 (4)F3C—P1—F2A90.9 (5)
C10—C15—C2116.3 (4)F5A—P1—F2A90.3 (4)
C13—C16—C6116.8 (4)F6B—P1—F2A89.9 (6)
C13—C16—C7116.8 (4)F3B—P1—F2A90.0 (5)
C6—C16—C7126.3 (4)F4C—P1—F2A90.1 (5)
N5—C17—C18123.1 (4)F3A—P1—F2A91.0 (5)
N5—C17—H17118.5F6C—P1—F2A90.5 (6)
C18—C17—H17118.5F4B—P1—F2A89.8 (5)
C19—C18—C17119.2 (4)F3C—P1—F5C178.7 (8)
C19—C18—C27122.0 (4)F4C—P1—F5C90.0 (7)
C17—C18—C27118.9 (5)F6C—P1—F5C89.9 (7)
C18—C19—C20117.7 (4)F2A—P1—F5C90.3 (5)
C18—C19—C28122.8 (4)F6B—P1—F5B89.8 (7)
C20—C19—C28119.5 (5)F3B—P1—F5B179.7 (8)
C21—C20—C19120.3 (4)F4B—P1—F5B89.4 (7)
C21—C20—H20119.8F2A—P1—F5B90.2 (5)
C19—C20—H20119.8F7—P2—F1094.1 (4)
N5—C21—C20121.5 (4)F7—P2—F1293.9 (5)
N5—C21—C22115.3 (3)F10—P2—F1292.6 (4)
C20—C21—C22123.2 (4)F7—P2—F1192.3 (5)
N6—C22—C23121.2 (3)F10—P2—F1189.6 (4)
N6—C22—C21114.5 (3)F12—P2—F11173.2 (5)
C23—C22—C21124.2 (4)F7—P2—F990.4 (4)
C22—C23—C24121.7 (4)F10—P2—F9174.2 (5)
C22—C23—H23119.2F12—P2—F990.7 (4)
C24—C23—H23119.2F11—P2—F986.5 (4)
C23—C24—C25117.5 (4)F7—P2—F8177.6 (5)
C23—C24—C29121.1 (4)F10—P2—F888.1 (4)
C25—C24—C29121.4 (4)F12—P2—F885.0 (4)
C26—C25—C24117.7 (3)F11—P2—F888.6 (4)
C26—C25—C30119.8 (4)F9—P2—F887.5 (4)
C24—C25—C30122.5 (4)C9—N1—C1116.2 (3)
N6—C26—C25124.9 (4)C9—N1—Ru1114.1 (3)
N6—C26—H26117.6C1—N1—Ru1129.3 (3)
C25—C26—H26117.6C11—N2—C4117.2 (4)
C18—C27—H27A109.5C12—N3—C5116.9 (4)
C18—C27—H27B109.5C14—N4—C8117.0 (3)
H27A—C27—H27B109.5C14—N4—Ru1114.0 (3)
C18—C27—H27C109.5C8—N4—Ru1128.9 (3)
H27A—C27—H27C109.5C17—N5—C21118.1 (3)
H27B—C27—H27C109.5C17—N5—Ru1126.1 (3)
C19—C28—H28A109.5C21—N5—Ru1115.6 (2)
C19—C28—H28B109.5C26—N6—C22117.0 (3)
H28A—C28—H28B109.5C26—N6—Ru1127.0 (3)
C19—C28—H28C109.5C22—N6—Ru1116.0 (2)
H28A—C28—H28C109.5C31—N7—C35118.8 (3)
H28B—C28—H28C109.5C31—N7—Ru1126.1 (2)
C24—C29—H29A109.5C35—N7—Ru1114.5 (3)
C24—C29—H29B109.5C40—N8—C36118.1 (3)
H29A—C29—H29B109.5C40—N8—Ru1126.8 (2)
C24—C29—H29C109.5C36—N8—Ru1114.7 (3)
H29A—C29—H29C109.5N4—Ru1—N179.34 (13)
H29B—C29—H29C109.5N4—Ru1—N891.00 (12)
C25—C30—H30A109.5N1—Ru1—N8100.20 (12)
C25—C30—H30B109.5N4—Ru1—N792.60 (13)
H30A—C30—H30B109.5N1—Ru1—N7171.90 (12)
C25—C30—H30C109.5N8—Ru1—N779.05 (13)
H30A—C30—H30C109.5N4—Ru1—N6174.66 (12)
H30B—C30—H30C109.5N1—Ru1—N696.31 (12)
N7—C31—C32124.1 (3)N8—Ru1—N692.82 (12)
N7—C31—H31118.0N7—Ru1—N691.79 (12)
C32—C31—H31118.0N4—Ru1—N598.07 (12)
C31—C32—C33117.3 (4)N1—Ru1—N585.26 (12)
C31—C32—C41120.2 (4)N8—Ru1—N5170.18 (12)
C33—C32—C41122.5 (4)N7—Ru1—N596.70 (13)
C34—C33—C32118.8 (4)N6—Ru1—N578.38 (12)
C34—C33—C42119.9 (4)C46—C45—H45A109.5
C32—C33—C42121.3 (4)C46—C45—H45B109.5
C33—C34—C35120.7 (4)H45A—C45—H45B109.5
C33—C34—H34119.7C46—C45—H45C109.5
C35—C34—H34119.7H45A—C45—H45C109.5
N7—C35—C34120.3 (4)H45B—C45—H45C109.5
N7—C35—C36115.8 (3)N9—C46—C45177.0 (13)
C34—C35—C36123.8 (3)C48—C47—H47A109.5
N8—C36—C37120.3 (4)C48—C47—H47B109.5
N8—C36—C35115.0 (3)H47A—C47—H47B109.5
C37—C36—C35124.7 (4)C48—C47—H47C109.5
C36—C37—C38121.3 (4)H47A—C47—H47C109.5
C36—C37—H37119.4H47B—C47—H47C109.5
C38—C37—H37119.4N10—C48—C47178.2 (13)
N1—C1—C2—C150.9 (7)C30—C25—C26—N6177.7 (4)
C15—C3—C4—N20.3 (8)N7—C31—C32—C330.6 (6)
N3—C5—C6—C161.4 (8)N7—C31—C32—C41178.0 (4)
C16—C7—C8—N40.0 (7)C31—C32—C33—C341.5 (6)
N1—C9—C10—C152.3 (6)C41—C32—C33—C34179.9 (4)
C14—C9—C10—C15177.5 (4)C31—C32—C33—C42177.4 (4)
N1—C9—C10—C11178.5 (4)C41—C32—C33—C421.2 (6)
C14—C9—C10—C111.7 (6)C32—C33—C34—C352.1 (6)
C15—C10—C11—N20.2 (6)C42—C33—C34—C35176.8 (4)
C9—C10—C11—N2179.1 (4)C33—C34—C35—N70.5 (6)
C15—C10—C11—C12179.2 (4)C33—C34—C35—C36176.7 (4)
C9—C10—C11—C121.6 (6)N7—C35—C36—N811.4 (5)
N2—C11—C12—N31.8 (6)C34—C35—C36—N8165.9 (4)
C10—C11—C12—N3177.6 (4)N7—C35—C36—C37167.8 (4)
N2—C11—C12—C13177.0 (4)C34—C35—C36—C3714.9 (6)
C10—C11—C12—C133.6 (6)N8—C36—C37—C382.1 (6)
N3—C12—C13—C160.4 (6)C35—C36—C37—C38178.8 (4)
C11—C12—C13—C16178.3 (4)C36—C37—C38—C391.4 (7)
N3—C12—C13—C14178.9 (4)C36—C37—C38—C43178.3 (4)
C11—C12—C13—C142.4 (6)C37—C38—C39—C403.3 (6)
C16—C13—C14—N41.6 (6)C43—C38—C39—C40176.3 (4)
C12—C13—C14—N4179.1 (4)C37—C38—C39—C44176.6 (4)
C16—C13—C14—C9178.4 (4)C43—C38—C39—C443.8 (7)
C12—C13—C14—C90.9 (6)C38—C39—C40—N82.0 (6)
N1—C9—C14—N42.9 (5)C44—C39—C40—N8177.9 (4)
C10—C9—C14—N4176.9 (3)C10—C9—N1—C11.0 (6)
N1—C9—C14—C13177.2 (3)C14—C9—N1—C1178.8 (3)
C10—C9—C14—C133.0 (6)C10—C9—N1—Ru1175.3 (3)
C4—C3—C15—C100.6 (7)C14—C9—N1—Ru14.5 (4)
C4—C3—C15—C2178.7 (4)C2—C1—N1—C90.7 (6)
C9—C10—C15—C3178.7 (4)C2—C1—N1—Ru1172.7 (3)
C11—C10—C15—C30.6 (6)C10—C11—N2—C40.2 (6)
C9—C10—C15—C21.9 (6)C12—C11—N2—C4179.6 (4)
C11—C10—C15—C2178.9 (4)C3—C4—N2—C110.1 (8)
C1—C2—C15—C3179.8 (5)C13—C12—N3—C50.6 (6)
C1—C2—C15—C100.4 (6)C11—C12—N3—C5179.3 (4)
C14—C13—C16—C6178.8 (4)C6—C5—N3—C121.6 (7)
C12—C13—C16—C60.5 (6)C13—C14—N4—C81.1 (6)
C14—C13—C16—C71.2 (6)C9—C14—N4—C8178.9 (3)
C12—C13—C16—C7179.5 (4)C13—C14—N4—Ru1179.8 (3)
C5—C6—C16—C130.3 (6)C9—C14—N4—Ru10.2 (4)
C5—C6—C16—C7179.7 (5)C7—C8—N4—C140.3 (6)
C8—C7—C16—C130.5 (7)C7—C8—N4—Ru1179.3 (3)
C8—C7—C16—C6179.5 (4)C18—C17—N5—C210.3 (6)
N5—C17—C18—C192.0 (7)C18—C17—N5—Ru1174.2 (3)
N5—C17—C18—C27178.1 (5)C20—C21—N5—C172.1 (6)
C17—C18—C19—C202.4 (7)C22—C21—N5—C17178.6 (4)
C27—C18—C19—C20177.7 (5)C20—C21—N5—Ru1173.0 (3)
C17—C18—C19—C28178.4 (5)C22—C21—N5—Ru16.2 (4)
C27—C18—C19—C281.6 (8)C25—C26—N6—C222.0 (6)
C18—C19—C20—C210.7 (7)C25—C26—N6—Ru1175.4 (3)
C28—C19—C20—C21179.9 (5)C23—C22—N6—C261.2 (5)
C19—C20—C21—N51.7 (7)C21—C22—N6—C26178.2 (3)
C19—C20—C21—C22179.2 (4)C23—C22—N6—Ru1176.5 (3)
N5—C21—C22—N64.5 (5)C21—C22—N6—Ru10.5 (4)
C20—C21—C22—N6174.8 (4)C32—C31—N7—C352.1 (6)
N5—C21—C22—C23172.5 (4)C32—C31—N7—Ru1168.2 (3)
C20—C21—C22—C238.3 (7)C34—C35—N7—C311.5 (5)
N6—C22—C23—C240.3 (6)C36—C35—N7—C31178.9 (3)
C21—C22—C23—C24177.1 (4)C34—C35—N7—Ru1169.9 (3)
C22—C23—C24—C250.1 (6)C36—C35—N7—Ru17.5 (4)
C22—C23—C24—C29178.5 (4)C39—C40—N8—C361.5 (6)
C23—C24—C25—C260.8 (6)C39—C40—N8—Ru1170.6 (3)
C29—C24—C25—C26179.2 (4)C37—C36—N8—C403.5 (6)
C23—C24—C25—C30178.7 (4)C35—C36—N8—C40177.3 (3)
C29—C24—C25—C300.3 (6)C37—C36—N8—Ru1169.6 (3)
C24—C25—C26—N61.8 (6)C35—C36—N8—Ru19.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 denote the centroids of the N7/C31–C35, N8/C36–C40 and N6/C22–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···F10i0.932.613.402 (7)143
C3—H3···F10i0.932.503.318 (8)147
C6—H6···F8ii0.932.583.218 (8)126
C8—H8···N70.932.653.166 (5)116
C20—H20···F1Aiii0.932.413.320 (6)166
C20—H20···F5Ciii0.932.643.411 (15)141
C23—H23···F1Aiii0.932.553.479 (5)177
C26—H26···N80.932.593.138 (5)118
C31—H31···F6A0.932.633.461 (13)150
C34—H34···F5Aiv0.932.293.170 (8)158
C34—H34···F6Biv0.932.303.129 (11)148
C34—H34···F6Civ0.932.553.295 (19)137
C45—H45A···F11ii0.962.493.343 (12)148
C45—H45C···F110.962.583.388 (15)142
C47—H47A···N9v0.962.663.452 (14)140
C47—H47B···F5Biii0.962.553.343 (16)140
C47—H47B···F5Ciii0.962.593.293 (15)131
C8—H8···Cg10.932.923.711 (5)144
C26—H26···Cg20.932.903.708 (4)146
C42—H42A···Cg3vi0.962.793.339 (5)117
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y+1, z; (vi) x+1, y+2, z+1.
Selected bond lengths (Å) top
N1—Ru12.048 (3)N6—Ru12.065 (3)
N4—Ru12.047 (3)N7—Ru12.063 (3)
N5—Ru12.074 (3)N8—Ru12.061 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 denote the centroids of the N7/C31–C35, N8/C36–C40 and N6/C22–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···F10i0.932.613.402 (7)143
C3—H3···F10i0.932.503.318 (8)147
C6—H6···F8ii0.932.583.218 (8)126
C8—H8···N70.932.653.166 (5)116
C20—H20···F1Aiii0.932.413.320 (6)166
C20—H20···F5Ciii0.932.643.411 (15)141
C23—H23···F1Aiii0.932.553.479 (5)177
C26—H26···N80.932.593.138 (5)118
C31—H31···F6A0.932.633.461 (13)150
C34—H34···F5Aiv0.932.293.170 (8)158
C34—H34···F6Biv0.932.303.129 (11)148
C34—H34···F6Civ0.932.553.295 (19)137
C45—H45A···F11ii0.962.493.343 (12)148
C45—H45C···F110.962.583.388 (15)142
C47—H47A···N9v0.962.663.452 (14)140
C47—H47B···F5Biii0.962.553.343 (16)140
C47—H47B···F5Ciii0.962.593.293 (15)131
C8—H8···Cg10.932.923.711 (5)144
C26—H26···Cg20.932.903.708 (4)146
C42—H42A···Cg3vi0.962.793.339 (5)117
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y+1, z; (vi) x+1, y+2, z+1.
 

References

First citationBergman, S. D., Goldberg, I., Barbieri, A., Barigelletti, F. & Kol, M. (2004). Inorg. Chem. 43, 2355–2367.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBergman, S. D., Goldberg, I., Barbieri, A. & Kol, M. (2005). Inorg. Chem. 44, 2513–2523.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788–2797.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGut, D., Rudi, A., Kopilov, J., Goldberg, I. & Kol, M. (2002). J. Am. Chem. Soc. 124, 5449–5456.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRudia, A., Benayahub, Y., Goldberg, I. & Kasham Eilatin, Y. (1988). Tetrahedron Lett. 29, 6655–6656.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m238-m239
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds