organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o738-o739

{2-[(4-Nitro­benzyl­­idene)amino]-4,5,6,7-tetra­hydro-1-benzo­thio­phen-3-yl}(phen­yl)methanone

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 23 May 2014; accepted 26 May 2014; online 31 May 2014)

In the title compound, C22H18N2O3S, disorder is found in the benzoyl group (A and B), as well as for four C atoms of the cyclo­hexene ring. Two orientations were modeled in a 0.583 (5):0.417 (5) ratio. The cyclo­hexene ring is in a distorted chair conformation. The dihedral angles between the mean plane of the thio­phene ring and the 4-nitro­benzene and phenyl rings are 30.9 (8) and 64.8 (3) (A) and 62.4 (7)° (B). The mean planes of the 4-nitro­benzene and the phenyl rings are almost perpendicular to each other, with dihedral angles of 85.4 (1) (A) and 83.9 (8)° (B). An extensive array of weak C—H⋯O inter­actions consolidate mol­ecules into a three-dimensional architecture, forming chains along [001] and [010] and layers parallel to (011).

Related literature

For applications of 2-amino­thio­phene derivatives in pesticides, dyes and pharmaceuticals, see: Puterová et al. (2010[Puterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, (i), 209-246.]). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]); Karia & Parsania (1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem., 17 119-122.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]). For Schiff bases utilized as starting materials in the synthesis of compounds of industrial and biological inter­est, see: Aydogan et al. (2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc., 22, 476-480.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For related structures, see: Kaur et al. (2014a[Kaur, M., Jasinski, J. P., Kavitha, C. N., Yathirajan, H. S. & Byrappa, K. (2014a). Acta Cryst. E70, o476-o477.],b[Kaur, M., Jasinski, J. P., Kavitha, C. N., Yathirajan, H. S. & Byrappa, K. (2014b). Acta Cryst. E70, o507-o508.]); Kubicki et al. (2012[Kubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O3S

  • Mr = 390.44

  • Monoclinic, P 21

  • a = 4.61595 (13) Å

  • b = 17.6844 (4) Å

  • c = 11.7068 (3) Å

  • β = 91.285 (3)°

  • V = 955.39 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.72 mm−1

  • T = 173 K

  • 0.24 × 0.18 × 0.06 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.634, Tmax = 1.000

  • 6206 measured reflections

  • 2781 independent reflections

  • 2610 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.02

  • 2781 reflections

  • 263 parameters

  • 138 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack x determined using 764 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.028 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4AA⋯O1Bi 0.99 2.38 3.15 (4) 135
C4B—H4BA⋯O1Ai 0.99 2.50 3.45 (4) 162
C4B—H4BA⋯O1Bi 0.99 2.26 3.18 (4) 154
C7B—H7BB⋯O2ii 0.99 2.46 3.44 (3) 169
C13B—H13B⋯O3iii 0.95 2.55 3.371 (13) 145
C21—H21⋯O1Aiv 0.95 2.40 3.127 (18) 133
C21—H21⋯O1Biv 0.95 2.44 3.13 (3) 129
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) [-x-1, y-{\script{1\over 2}}, -z]; (iv) [-x-1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

2-Amino­thio­phene derivatives have been used in a number of applications, such as in pesticides, dyes and pharmaceuticals. A review on the synthesis and properties of these compounds has been reported (Puterová et al., 2010). Schiff base compounds are an important class of compounds, both synthetically and biologically. These compounds show biological activities including anti-bacterial, anti-fungal, anti-cancer and herbicidal (Desai et al., 2001; Karia & Parsania, 1999; Samadhiya & Halve, 2001; Singh & Dash, 1988). Furthermore, Schiff bases are utilized as starting materials in the synthesis of compounds of industrial (Aydogan et al., 2001) and biological inter­est such as β-la­ctams (Taggi et al., 2002). Some of the recently reported Schiff base structures of 2-amino­thio­phenes by our group include {2-[(2-hy­droxy­benzyl­idene)amino]-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-yl} (phenyl)­methanone (Kaur et al., 2014a) and [2-benzyl­idene­amino)-4,5,6,7-tetra­hydro benzo[b]thio­phene-3-yl](phenyl) methanone (Kaur et al., 2014b). Also, the crystal and molecular structures of two 2-amino­thio­phenes have been previously reported by our group (Kubicki et al., 2012). In continuation of our work on 2-amino­thio­phenes and Schiff bases, we report here the crystal structure of the title compound, (I).

In (I), the cyclo­hexene ring is in a distorted chair conformation with four carbon atoms disordered over two sets of sites with an occupancy ratio of 0.583 (5): 0.417 (5) (Fig. 1). Puckering parameters C3/C4A—C7A/C8: Q and ϕ = 0.511 (4) Å and 157.387 (6)°, and C3/C4B—C7B/C8: Q and ϕ = 0.483 (8) Å and 212.306 (8)° (Cremer & Pople, 1975). The disorder extends to the benzoyl residue (A & B). The dihedral angles between the mean plane of the thio­phene ring and the 4-nitro­phenyl and the phenyl rings is 30.9 (8) and 64.8 (3) (A) and 62.4 (7)° (B), respectively. The mean planes of 4-nitro­phenyl and the phenyl rings are almost perpendicular to each other with a dihedral angle of 85.4 (1) (A) and 83.9 (8)° (B). An extensive array of weak C—H···O inter­molecular inter­actions leads to a 3-D architecure, forming chains along [001] and [010] and layers parallel to (011) (Fig. 2).

Synthesis and crystallization top

To a solution of (2-amino-4,5,6,7-tetra­hydro-benzo[b]thio­phen-3-yl)- phenyl-methanone (200 mg, 0.79 mmol) in 10 ml of methanol an equimolar amount of 4-nitro­benzaldehyde (120 mg, 0.79 mmol) was added with constant stirring. The mixture was refluxed for 3 h. A yellow precipitate was obtained. Completion of the reaction was confirmed by TLC. The precipitate was filtered and dried at room temperature overnight. The solid was recrystallized using ethyl­acetate and the crystals were used as such for x-ray diffraction studies.

Refinement top

The H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93 Å (CH) or 0.97 Å (CH2), and with Uiso set to 1.2Ueq of the parent atom. Disorder was modeled for C4A—C7A and C4B—C7B of the cyclo­hexane ring, C10A—C15A/O1A and C10B—C15B/O1B of the benzoyl group over two positions with an occupancy ratio of 0.583 (5):0.417 (5).

Related literature top

For applications of 2-aminothiophene derivatives in pesticides, dyes and pharmaceuticals, see: Puterová et al. (2010). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001); Karia & Parsania (1999); Samadhiya & Halve (2001); Singh & Dash (1988). For Schiff bases utilized as starting materials in the synthesis of compounds of industrial and biological interest, see: Aydogan et al. (2001); Taggi et al. (2002). For related structures, see: Kaur et al. (2014a,b); Kubicki et al. (2012). For puckering parameters, see Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) showing the labeling scheme and 30% probability displacement ellipsoids (major and minor components of the disordered atoms in the cyclohexane, benzoyl groups are displayed with dashed lines).
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate weak C—H···O intermolecular interactions. H atoms not involved in the weak intermolecular interactions have been removed for clarity.
{2-[(4-Nitrobenzylidene)amino]-4,5,6,7-tetrahydro-1-benzothiophen-3-yl}(phenyl)methanone top
Crystal data top
C22H18N2O3SF(000) = 408
Mr = 390.44Dx = 1.357 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 4.61595 (13) ÅCell parameters from 3146 reflections
b = 17.6844 (4) Åθ = 4.5–71.4°
c = 11.7068 (3) ŵ = 1.72 mm1
β = 91.285 (3)°T = 173 K
V = 955.39 (4) Å3Irregular, yellow
Z = 20.24 × 0.18 × 0.06 mm
Data collection top
Agilent Eos Gemini
diffractometer
2781 independent reflections
Radiation source: Enhance (Cu) X-ray Source2610 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.027
ω scansθmax = 71.1°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 55
Tmin = 0.634, Tmax = 1.000k = 1821
6206 measured reflectionsl = 1114
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0608P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.21 e Å3
2781 reflectionsΔρmin = 0.19 e Å3
263 parametersAbsolute structure: Flack x determined using 764 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
138 restraintsAbsolute structure parameter: 0.028 (16)
Primary atom site location: structure-invariant direct methods
Crystal data top
C22H18N2O3SV = 955.39 (4) Å3
Mr = 390.44Z = 2
Monoclinic, P21Cu Kα radiation
a = 4.61595 (13) ŵ = 1.72 mm1
b = 17.6844 (4) ÅT = 173 K
c = 11.7068 (3) Å0.24 × 0.18 × 0.06 mm
β = 91.285 (3)°
Data collection top
Agilent Eos Gemini
diffractometer
2781 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2610 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 1.000Rint = 0.027
6206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.21 e Å3
S = 1.02Δρmin = 0.19 e Å3
2781 reflectionsAbsolute structure: Flack x determined using 764 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
263 parametersAbsolute structure parameter: 0.028 (16)
138 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.24441 (14)0.70387 (3)0.62913 (5)0.03214 (17)
O1A0.009 (2)0.4397 (10)0.5799 (16)0.041 (2)0.583 (5)
O1B0.071 (4)0.4474 (15)0.576 (2)0.041 (2)0.417 (5)
O20.9787 (6)0.75162 (18)0.0143 (2)0.0605 (7)
O31.1148 (6)0.84877 (16)0.0802 (2)0.0551 (7)
N10.0687 (5)0.64901 (14)0.44225 (18)0.0293 (5)
N20.9655 (6)0.79235 (16)0.0691 (2)0.0385 (6)
C10.0964 (6)0.49027 (16)0.5199 (2)0.0338 (6)
C20.1876 (6)0.56264 (16)0.5745 (2)0.0280 (5)
C30.3469 (6)0.56491 (16)0.6813 (2)0.0303 (6)
C4A0.439 (6)0.4943 (15)0.7449 (16)0.0392 (15)0.583 (5)
H4AA0.51410.45590.69150.047*0.583 (5)
H4AB0.26830.47310.78320.047*0.583 (5)
C5A0.6700 (13)0.5148 (4)0.8363 (5)0.0438 (11)0.583 (5)
H5AA0.70310.47200.88950.053*0.583 (5)
H5AB0.85370.52480.79690.053*0.583 (5)
C6A0.5854 (15)0.5850 (4)0.9033 (5)0.0428 (12)0.583 (5)
H6AA0.39610.57670.93940.051*0.583 (5)
H6AB0.73220.59490.96440.051*0.583 (5)
C7A0.578 (5)0.6541 (8)0.8218 (18)0.035 (2)0.583 (5)
H7AA0.48830.69680.86280.042*0.583 (5)
H7AB0.77670.66950.80230.042*0.583 (5)
C4B0.464 (8)0.502 (2)0.754 (2)0.0392 (15)0.417 (5)
H4BA0.64860.48610.71970.047*0.417 (5)
H4BB0.33240.45740.75220.047*0.417 (5)
C5B0.5365 (19)0.5254 (5)0.8763 (7)0.0438 (11)0.417 (5)
H5BA0.35030.53330.91490.053*0.417 (5)
H5BB0.64290.48440.91690.053*0.417 (5)
C6B0.717 (2)0.5966 (5)0.8813 (8)0.0428 (12)0.417 (5)
H6BA0.75920.60940.96230.051*0.417 (5)
H6BB0.90500.58740.84430.051*0.417 (5)
C7B0.551 (7)0.6653 (12)0.830 (3)0.035 (2)0.417 (5)
H7BA0.69770.70310.80780.042*0.417 (5)
H7BB0.41690.68950.88340.042*0.417 (5)
C80.3991 (6)0.63650 (17)0.7187 (2)0.0310 (6)
C90.1092 (6)0.63358 (15)0.5361 (2)0.0276 (6)
C10A0.1914 (17)0.4696 (6)0.4023 (7)0.0261 (15)0.583 (5)
C11A0.0684 (16)0.4049 (6)0.3543 (9)0.0430 (17)0.583 (5)
H11A0.06530.37580.39640.052*0.583 (5)
C12A0.1411 (17)0.3828 (5)0.2446 (9)0.049 (2)0.583 (5)
H12A0.05710.33860.21180.059*0.583 (5)
C13A0.3367 (16)0.4254 (6)0.1830 (7)0.050 (2)0.583 (5)
H13A0.38640.41030.10810.060*0.583 (5)
C14A0.4597 (16)0.4901 (5)0.2311 (9)0.051 (2)0.583 (5)
H14A0.59340.51920.18890.061*0.583 (5)
C15A0.3870 (18)0.5122 (5)0.3407 (9)0.0347 (17)0.583 (5)
H15A0.47110.55640.37350.042*0.583 (5)
C10B0.127 (3)0.4756 (10)0.3952 (11)0.0261 (15)0.417 (5)
C11B0.001 (3)0.4119 (9)0.3461 (13)0.0430 (17)0.417 (5)
H11B0.13000.38190.38900.052*0.417 (5)
C12B0.060 (3)0.3922 (7)0.2342 (14)0.049 (2)0.417 (5)
H12B0.02760.34870.20070.059*0.417 (5)
C13B0.249 (3)0.4360 (9)0.1715 (11)0.050 (2)0.417 (5)
H13B0.29060.42250.09500.060*0.417 (5)
C14B0.377 (3)0.4997 (8)0.2206 (13)0.051 (2)0.417 (5)
H14B0.50650.52970.17770.061*0.417 (5)
C15B0.316 (3)0.5194 (8)0.3324 (14)0.0347 (17)0.417 (5)
H15B0.40410.56290.36600.042*0.417 (5)
C160.1906 (5)0.71396 (17)0.4340 (2)0.0295 (6)
H160.15420.75040.49210.035*
C170.3839 (5)0.73363 (15)0.3379 (2)0.0277 (5)
C180.4040 (6)0.68891 (15)0.2402 (2)0.0319 (6)
H180.28700.64490.23440.038*
C190.5926 (6)0.70787 (19)0.1514 (2)0.0339 (6)
H190.60520.67780.08410.041*
C200.7634 (6)0.77200 (16)0.1630 (2)0.0309 (6)
C210.7499 (6)0.81762 (16)0.2582 (2)0.0310 (6)
H210.86920.86120.26370.037*
C220.5568 (6)0.79807 (16)0.3461 (2)0.0316 (6)
H220.54230.82890.41240.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0408 (3)0.0258 (3)0.0297 (3)0.0003 (3)0.0032 (2)0.0018 (3)
O1A0.045 (6)0.033 (4)0.0448 (18)0.007 (5)0.011 (5)0.004 (2)
O1B0.045 (6)0.033 (4)0.0448 (18)0.007 (5)0.011 (5)0.004 (2)
O20.0743 (17)0.0657 (18)0.0406 (12)0.0136 (14)0.0202 (11)0.0143 (12)
O30.0636 (15)0.0471 (14)0.0538 (14)0.0174 (12)0.0183 (12)0.0023 (11)
N10.0326 (11)0.0294 (12)0.0260 (11)0.0036 (10)0.0002 (8)0.0008 (9)
N20.0416 (13)0.0419 (15)0.0318 (12)0.0038 (12)0.0050 (10)0.0034 (11)
C10.0416 (16)0.0271 (15)0.0328 (14)0.0008 (13)0.0061 (12)0.0022 (12)
C20.0332 (13)0.0263 (14)0.0248 (12)0.0002 (10)0.0061 (10)0.0016 (10)
C30.0331 (13)0.0318 (15)0.0262 (12)0.0040 (11)0.0050 (10)0.0013 (11)
C4A0.047 (4)0.035 (4)0.036 (3)0.009 (3)0.002 (2)0.004 (2)
C5A0.044 (3)0.052 (3)0.034 (3)0.013 (2)0.0027 (18)0.005 (2)
C6A0.040 (3)0.054 (3)0.034 (2)0.005 (3)0.005 (2)0.002 (2)
C7A0.035 (4)0.041 (4)0.028 (3)0.006 (3)0.000 (2)0.007 (4)
C4B0.047 (4)0.035 (4)0.036 (3)0.009 (3)0.002 (2)0.004 (2)
C5B0.044 (3)0.052 (3)0.034 (3)0.013 (2)0.0027 (18)0.005 (2)
C6B0.040 (3)0.054 (3)0.034 (2)0.005 (3)0.005 (2)0.002 (2)
C7B0.035 (4)0.041 (4)0.028 (3)0.006 (3)0.000 (2)0.007 (4)
C80.0310 (13)0.0346 (16)0.0274 (13)0.0042 (11)0.0025 (10)0.0014 (11)
C90.0313 (13)0.0247 (14)0.0270 (13)0.0019 (10)0.0035 (10)0.0015 (10)
C10A0.021 (4)0.025 (2)0.0314 (16)0.006 (3)0.008 (2)0.0031 (15)
C11A0.046 (4)0.034 (3)0.048 (2)0.008 (3)0.000 (3)0.0066 (18)
C12A0.057 (5)0.040 (3)0.050 (3)0.005 (3)0.010 (3)0.014 (2)
C13A0.066 (5)0.051 (4)0.035 (2)0.001 (4)0.001 (3)0.016 (2)
C14A0.065 (5)0.047 (3)0.041 (3)0.014 (4)0.016 (3)0.011 (2)
C15A0.036 (5)0.033 (2)0.036 (2)0.006 (3)0.001 (3)0.0046 (18)
C10B0.021 (4)0.025 (2)0.0314 (16)0.006 (3)0.008 (2)0.0031 (15)
C11B0.046 (4)0.034 (3)0.048 (2)0.008 (3)0.000 (3)0.0066 (18)
C12B0.057 (5)0.040 (3)0.050 (3)0.005 (3)0.010 (3)0.014 (2)
C13B0.066 (5)0.051 (4)0.035 (2)0.001 (4)0.001 (3)0.016 (2)
C14B0.065 (5)0.047 (3)0.041 (3)0.014 (4)0.016 (3)0.011 (2)
C15B0.036 (5)0.033 (2)0.036 (2)0.006 (3)0.001 (3)0.0046 (18)
C160.0319 (12)0.0288 (15)0.0279 (11)0.0029 (11)0.0007 (9)0.0002 (11)
C170.0279 (12)0.0257 (13)0.0295 (12)0.0045 (10)0.0009 (10)0.0043 (10)
C180.0368 (13)0.0284 (16)0.0308 (13)0.0034 (11)0.0061 (10)0.0007 (10)
C190.0421 (14)0.0324 (14)0.0270 (11)0.0005 (14)0.0011 (10)0.0064 (13)
C200.0313 (13)0.0319 (15)0.0296 (12)0.0043 (11)0.0004 (10)0.0039 (11)
C210.0332 (13)0.0268 (13)0.0330 (14)0.0008 (11)0.0002 (10)0.0016 (11)
C220.0375 (14)0.0282 (14)0.0292 (12)0.0039 (11)0.0001 (10)0.0031 (11)
Geometric parameters (Å, º) top
S1—C81.730 (3)C7B—H7BA0.9902
S1—C91.758 (3)C7B—H7BB0.9900
O1A—C11.213 (18)C7B—C81.55 (4)
O1B—C11.27 (3)C10A—C11A1.3900
O2—N21.214 (4)C10A—C15A1.3900
O3—N21.221 (4)C11A—H11A0.9500
N1—C91.384 (3)C11A—C12A1.3900
N1—C161.282 (4)C12A—H12A0.9500
N2—C201.470 (3)C12A—C13A1.3900
C1—C21.487 (4)C13A—H13A0.9500
C1—C10A1.499 (9)C13A—C14A1.3900
C1—C10B1.493 (13)C14A—H14A0.9500
C2—C31.437 (4)C14A—C15A1.3900
C2—C91.378 (4)C15A—H15A0.9500
C3—C4A1.51 (3)C10B—C11B1.3900
C3—C4B1.50 (4)C10B—C15B1.3900
C3—C81.359 (4)C11B—H11B0.9500
C4A—H4AA0.9898C11B—C12B1.3900
C4A—H4AB0.9899C12B—H12B0.9500
C4A—C5A1.537 (14)C12B—C13B1.3900
C5A—H5AA0.9902C13B—H13B0.9500
C5A—H5AB0.9899C13B—C14B1.3900
C5A—C6A1.523 (9)C14B—H14B0.9500
C6A—H6AA0.9900C14B—C15B1.3900
C6A—H6AB0.9900C15B—H15B0.9500
C6A—C7A1.550 (13)C16—H160.9500
C7A—H7AA0.9900C16—C171.462 (3)
C7A—H7AB0.9899C17—C181.393 (4)
C7A—C81.48 (2)C17—C221.396 (4)
C4B—H4BA0.9900C18—H180.9500
C4B—H4BB0.9901C18—C191.382 (4)
C4B—C5B1.524 (17)C19—H190.9500
C5B—H5BA0.9900C19—C201.389 (4)
C5B—H5BB0.9899C20—C211.377 (4)
C5B—C6B1.511 (12)C21—H210.9500
C6B—H6BA0.9900C21—C221.390 (4)
C6B—H6BB0.9900C22—H220.9500
C6B—C7B1.553 (17)
C8—S1—C991.40 (14)C8—C7B—H7BB113.4
C16—N1—C9119.2 (2)C3—C8—S1112.3 (2)
O2—N2—O3123.5 (3)C3—C8—C7A123.4 (5)
O2—N2—C20118.4 (3)C3—C8—C7B130.5 (6)
O3—N2—C20118.1 (2)C7A—C8—S1124.3 (5)
O1A—C1—C2118.8 (9)C7B—C8—S1117.1 (6)
O1A—C1—C10A117.4 (10)N1—C9—S1123.3 (2)
O1B—C1—C2117.5 (13)C2—C9—S1110.8 (2)
O1B—C1—C10B118.0 (15)C2—C9—N1125.8 (2)
C2—C1—C10A121.2 (5)C11A—C10A—C1116.5 (7)
C2—C1—C10B122.5 (7)C11A—C10A—C15A120.0
C3—C2—C1122.2 (2)C15A—C10A—C1123.5 (7)
C9—C2—C1125.0 (2)C10A—C11A—H11A120.0
C9—C2—C3112.6 (2)C12A—C11A—C10A120.0
C2—C3—C4A122.6 (5)C12A—C11A—H11A120.0
C2—C3—C4B130.1 (8)C11A—C12A—H12A120.0
C8—C3—C2112.9 (2)C11A—C12A—C13A120.0
C8—C3—C4A124.5 (5)C13A—C12A—H12A120.0
C8—C3—C4B117.0 (8)C12A—C13A—H13A120.0
C3—C4A—H4AA110.8C14A—C13A—C12A120.0
C3—C4A—H4AB108.5C14A—C13A—H13A120.0
C3—C4A—C5A109.3 (14)C13A—C14A—H14A120.0
H4AA—C4A—H4AB108.6C15A—C14A—C13A120.0
C5A—C4A—H4AA110.8C15A—C14A—H14A120.0
C5A—C4A—H4AB108.7C10A—C15A—H15A120.0
C4A—C5A—H5AA110.6C14A—C15A—C10A120.0
C4A—C5A—H5AB107.8C14A—C15A—H15A120.0
H5AA—C5A—H5AB107.9C11B—C10B—C1119.7 (11)
C6A—C5A—C4A111.7 (11)C11B—C10B—C15B120.0
C6A—C5A—H5AA109.7C15B—C10B—C1119.6 (10)
C6A—C5A—H5AB109.0C10B—C11B—H11B120.0
C5A—C6A—H6AA109.7C12B—C11B—C10B120.0
C5A—C6A—H6AB109.7C12B—C11B—H11B120.0
C5A—C6A—C7A109.1 (9)C11B—C12B—H12B120.0
H6AA—C6A—H6AB108.3C13B—C12B—C11B120.0
C7A—C6A—H6AA111.8C13B—C12B—H12B120.0
C7A—C6A—H6AB108.2C12B—C13B—H13B120.0
C6A—C7A—H7AA107.9C14B—C13B—C12B120.0
C6A—C7A—H7AB110.4C14B—C13B—H13B120.0
H7AA—C7A—H7AB107.5C13B—C14B—H14B120.0
C8—C7A—C6A110.0 (13)C13B—C14B—C15B120.0
C8—C7A—H7AA109.1C15B—C14B—H14B120.0
C8—C7A—H7AB111.9C10B—C15B—H15B120.0
C3—C4B—H4BA106.4C14B—C15B—C10B120.0
C3—C4B—H4BB111.5C14B—C15B—H15B120.0
C3—C4B—C5B113 (2)N1—C16—H16119.0
H4BA—C4B—H4BB107.7N1—C16—C17122.0 (3)
C5B—C4B—H4BA106.4C17—C16—H16119.0
C5B—C4B—H4BB111.0C18—C17—C16121.7 (2)
C4B—C5B—H5BA107.1C18—C17—C22119.5 (2)
C4B—C5B—H5BB110.3C22—C17—C16118.8 (2)
H5BA—C5B—H5BB108.2C17—C18—H18119.7
C6B—C5B—C4B112.0 (16)C19—C18—C17120.6 (3)
C6B—C5B—H5BA110.4C19—C18—H18119.7
C6B—C5B—H5BB108.8C18—C19—H19120.9
C5B—C6B—H6BA108.9C18—C19—C20118.3 (2)
C5B—C6B—H6BB109.6C20—C19—H19120.9
C5B—C6B—C7B111.6 (15)C19—C20—N2118.6 (2)
H6BA—C6B—H6BB107.7C21—C20—N2118.6 (3)
C7B—C6B—H6BA106.1C21—C20—C19122.8 (2)
C7B—C6B—H6BB112.8C20—C21—H21121.0
C6B—C7B—H7BA107.1C20—C21—C22118.1 (3)
C6B—C7B—H7BB113.8C22—C21—H21121.0
H7BA—C7B—H7BB108.2C17—C22—H22119.6
C8—C7B—C6B106.3 (17)C21—C22—C17120.7 (3)
C8—C7B—H7BA107.7C21—C22—H22119.6
O1A—C1—C2—C340.0 (6)C4B—C3—C8—S1178.4 (18)
O1A—C1—C2—C9133.7 (5)C4B—C3—C8—C7A4 (2)
O1A—C1—C10A—C11A25.5 (8)C4B—C3—C8—C7B3 (2)
O1A—C1—C10A—C15A155.8 (7)C4B—C5B—C6B—C7B63 (2)
O1A—C1—C10B—C11B14.0 (11)C5B—C6B—C7B—C843 (2)
O1A—C1—C10B—C15B157.1 (8)C6B—C7B—C8—S1169.6 (11)
O1B—C1—C2—C360.5 (10)C6B—C7B—C8—C316 (3)
O1B—C1—C2—C9113.2 (10)C6B—C7B—C8—C7A25 (10)
O1B—C1—C10A—C11A5.2 (11)C8—S1—C9—N1174.9 (2)
O1B—C1—C10A—C15A176.1 (10)C8—S1—C9—C20.8 (2)
O1B—C1—C10B—C11B6.6 (13)C8—C3—C4A—C5A16 (2)
O1B—C1—C10B—C15B177.7 (11)C8—C3—C4B—C5B19 (3)
O2—N2—C20—C191.1 (4)C9—S1—C8—C31.1 (2)
O2—N2—C20—C21179.3 (3)C9—S1—C8—C7A176.7 (11)
O3—N2—C20—C19179.9 (3)C9—S1—C8—C7B176.8 (14)
O3—N2—C20—C210.5 (4)C9—N1—C16—C17179.2 (2)
N1—C16—C17—C1812.3 (4)C9—C2—C3—C4A175.7 (13)
N1—C16—C17—C22166.3 (3)C9—C2—C3—C4B178 (2)
N2—C20—C21—C22179.6 (2)C9—C2—C3—C83.2 (3)
C1—C2—C3—C4A1.3 (14)C10A—C1—C2—C3121.2 (4)
C1—C2—C3—C4B4 (2)C10A—C1—C2—C965.1 (5)
C1—C2—C3—C8177.6 (3)C10A—C1—C10B—C11B102 (5)
C1—C2—C9—S1176.5 (2)C10A—C1—C10B—C15B69 (5)
C1—C2—C9—N11.0 (4)C10A—C11A—C12A—C13A0.0
C1—C10A—C11A—C12A178.7 (6)C11A—C10A—C15A—C14A0.0
C1—C10A—C15A—C14A178.7 (7)C11A—C12A—C13A—C14A0.0
C1—C10B—C11B—C12B171.1 (11)C12A—C13A—C14A—C15A0.0
C1—C10B—C15B—C14B171.1 (11)C13A—C14A—C15A—C10A0.0
C2—C1—C10A—C11A173.1 (3)C15A—C10A—C11A—C12A0.0
C2—C1—C10A—C15A5.6 (7)C10B—C1—C2—C3135.7 (7)
C2—C1—C10B—C11B170.3 (5)C10B—C1—C2—C950.6 (7)
C2—C1—C10B—C15B18.6 (11)C10B—C1—C10A—C11A73 (5)
C2—C3—C4A—C5A164.9 (8)C10B—C1—C10A—C15A105 (5)
C2—C3—C4B—C5B162.1 (11)C10B—C11B—C12B—C13B0.0
C2—C3—C8—S12.6 (3)C11B—C10B—C15B—C14B0.0
C2—C3—C8—C7A175.2 (11)C11B—C12B—C13B—C14B0.0
C2—C3—C8—C7B177.6 (17)C12B—C13B—C14B—C15B0.0
C3—C2—C9—S12.3 (3)C13B—C14B—C15B—C10B0.0
C3—C2—C9—N1173.3 (2)C15B—C10B—C11B—C12B0.0
C3—C4A—C5A—C6A45.5 (19)C16—N1—C9—S114.8 (4)
C3—C4B—C5B—C6B49 (3)C16—N1—C9—C2160.3 (3)
C4A—C3—C4B—C5B148 (21)C16—C17—C18—C19178.7 (2)
C4A—C3—C8—S1176.3 (13)C16—C17—C22—C21178.1 (2)
C4A—C3—C8—C7A5.9 (17)C17—C18—C19—C200.8 (4)
C4A—C3—C8—C7B1 (2)C18—C17—C22—C210.5 (4)
C4A—C5A—C6A—C7A65.1 (16)C18—C19—C20—N2179.7 (2)
C5A—C6A—C7A—C851.0 (15)C18—C19—C20—C210.8 (4)
C6A—C7A—C8—S1159.4 (6)C19—C20—C21—C220.1 (4)
C6A—C7A—C8—C323.0 (18)C20—C21—C22—C170.6 (4)
C6A—C7A—C8—C7B120 (13)C22—C17—C18—C190.2 (4)
C4B—C3—C4A—C5A2 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4AA···O1Bi0.992.383.15 (4)135
C4B—H4BA···O1Ai0.992.503.45 (4)162
C4B—H4BA···O1Bi0.992.263.18 (4)154
C7B—H7BB···O2ii0.992.463.44 (3)169
C13B—H13B···O3iii0.952.553.371 (13)145
C21—H21···O1Aiv0.952.403.127 (18)133
C21—H21···O1Biv0.952.443.13 (3)129
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x1, y1/2, z; (iv) x1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4AA···O1Bi0.992.383.15 (4)135
C4B—H4BA···O1Ai0.992.503.45 (4)162
C4B—H4BA···O1Bi0.992.263.18 (4)154
C7B—H7BB···O2ii0.992.463.44 (3)169
C13B—H13B···O3iii0.952.553.371 (13)145
C21—H21···O1Aiv0.952.403.127 (18)133
C21—H21···O1Biv0.952.443.13 (3)129
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x1, y1/2, z; (iv) x1, y+1/2, z+1.
 

Acknowledgements

MK is grateful to CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc., 22, 476–480.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationKaur, M., Jasinski, J. P., Kavitha, C. N., Yathirajan, H. S. & Byrappa, K. (2014a). Acta Cryst. E70, o476–o477.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaur, M., Jasinski, J. P., Kavitha, C. N., Yathirajan, H. S. & Byrappa, K. (2014b). Acta Cryst. E70, o507–o508.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.  CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationPuterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, (i), 209–246.  Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem., 17 119–122.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o738-o739
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds