inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cs3ScCl6

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 April 2014; accepted 30 April 2014; online 10 May 2014)

Crystals of tricaesium scandium(III) hexa­chloride were obtained as a side product from the reaction of U, SnCl2, Sc, and S in a CsCl flux at 1073 K. Cs3ScCl6 crystallizes in the Rb3YCl6 structure type. The asymmetric unit comprises three Cs sites, two Sc sites, and six Cl sites, all of which have site symmetry 1, except for the two Sc sites that have site symmetries of 2 and -1, respectively. The structure is composed of isolated [ScCl6]3− octa­hedra that are surrounded by Cs+ cations. Two Cs+ cations have inter­actions with eight Cl anions, while the third has inter­actions with ten Cl anions.

Related literature

Cs3ScCl6 crystallizes in the Rb3YCl6 structure type (space group C2/c; Mattfeld & Meyer, 1992[Mattfeld, H. & Meyer, G. (1992). Z. Anorg. Allg. Chem. 618, 13-17.]). Previously, a number of ternary scandium halides of the composition A3ScX6 were characterized by single-crystal X-ray diffraction or Rietveld refinements from powder data. These include Na3ScF6 (Dahlke & Babel, 1994[Dahlke, P. & Babel, D. (1994). Z. Anorg. Allg. Chem. 620, 1686-1691.]), Na3ScBr6 (Bohnsack & Meyer, 1996[Bohnsack, A. & Meyer, G. (1996). Z. Anorg. Allg. Chem. 622, 173-178.]), Li3ScCl6 (Bohnsack et al., 1997[Bohnsack, A., Stenzel, F., Zajonc, A., Balzer, G., Wickleder, M. S. & Meyer, G. (1997). Z. Anorg. Allg. Chem. 623, 1067-1073.]), Li3ScF6 (Tyagi et al., 2005[Tyagi, A. K., Köhler, J., Balog, P. & Weber, J. (2005). J. Solid State Chem. 178, 2620-2625.]), K3ScCl6 (Cerny et al., 2010a[Cerny, R., Ravnsbaek, D. B., Severa, G., Filinchuk, Y., D'anna, V., Hagemann, H., Haase, D., Skibsted, J., Jensen, C. M. & Jensen, T. R. (2010a). J. Phys. Chem. C, 114, 19540-19549.]), and Na3ScCl6 (Cerny et al., 2010b[Cerny, R., Severa, G., Ravnsbaek, D. B., Filinchuk, Y., D'anna, V., Hagemann, H., Haase, D., Jensen, C. M. & Jensen, T. R. (2010b). J. Phys. Chem. C, 114, 1357-1364.]). Except for Li3ScCl6, these compounds crystallize in one of two structure types: Na3CrCl6 (P[\overline{3}]1c; Friedrich et al., 1987[Friedrich, G., Fink, H. & Seifert, H. J. (1987). Z. Anorg. Allg. Chem. 548, 141-150.]) or Na3AlF6 (P21/n; Náray-Szabó & Sasvári, 1938[Náray-Szabó, V. St V. & Sasvári, K. (1938). Z. Kristallogr. 99, 27-31.]). For other caesium scandium chloride compounds, see: Poeppelmeier et al. (1980[Poeppelmeier, K. R., Corbett, J. D., McMullen, T. P., Torgeson, D. R. & Barnes, R. G. (1980). Inorg. Chem. 19, 129-134.]). For standardization of structure data, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • Cs3ScCl6

  • Mr = 656.39

  • Monoclinic, C 2/c

  • a = 26.3310 (5) Å

  • b = 7.9632 (2) Å

  • c = 12.7085 (3) Å

  • β = 100.006 (1)°

  • V = 2624.17 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.93 mm−1

  • T = 100 K

  • 0.05 × 0.04 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.341, Tmax = 0.438

  • 30195 measured reflections

  • 6379 independent reflections

  • 5631 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.050

  • S = 1.33

  • 6379 reflections

  • 93 parameters

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.26 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014; molecular graphics: CrystalMaker (Palmer, 2013[Palmer, D. (2013). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Ternary scandium halides of the composition A3ScX6 are known for A = Li, Na, K and X = F, Cl, Br. These compounds crystallize in either the Na3CrCl6 (P31c) (Friedrich et al., 1987) or the Na3AlF6 (P21/n) (Náray-Szabó & Sasvári, 1938) structure types, except for Li3ScCl6 which crystallizes in space group C2/m (Bohnsack et al., 1997). Single-crystal refinements have been carried out for Na3ScF6 (Dahlke & Babel, 1994), Na3ScBr6 (Bohnsack & Meyer, 1996), Li3ScCl6 (Bohnsack et al., 1997), and Li3ScF6 (Tyagi et al., 2005). The structures of K3ScCl6 (Cerny et al., 2010a) and Na3ScCl6 (Cerny et al., 2010b) were determined by Rietveld refinement of X-ray powder data. Cs3ScCl6 is the first Cs-containing compound of the A3ScX6 family. It crystallizes in the monoclinic space group C2/c in the Rb3YCl6 structure type (Mattfeld & Meyer, 1992).

The structure of Cs3ScCl6 is composed of isolated [ScCl6]3- octahedra that are surrounded by Cs+ cations. The asymmetric unit, comprising three Cs, two Sc, and six Cl sites, is shown in Fig. 1, and a packing diagram is shown in Fig. 2. The composition achieves charge balance by assigning formal oxidation states of +1, +3, and -1 to Cs, Sc, and Cl, respectively. The Sc—Cl distances range from 2.4718 (5) Å to 2.5072 (6) Å at 100 K. These distances compare favorably with those of 2.601 Å at 298 K in Cs3Sc2Cl9 (Poeppelmeier et al., 1980). Another caesium scandium chloride compound is CsScCl3 (Poeppelmeier et al., 1980), which reportedly contains Sc(II).

Related literature top

Cs3ScCl6 crystallizes in the Rb3YCl6 structure type (space group C2/c; Mattfeld & Meyer, 1992). Previously, a number of ternary scandium halides of the composition A3ScX6 were characterized by single-crystal X-ray diffraction or Rietveld refinements from powder data. These include Na3ScF6 (Dahlke & Babel, 1994), Na3ScBr6 (Bohnsack & Meyer, 1996), Li3ScCl6 (Bohnsack et al., 1997), Li3ScF6 (Tyagi et al., 2005), K3ScCl6 (Cerny et al., 2010a), and Na3ScCl6 (Cerny et al., 2010b). Except for Li3ScCl6, these compounds crystallize in one of two structure types: Na3CrCl6 (P31c; Friedrich et al., 1987) or Na3AlF6 (P21/n; Náray-Szabó & Sasvári, 1938). For other caesium scandium chloride compounds, see: Poeppelmeier et al. (1980). For standardization of structure data, see: Gelato & Parthé (1987).

Experimental top

A reaction mixture containing U (0.126 mmol), SnCl2 (0.126 mmol), Sc (1.290 mmol), S (0.378 mmol), and CsCl (0.594 mmol) was loaded into a carbon-coated fused-silica tube under an inert Ar atmosphere. The tube was then evacuated to 10 -4 Torr, flame sealed, and placed in a computer-controlled furnace. The tube was heated to 1073 K in 12 h, held there for 96 h, cooled to 773 K at a rate of 2 K/h, and then cooled to 298 K over a further 48 h. The reaction yielded black rectangular prisms of ScU8S17, purple blocks of Cs3ScCl6, and excess CsCl flux. Crystals of Cs3ScCl6 were also found as side products in other reactions that contained Sc and a CsCl flux. Crystals of Cs3ScCl6 are soluble in water.

Refinement top

Atomic positions were standardized with the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak of 1.0 (2) e-3 is 2.18 Å from atom Cs2 and the deepest hole of -1.3 (2) e-3 is 0.92 Å from atom Cs3.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2013); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of Cs3ScCl6. Displacement ellipsoids at the 99% probability level are shown. Caesium atoms are blue, scandium atoms are purple, and chlorine atoms are green.
[Figure 2] Fig. 2. Packing of Cs3ScCl6 viewed nearly along the b axis.
Tricaesium scandium(III) hexachloride top
Crystal data top
Cs3ScCl6F(000) = 2304
Mr = 656.39Dx = 3.323 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.3310 (5) ÅCell parameters from 9931 reflections
b = 7.9632 (2) Åθ = 3.1–36.3°
c = 12.7085 (3) ŵ = 9.93 mm1
β = 100.006 (1)°T = 100 K
V = 2624.17 (10) Å3Block, purple
Z = 80.05 × 0.04 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
5631 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.038
Absorption correction: numerical
(SADABS; Bruker, 2009)
θmax = 36.4°, θmin = 1.6°
Tmin = 0.341, Tmax = 0.438h = 3943
30195 measured reflectionsk = 1312
6379 independent reflectionsl = 2021
Refinement top
Refinement on F293 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0114Fo2)2]
wR(F2) = 0.050(Δ/σ)max = 0.002
S = 1.33Δρmax = 0.98 e Å3
6379 reflectionsΔρmin = 1.26 e Å3
Crystal data top
Cs3ScCl6V = 2624.17 (10) Å3
Mr = 656.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.3310 (5) ŵ = 9.93 mm1
b = 7.9632 (2) ÅT = 100 K
c = 12.7085 (3) Å0.05 × 0.04 × 0.03 mm
β = 100.006 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6379 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2009)
5631 reflections with I > 2σ(I)
Tmin = 0.341, Tmax = 0.438Rint = 0.038
30195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02393 parameters
wR(F2) = 0.0500 restraints
S = 1.33Δρmax = 0.98 e Å3
6379 reflectionsΔρmin = 1.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.16275 (2)0.18961 (2)0.30059 (2)0.01108 (3)
Cs20.34717 (2)0.18469 (2)0.35501 (2)0.01108 (3)
Cs30.44859 (2)0.24984 (2)0.06656 (2)0.01686 (3)
Sc10.00000.22061 (6)0.25000.00772 (8)
Sc20.25000.25000.00000.00814 (8)
Cl10.05410 (2)0.00676 (6)0.68924 (4)0.01302 (9)
Cl20.05417 (2)0.44314 (7)0.18670 (4)0.01398 (9)
Cl30.05588 (2)0.22355 (7)0.42769 (4)0.01427 (9)
Cl40.18402 (2)0.04527 (7)0.03693 (4)0.01557 (10)
Cl50.25017 (2)0.38135 (6)0.17777 (4)0.01095 (8)
Cl60.32362 (2)0.06505 (7)0.07773 (4)0.01453 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.00923 (5)0.01059 (5)0.01374 (6)0.00077 (4)0.00290 (4)0.00089 (4)
Cs20.01074 (5)0.01019 (5)0.01199 (5)0.00125 (4)0.00105 (4)0.00113 (4)
Cs30.01421 (6)0.02189 (7)0.01509 (6)0.00445 (5)0.00429 (5)0.00546 (5)
Sc10.0070 (2)0.0084 (2)0.0079 (2)0.0000.00144 (15)0.000
Sc20.0078 (2)0.0085 (2)0.0081 (2)0.00052 (17)0.00125 (16)0.00062 (15)
Cl10.0106 (2)0.0126 (2)0.0162 (2)0.00042 (16)0.00327 (16)0.00394 (16)
Cl20.0123 (2)0.0132 (2)0.0167 (2)0.00298 (17)0.00332 (16)0.00265 (16)
Cl30.0103 (2)0.0224 (2)0.00960 (19)0.00063 (17)0.00039 (15)0.00036 (16)
Cl40.0193 (2)0.0146 (2)0.0138 (2)0.00819 (18)0.00558 (17)0.00093 (16)
Cl50.0111 (2)0.01172 (19)0.01018 (18)0.00123 (16)0.00216 (14)0.00105 (14)
Cl60.0148 (2)0.0147 (2)0.0134 (2)0.00510 (18)0.00040 (16)0.00119 (16)
Geometric parameters (Å, º) top
Cs1—Cl5i3.3378 (5)Cs3—Cl63.6297 (6)
Cs1—Cl1ii3.3504 (5)Cs3—Cl1v3.6702 (6)
Cs1—Cl6iii3.3564 (5)Cs3—Cl3iii3.7752 (6)
Cs1—Cl53.3637 (5)Cs3—Cl2viii3.8144 (6)
Cs1—Cl33.4900 (6)Cs3—Cl1iii3.8312 (6)
Cs1—Cl4iv3.4998 (5)Cs3—Cl4vii3.8714 (6)
Cs1—Cl23.5926 (5)Cs3—Cl2i3.9852 (6)
Cs1—Cl43.6762 (6)Sc1—Cl3ix2.4718 (5)
Cs2—Cl4iii3.3463 (5)Sc1—Cl32.4718 (5)
Cs2—Cl2i3.3479 (5)Sc1—Cl2ix2.4940 (6)
Cs2—Cl53.4714 (5)Sc1—Cl22.4941 (6)
Cs2—Cl5i3.4937 (5)Sc1—Cl1x2.5072 (6)
Cs2—Cl3v3.4969 (5)Sc1—Cl1ii2.5072 (6)
Cs2—Cl63.5986 (5)Sc2—Cl4vii2.4859 (5)
Cs2—Cl6iv3.6000 (6)Sc2—Cl42.4859 (5)
Cs2—Cl1v3.6904 (5)Sc2—Cl52.4889 (5)
Cs3—Cl1vi3.5216 (5)Sc2—Cl5vii2.4889 (5)
Cs3—Cl2vii3.5559 (6)Sc2—Cl62.4975 (5)
Cs3—Cl3vi3.5878 (6)Sc2—Cl6vii2.4976 (5)
Cl5i—Cs1—Cl1ii102.445 (13)Cl1x—Sc1—Cs3xi58.901 (12)
Cl5i—Cs1—Cl6iii126.886 (13)Cl1ii—Sc1—Cs3xi126.341 (17)
Cl1ii—Cs1—Cl6iii128.714 (13)Cs1—Sc1—Cs3xi108.888 (3)
Cl5i—Cs1—Cl581.739 (7)Cs1ix—Sc1—Cs3xi71.484 (3)
Cl1ii—Cs1—Cl5128.226 (13)Cl3ix—Sc1—Cs3vii53.295 (13)
Cl6iii—Cs1—Cl577.438 (13)Cl3—Sc1—Cs3vii126.632 (13)
Cl5i—Cs1—Cl3128.060 (13)Cl2ix—Sc1—Cs3vii122.186 (17)
Cl1ii—Cs1—Cl362.204 (12)Cl2—Sc1—Cs3vii52.590 (12)
Cl6iii—Cs1—Cl375.407 (14)Cl1x—Sc1—Cs3vii126.341 (17)
Cl5—Cs1—Cl3148.367 (13)Cl1ii—Sc1—Cs3vii58.901 (12)
Cl5i—Cs1—Cl4iv62.031 (12)Cs1—Sc1—Cs3vii71.484 (3)
Cl1ii—Cs1—Cl4iv96.352 (14)Cs1ix—Sc1—Cs3vii108.888 (3)
Cl6iii—Cs1—Cl4iv95.297 (13)Cs3xi—Sc1—Cs3vii173.961 (14)
Cl5—Cs1—Cl4iv128.348 (13)Cl3ix—Sc1—Cs3xii57.081 (16)
Cl3—Cs1—Cl4iv70.483 (13)Cl3—Sc1—Cs3xii124.00 (2)
Cl5i—Cs1—Cl2159.024 (12)Cl2ix—Sc1—Cs3xii128.462 (13)
Cl1ii—Cs1—Cl262.017 (12)Cl2—Sc1—Cs3xii124.235 (13)
Cl6iii—Cs1—Cl272.479 (13)Cl1x—Sc1—Cs3xii54.672 (15)
Cl5—Cs1—Cl296.823 (12)Cl1ii—Sc1—Cs3xii51.268 (14)
Cl3—Cs1—Cl259.584 (12)Cs1—Sc1—Cs3xii103.650 (8)
Cl4iv—Cs1—Cl2130.060 (13)Cs1ix—Sc1—Cs3xii70.532 (5)
Cl5i—Cs1—Cl468.521 (12)Cs3xi—Sc1—Cs3xii113.557 (8)
Cl1ii—Cs1—Cl473.931 (13)Cs3vii—Sc1—Cs3xii71.830 (5)
Cl6iii—Cs1—Cl4132.642 (13)Cl3ix—Sc1—Cs3i124.00 (2)
Cl5—Cs1—Cl459.605 (12)Cl3—Sc1—Cs3i57.082 (16)
Cl3—Cs1—Cl4135.140 (12)Cl2ix—Sc1—Cs3i124.235 (13)
Cl4iv—Cs1—Cl4126.021 (7)Cl2—Sc1—Cs3i128.461 (13)
Cl2—Cs1—Cl492.585 (13)Cl1x—Sc1—Cs3i51.268 (14)
Cl4iii—Cs2—Cl2i144.147 (14)Cl1ii—Sc1—Cs3i54.672 (15)
Cl4iii—Cs2—Cl570.962 (12)Cs1—Sc1—Cs3i70.532 (5)
Cl2i—Cs2—Cl5131.312 (13)Cs1ix—Sc1—Cs3i103.650 (8)
Cl4iii—Cs2—Cl5i114.518 (14)Cs3xi—Sc1—Cs3i71.830 (5)
Cl2i—Cs2—Cl5i99.045 (13)Cs3vii—Sc1—Cs3i113.557 (8)
Cl5—Cs2—Cl5i78.039 (6)Cs3xii—Sc1—Cs3i67.059 (8)
Cl4iii—Cs2—Cl3v72.190 (13)Cl4vii—Sc2—Cl4179.999 (18)
Cl2i—Cs2—Cl3v76.407 (13)Cl4vii—Sc2—Cl590.268 (17)
Cl5—Cs2—Cl3v140.539 (13)Cl4—Sc2—Cl589.731 (17)
Cl5i—Cs2—Cl3v131.180 (12)Cl4vii—Sc2—Cl5vii89.730 (17)
Cl4iii—Cs2—Cl6128.042 (13)Cl4—Sc2—Cl5vii90.271 (17)
Cl2i—Cs2—Cl672.498 (12)Cl5—Sc2—Cl5vii180.0
Cl5—Cs2—Cl660.126 (12)Cl4vii—Sc2—Cl686.646 (19)
Cl5i—Cs2—Cl672.674 (12)Cl4—Sc2—Cl693.354 (19)
Cl3v—Cs2—Cl6143.761 (13)Cl5—Sc2—Cl690.573 (16)
Cl4iii—Cs2—Cl6iv93.629 (13)Cl5vii—Sc2—Cl689.427 (16)
Cl2i—Cs2—Cl6iv92.949 (14)Cl4vii—Sc2—Cl6vii93.356 (19)
Cl5—Cs2—Cl6iv123.475 (13)Cl4—Sc2—Cl6vii86.644 (19)
Cl5i—Cs2—Cl6iv59.259 (11)Cl5—Sc2—Cl6vii89.427 (16)
Cl3v—Cs2—Cl6iv72.323 (12)Cl5vii—Sc2—Cl6vii90.574 (16)
Cl6—Cs2—Cl6iv126.850 (7)Cl6—Sc2—Cl6vii180.0
Cl4iii—Cs2—Cl1v73.789 (14)Cl4vii—Sc2—Cs1ii132.946 (12)
Cl2i—Cs2—Cl1v76.813 (13)Cl4—Sc2—Cs1ii47.055 (12)
Cl5—Cs2—Cl1v93.390 (12)Cl5—Sc2—Cs1ii136.773 (12)
Cl5i—Cs2—Cl1v164.523 (12)Cl5vii—Sc2—Cs1ii43.228 (12)
Cl3v—Cs2—Cl1v62.887 (12)Cl6—Sc2—Cs1ii92.711 (13)
Cl6—Cs2—Cl1v91.899 (13)Cl6vii—Sc2—Cs1ii87.288 (13)
Cl6iv—Cs2—Cl1v135.208 (12)Cl4vii—Sc2—Cs1iii47.054 (12)
Cl1vi—Cs3—Cl2vii121.939 (13)Cl4—Sc2—Cs1iii132.945 (12)
Cl1vi—Cs3—Cl3vi63.717 (12)Cl5—Sc2—Cs1iii43.227 (12)
Cl2vii—Cs3—Cl3vi58.283 (12)Cl5vii—Sc2—Cs1iii136.772 (12)
Cl1vi—Cs3—Cl6148.943 (13)Cl6—Sc2—Cs1iii87.289 (13)
Cl2vii—Cs3—Cl689.091 (12)Cl6vii—Sc2—Cs1iii92.712 (13)
Cl3vi—Cs3—Cl6147.118 (12)Cs1ii—Sc2—Cs1iii180.0
Cl1vi—Cs3—Cl1v57.631 (15)Sc1x—Cl1—Cs1iv91.260 (16)
Cl2vii—Cs3—Cl1v173.337 (13)Sc1x—Cl1—Cs3xi94.994 (16)
Cl3vi—Cs3—Cl1v121.151 (12)Cs1iv—Cl1—Cs3xi173.698 (17)
Cl6—Cs3—Cl1v91.731 (12)Sc1x—Cl1—Cs3v91.457 (16)
Cl1vi—Cs3—Cl3iii57.741 (11)Cs1iv—Cl1—Cs3v91.711 (12)
Cl2vii—Cs3—Cl3iii116.971 (12)Cs3xi—Cl1—Cs3v87.364 (13)
Cl3vi—Cs3—Cl3iii88.872 (13)Sc1x—Cl1—Cs2v168.727 (19)
Cl6—Cs3—Cl3iii111.892 (12)Cs1iv—Cl1—Cs2v78.623 (11)
Cl1v—Cs3—Cl3iii56.679 (11)Cs3xi—Cl1—Cs2v95.079 (12)
Cl1vi—Cs3—Cl2viii73.210 (12)Cs3v—Cl1—Cs2v83.964 (11)
Cl2vii—Cs3—Cl2viii89.108 (12)Sc1x—Cl1—Cs3i87.017 (15)
Cl3vi—Cs3—Cl2viii69.717 (12)Cs1iv—Cl1—Cs3i89.870 (13)
Cl6—Cs3—Cl2viii109.110 (12)Cs3xi—Cl1—Cs3i91.227 (12)
Cl1v—Cs3—Cl2viii96.862 (12)Cs3v—Cl1—Cs3i177.828 (16)
Cl3iii—Cs3—Cl2viii130.920 (11)Cs2v—Cl1—Cs3i97.813 (13)
Cl1vi—Cs3—Cl1iii88.772 (12)Sc1—Cl2—Cs2iii164.21 (2)
Cl2vii—Cs3—Cl1iii57.881 (12)Sc1—Cl2—Cs3vii93.554 (16)
Cl3vi—Cs3—Cl1iii56.711 (11)Cs2iii—Cl2—Cs3vii89.963 (13)
Cl6—Cs3—Cl1iii111.495 (11)Sc1—Cl2—Cs186.012 (16)
Cl1v—Cs3—Cl1iii115.801 (4)Cs2iii—Cl2—Cs178.554 (11)
Cl3iii—Cs3—Cl1iii59.122 (11)Cs3vii—Cl2—Cs190.658 (13)
Cl2viii—Cs3—Cl1iii125.895 (12)Sc1—Cl2—Cs3xiii99.566 (17)
Cl1vi—Cs3—Cl4vii120.934 (12)Cs2iii—Cl2—Cs3xiii95.760 (13)
Cl2vii—Cs3—Cl4vii89.959 (12)Cs3vii—Cl2—Cs3xiii90.890 (12)
Cl3vi—Cs3—Cl4vii123.282 (12)Cs1—Cl2—Cs3xiii174.107 (16)
Cl6—Cs3—Cl4vii54.119 (11)Sc1—Cl2—Cs3iii95.280 (17)
Cl1v—Cs3—Cl4vii85.176 (11)Cs2iii—Cl2—Cs3iii83.870 (12)
Cl3iii—Cs3—Cl4vii63.654 (11)Cs3vii—Cl2—Cs3iii167.614 (16)
Cl2viii—Cs3—Cl4vii163.219 (12)Cs1—Cl2—Cs3iii98.594 (12)
Cl1iii—Cs3—Cl4vii66.677 (11)Cs3xiii—Cl2—Cs3iii79.100 (11)
Cl1vi—Cs3—Cl2i96.304 (12)Sc1—Cl3—Cs188.641 (15)
Cl2vii—Cs3—Cl2i116.554 (5)Sc1—Cl3—Cs2v163.83 (2)
Cl3vi—Cs3—Cl2i123.146 (12)Cs1—Cl3—Cs2v81.079 (11)
Cl6—Cs3—Cl2i65.179 (11)Sc1—Cl3—Cs3xi93.175 (15)
Cl1v—Cs3—Cl2i69.674 (11)Cs1—Cl3—Cs3xi177.893 (16)
Cl3iii—Cs3—Cl2i126.317 (11)Cs2v—Cl3—Cs3xi97.376 (13)
Cl2viii—Cs3—Cl2i53.436 (15)Sc1—Cl3—Cs3i89.577 (19)
Cl1iii—Cs3—Cl2i174.105 (11)Cs1—Cl3—Cs3i87.819 (13)
Cl4vii—Cs3—Cl2i112.763 (11)Cs2v—Cl3—Cs3i102.381 (13)
Cl3ix—Sc1—Cl3178.91 (4)Cs3xi—Cl3—Cs3i91.125 (13)
Cl3ix—Sc1—Cl2ix90.284 (19)Sc2—Cl4—Cs2i150.42 (2)
Cl3—Sc1—Cl2ix88.945 (19)Sc2—Cl4—Cs1ii101.617 (17)
Cl3ix—Sc1—Cl288.945 (19)Cs2i—Cl4—Cs1ii83.078 (12)
Cl3—Sc1—Cl290.28 (2)Sc2—Cl4—Cs1100.906 (16)
Cl2ix—Sc1—Cl289.45 (3)Cs2i—Cl4—Cs178.879 (11)
Cl3ix—Sc1—Cl1x90.480 (19)Cs1ii—Cl4—Cs1157.264 (17)
Cl3—Sc1—Cl1x90.306 (19)Sc2—Cl4—Cs3vii106.150 (17)
Cl2ix—Sc1—Cl1x91.511 (18)Cs2i—Cl4—Cs3vii103.290 (14)
Cl2—Sc1—Cl1x178.89 (2)Cs1ii—Cl4—Cs3vii86.175 (12)
Cl3ix—Sc1—Cl1ii90.305 (19)Cs1—Cl4—Cs3vii84.641 (13)
Cl3—Sc1—Cl1ii90.479 (19)Sc2—Cl5—Cs1iii106.063 (17)
Cl2ix—Sc1—Cl1ii178.89 (2)Sc2—Cl5—Cs1109.697 (16)
Cl2—Sc1—Cl1ii91.510 (18)Cs1iii—Cl5—Cs1144.225 (16)
Cl1x—Sc1—Cl1ii87.54 (3)Sc2—Cl5—Cs2106.525 (16)
Cl3ix—Sc1—Cs1124.476 (13)Cs1iii—Cl5—Cs282.000 (11)
Cl3—Sc1—Cs155.599 (13)Cs1—Cl5—Cs288.842 (12)
Cl2ix—Sc1—Cs1127.855 (17)Sc2—Cl5—Cs2iii107.265 (15)
Cl2—Sc1—Cs157.945 (12)Cs1iii—Cl5—Cs2iii88.886 (12)
Cl1x—Sc1—Cs1121.740 (17)Cs1—Cl5—Cs2iii79.759 (11)
Cl1ii—Sc1—Cs152.385 (11)Cs2—Cl5—Cs2iii146.210 (15)
Cl3ix—Sc1—Cs1ix55.600 (13)Sc2—Cl6—Cs1i136.14 (2)
Cl3—Sc1—Cs1ix124.478 (13)Sc2—Cl6—Cs2102.768 (17)
Cl2ix—Sc1—Cs1ix57.945 (12)Cs1i—Cl6—Cs278.359 (11)
Cl2—Sc1—Cs1ix127.855 (17)Sc2—Cl6—Cs2ii104.044 (16)
Cl1x—Sc1—Cs1ix52.385 (11)Cs1i—Cl6—Cs2ii81.426 (12)
Cl1ii—Sc1—Cs1ix121.740 (17)Cs2—Cl6—Cs2ii153.152 (16)
Cs1—Sc1—Cs1ix173.309 (14)Sc2—Cl6—Cs3113.085 (18)
Cl3ix—Sc1—Cs3xi126.634 (13)Cs1i—Cl6—Cs3110.735 (14)
Cl3—Sc1—Cs3xi53.296 (13)Cs2—Cl6—Cs385.863 (12)
Cl2ix—Sc1—Cs3xi52.590 (13)Cs2ii—Cl6—Cs384.957 (13)
Cl2—Sc1—Cs3xi122.185 (17)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z+1/2; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y1/2, z; (ix) x, y, z+1/2; (x) x, y, z+1; (xi) x1/2, y+1/2, z+1/2; (xii) x1/2, y1/2, z; (xiii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaCs3ScCl6
Mr656.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)26.3310 (5), 7.9632 (2), 12.7085 (3)
β (°) 100.006 (1)
V3)2624.17 (10)
Z8
Radiation typeMo Kα
µ (mm1)9.93
Crystal size (mm)0.05 × 0.04 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2009)
Tmin, Tmax0.341, 0.438
No. of measured, independent and
observed [I > 2σ(I)] reflections
30195, 6379, 5631
Rint0.038
(sin θ/λ)max1)0.834
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.050, 1.33
No. of reflections6379
No. of parameters93
Δρmax, Δρmin (e Å3)0.98, 1.26

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), CrystalMaker (Palmer, 2013).

 

Acknowledgements

Use was made of the IMSERC X-ray facility at Northwestern University, supported by the Inter­national Institute of Nanotechnology.

References

First citationBohnsack, A. & Meyer, G. (1996). Z. Anorg. Allg. Chem. 622, 173–178.  CrossRef CAS Web of Science Google Scholar
First citationBohnsack, A., Stenzel, F., Zajonc, A., Balzer, G., Wickleder, M. S. & Meyer, G. (1997). Z. Anorg. Allg. Chem. 623, 1067–1073.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCerny, R., Ravnsbaek, D. B., Severa, G., Filinchuk, Y., D'anna, V., Hagemann, H., Haase, D., Skibsted, J., Jensen, C. M. & Jensen, T. R. (2010a). J. Phys. Chem. C, 114, 19540–19549.  CAS Google Scholar
First citationCerny, R., Severa, G., Ravnsbaek, D. B., Filinchuk, Y., D'anna, V., Hagemann, H., Haase, D., Jensen, C. M. & Jensen, T. R. (2010b). J. Phys. Chem. C, 114, 1357–1364.  CAS Google Scholar
First citationDahlke, P. & Babel, D. (1994). Z. Anorg. Allg. Chem. 620, 1686–1691.  CrossRef CAS Web of Science Google Scholar
First citationFriedrich, G., Fink, H. & Seifert, H. J. (1987). Z. Anorg. Allg. Chem. 548, 141–150.  CrossRef CAS Web of Science Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMattfeld, H. & Meyer, G. (1992). Z. Anorg. Allg. Chem. 618, 13–17.  CrossRef CAS Web of Science Google Scholar
First citationNáray-Szabó, V. St V. & Sasvári, K. (1938). Z. Kristallogr. 99, 27–31.  Google Scholar
First citationPalmer, D. (2013). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.  Google Scholar
First citationPoeppelmeier, K. R., Corbett, J. D., McMullen, T. P., Torgeson, D. R. & Barnes, R. G. (1980). Inorg. Chem. 19, 129–134.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTyagi, A. K., Köhler, J., Balog, P. & Weber, J. (2005). J. Solid State Chem. 178, 2620–2625.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds