metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m220-m221

Bis(cyclo­hexyl­ammonium) tetra­chlorido­di­phenyl­stannate(IV)

aLaboratoire de Chimie Minerale et Analytique, Département de Chimie, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar, Senegal, and bInstitut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: modousarr41@gmail.com

(Received 20 April 2014; accepted 14 May 2014; online 17 May 2014)

The title compound, (C6H14N)2[Sn(C6H5)2Cl4], contains cyclo­hexyl­ammonium cations in general positions and a stannate(IV) anion that is located on a twofold rotation axis. The SnIV atom in the complex anion is surrounded by four Cl ligands and two trans-phenyl groups in a distorted octa­hedral configuration. The anions are connected with the cations through N—H⋯Cl hydrogen bonds. Every cation is involved in three N—H⋯Cl bonds to the chloride ligands of three different anions, and each chloride ligand is linked to two cations. This arrangement leads to a layered structure parallel to (010).

Related literature

For applications of organotin(IV) compounds, see: Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.]); Kapoor et al. (2005[Kapoor, R. N., Guillory, P., Schulte, L., Cervantes-Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510-517.]). For compounds containing the [Sn(C6H5)2Cl4]2− anion in a cis or trans-conformation, see: Garcia-Seijo et al. (2001[Garcia-Seijo, M. I., Castineiras, A., Mahieu, B., Janosi, J., Berente, Z., Kollar, L. & Fernandez, G. (2001). Polyhedron, 20, 855-868.]); Fernandez et al. (2002[Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fermandez, M. E. (2002). Inorg. Chem. 41, 4435-4443.]); Venkatraman et al. (2004[Venkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035-m1037.]); Diop et al. (2011[Diop, T., Diop, L., Molloy, K. C. K. & Kocioc-Köhn, G. (2011). Acta Cryst. E67, m203-m204.]). For crystal structures of related tin(IV) compounds, see: Sarr et al. (2013a[Sarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L. & Cattey, H. (2013a). Acta Cryst. E69, m473-m474.],b[Sarr, M., Diallo, W., Diasse-Sarr, A., Plasseraud, L. & Cattey, H. (2013b). Acta Cryst. E69, m581-m582.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N)2[Sn(C6H5)2Cl4]

  • Mr = 615.05

  • Orthorhombic, F d d 2

  • a = 13.558 (4) Å

  • b = 49.646 (14) Å

  • c = 8.058 (2) Å

  • V = 5424 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 100 K

  • 0.30 × 0.21 × 0.05 mm

Data collection
  • Bruker D8 goniometer with APEX area detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconson, USA.]) Tmin = 0.687, Tmax = 0.935

  • 15474 measured reflections

  • 2772 independent reflections

  • 2563 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.100

  • S = 1.06

  • 2772 reflections

  • 151 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.92 e Å−3

  • Δρmin = −0.67 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1281 Friedel pairs

  • Absolute structure parameter: 0.23 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.91 (3) 2.35 (4) 3.244 (8) 166 (10)
N1—H1B⋯Cl1ii 0.91 (3) 2.36 (6) 3.172 (9) 148 (8)
N1—H1C⋯Cl2iii 0.90 (3) 2.60 (7) 3.328 (9) 139 (9)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) -x, -y, z-1; (iii) -x, -y, z.

Data collection: SMART (Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Our interest for organotin(IV) compounds (Sarr et al., 2013a,b) is related to applications found in various fields like in medicine, industry or agriculture (Evans & Karpel, 1985; Kapoor et al., 2005).

The crystal structure of the title compound, 2(C6H14N)+[Sn(C6H5)2Cl4]2-, consists of cyclohexylammonium cations and a [SnPh2Cl4]2- anion that is located on a twofold rotation axis. The SnIV atom is bonded to two trans-phenyl groups and four chloride ligands in a distorted octahedral geometry (Fig. 1). For reasons of symmetry, the Sn—C bond lengths are equal and amount to 2.142 (5) Å. The two independent Sn—Cl bond lengths have very similar values [2.5685 (16) and 2.5842 (17) Å] and may be compared to the values of 2.5722 (6) and 2.5796 (6) Å reported for bis(trimethylammonium) tetrachloridodiphenylstannate(IV) (Diop et al., 2011). The C—Sn—C angle (179.6 (4) °) is linear within experimental error. The angles in the equatorial plane of the pseudo-octahedron deviate slightly from 90° [Cl1—Sn1—Cl1i = 91.12 (8)°; Cl1—Sn1—Cl2 = 89.41 (5)°, i = -x, -y, z]. The tetrachloridodiphenylstannate(IV anion, [SnPh2Cl4]2-, in its cis or trans configurations has been reported previously by several authors with different counter cations (Garcia-Seijo et al., 2001; Fernandez et al., 2002; Venkatraman et al., 2004; Diop et al., 2011).

Each cation in the title compound is linked to Cl atoms of three different anions through classical N—H···Cl hydrogen bonds (Fig. 2, Table 1), leading to a layered arrangement parallel to (010).

Related literature top

For applications of organotin(IV) compounds, see: Evans & Karpel (1985); Kapoor et al. (2005). For compounds containing the [Sn(C6H5)2Cl4]2- anion in a cis or trans-conformation, see: Garcia-Seijo et al. (2001); Fernandez et al. (2002); Venkatraman et al. (2004); Diop et al. (2011). For crystal structures of related tin(IV) compounds, see: Sarr et al. (2013a,b)

Experimental top

Equimolar amounts of cyclohexylamin and oxalic were dissolved in water; crystals formed by slow evaporation. Their elemental analyses, calculated/ % (found/ %), C: 53.31 (53.05); %H: 9.91(10.28); %N: 8.88(8.40), suggest the composition (CyNH3)2(C2O4).3/2H2O. Crystals suitable for the X-ray determination of the title compound were obtained by mixing methanolic solutions of (CyNH3)2(C2O4).3/2H2O and SnPh2Cl2 in a 1:1 ratio and subsequent slow solvent evaporation.

Refinement top

Hydrogen atoms bonded to carbon were treated as riding with C–H = 0.95 Å for aryl-CH and C–H = 0.99 Å for CH2 groups. Isotropic displacement parameters for these hydrogen atoms were constrained to Uiso(H) = 1.2Ueq(C). Hydrogen atoms bonded to nitrogen were located in a difference Fourier map; N—H distances were restrained to 0.91 (3) Å. Isotropic displacement parameters for these hydrogen atoms were constrained to Uiso(H) = 1.5Ueq(N). Refinement showed that the crystal under investigation was an inversion twin; the major domain is associated with a volume fraction of 0.77 (5).

Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular entities of the title compound with partial atom labelling. [Symmetry code: (i) -x, -y, z.]
[Figure 2] Fig. 2. A view of N—H···Cl hydrogen bonds in the crystal structure of the title compound. H atoms non-participating in hydrogen bonding and the phenyl groups have been omitted for clarity.
Bis(cyclohexylammonium) tetrachloridodiphenylstannate(IV) top
Crystal data top
(C6H14N)2[Sn(C6H5)2Cl4]F(000) = 2512
Mr = 615.05Dx = 1.506 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 5810 reflections
a = 13.558 (4) Åθ = 3.0–26.2°
b = 49.646 (14) ŵ = 1.35 mm1
c = 8.058 (2) ÅT = 100 K
V = 5424 (3) Å3Plate, colorless
Z = 80.30 × 0.21 × 0.05 mm
Data collection top
Bruker D8 goniometer with APEX area detector
diffractometer
2772 independent reflections
Radiation source: Incoatec microsource2563 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.069
ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.687, Tmax = 0.935k = 6262
15474 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.004
2772 reflectionsΔρmax = 1.92 e Å3
151 parametersΔρmin = 0.67 e Å3
4 restraintsAbsolute structure: Flack (1983), 1281 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.23 (5)
Crystal data top
(C6H14N)2[Sn(C6H5)2Cl4]V = 5424 (3) Å3
Mr = 615.05Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 13.558 (4) ŵ = 1.35 mm1
b = 49.646 (14) ÅT = 100 K
c = 8.058 (2) Å0.30 × 0.21 × 0.05 mm
Data collection top
Bruker D8 goniometer with APEX area detector
diffractometer
2772 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2563 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.935Rint = 0.069
15474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 1.92 e Å3
S = 1.06Δρmin = 0.67 e Å3
2772 reflectionsAbsolute structure: Flack (1983), 1281 Friedel pairs
151 parametersAbsolute structure parameter: 0.23 (5)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00000.00000.72474 (9)0.02578 (15)
Cl10.11741 (11)0.01834 (3)0.94793 (18)0.0329 (4)
Cl20.11954 (10)0.01707 (3)0.4982 (2)0.0308 (4)
C10.0727 (4)0.03830 (10)0.7238 (8)0.0285 (11)
C20.0212 (3)0.06170 (10)0.7321 (11)0.0277 (12)
H20.04840.06090.74390.033*
C30.0659 (4)0.08670 (11)0.7241 (9)0.0362 (13)
H30.02750.10270.72260.043*
C40.1690 (4)0.08788 (11)0.7183 (9)0.0357 (13)
H40.20160.10480.71820.043*
C50.2215 (5)0.06497 (13)0.7128 (10)0.0372 (14)
H50.29140.06590.70600.045*
C60.1752 (4)0.03965 (11)0.7170 (9)0.0297 (12)
H60.21340.02360.71520.036*
N10.1784 (4)0.02720 (11)0.2043 (9)0.0375 (13)
H1A0.233 (4)0.0271 (15)0.138 (8)0.056*
H1B0.142 (5)0.0132 (10)0.164 (8)0.056*
H1C0.181 (6)0.0222 (15)0.311 (4)0.056*
C70.1431 (4)0.05466 (11)0.1699 (7)0.0317 (14)
H70.12710.05570.04900.038*
C80.0488 (4)0.06018 (12)0.2660 (7)0.0326 (15)
H8A0.00290.04720.23160.039*
H8B0.06100.05770.38620.039*
C90.0141 (4)0.08851 (11)0.2336 (16)0.0401 (14)
H9A0.04520.09210.30180.048*
H9B0.00500.09020.11550.048*
C100.0917 (5)0.10933 (13)0.2730 (9)0.0489 (19)
H10A0.10540.10930.39370.059*
H10B0.06740.12740.24190.059*
C110.1854 (5)0.10318 (12)0.1787 (8)0.0417 (17)
H11A0.17350.10600.05880.050*
H11B0.23740.11600.21380.050*
C120.2216 (5)0.07509 (12)0.2055 (10)0.0343 (14)
H12A0.24380.07310.32190.041*
H12B0.27900.07170.13250.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0195 (2)0.0327 (3)0.0251 (2)0.0025 (2)0.0000.000
Cl10.0289 (7)0.0418 (8)0.0281 (11)0.0032 (6)0.0082 (7)0.0044 (7)
Cl20.0236 (6)0.0372 (7)0.0316 (11)0.0016 (5)0.0062 (7)0.0032 (7)
C10.040 (3)0.031 (3)0.014 (2)0.002 (2)0.006 (3)0.001 (3)
C20.020 (3)0.042 (3)0.021 (3)0.000 (2)0.009 (4)0.002 (3)
C30.048 (4)0.033 (3)0.028 (3)0.002 (2)0.002 (4)0.006 (3)
C40.045 (3)0.037 (3)0.025 (3)0.013 (3)0.006 (3)0.002 (3)
C50.037 (3)0.047 (4)0.028 (3)0.012 (3)0.001 (3)0.007 (4)
C60.025 (3)0.041 (3)0.023 (3)0.001 (2)0.010 (3)0.002 (3)
N10.030 (3)0.035 (3)0.047 (4)0.002 (2)0.005 (3)0.003 (3)
C70.031 (3)0.031 (3)0.032 (3)0.001 (3)0.003 (2)0.000 (2)
C80.028 (3)0.043 (4)0.027 (4)0.004 (3)0.001 (2)0.001 (2)
C90.027 (3)0.041 (3)0.052 (4)0.008 (3)0.002 (4)0.009 (5)
C100.060 (4)0.032 (3)0.056 (5)0.005 (3)0.003 (3)0.002 (3)
C110.047 (4)0.037 (4)0.041 (4)0.010 (3)0.000 (3)0.001 (3)
C120.036 (3)0.041 (3)0.026 (4)0.011 (3)0.005 (3)0.001 (3)
Geometric parameters (Å, º) top
Sn1—C1i2.142 (5)N1—H1B0.91 (2)
Sn1—C12.142 (5)N1—H1C0.90 (2)
Sn1—Cl12.5685 (16)C7—C121.498 (8)
Sn1—Cl1i2.5686 (16)C7—C81.519 (8)
Sn1—Cl22.5842 (17)C7—H71.0000
Sn1—Cl2i2.5843 (17)C8—C91.506 (8)
C1—C21.357 (7)C8—H8A0.9900
C1—C61.392 (7)C8—H8B0.9900
C2—C31.383 (7)C9—C101.509 (9)
C2—H20.9500C9—H9A0.9900
C3—C41.399 (8)C9—H9B0.9900
C3—H30.9500C10—C111.511 (9)
C4—C51.343 (9)C10—H10A0.9900
C4—H40.9500C10—H10B0.9900
C5—C61.406 (8)C11—C121.494 (9)
C5—H50.9500C11—H11A0.9900
C6—H60.9500C11—H11B0.9900
N1—C71.471 (8)C12—H12A0.9900
N1—H1A0.91 (2)C12—H12B0.9900
C1i—Sn1—C1179.6 (4)H1B—N1—H1C99 (7)
C1i—Sn1—Cl191.82 (16)N1—C7—C12111.1 (5)
C1—Sn1—Cl188.46 (17)N1—C7—C8110.2 (5)
C1i—Sn1—Cl1i88.45 (17)C12—C7—C8112.2 (5)
C1—Sn1—Cl1i91.82 (16)N1—C7—H7107.7
Cl1—Sn1—Cl1i91.12 (8)C12—C7—H7107.7
C1i—Sn1—Cl290.00 (17)C8—C7—H7107.7
C1—Sn1—Cl289.72 (16)C9—C8—C7110.1 (6)
Cl1—Sn1—Cl289.41 (5)C9—C8—H8A109.6
Cl1i—Sn1—Cl2178.38 (5)C7—C8—H8A109.6
C1i—Sn1—Cl2i89.72 (16)C9—C8—H8B109.6
C1—Sn1—Cl2i90.00 (17)C7—C8—H8B109.6
Cl1—Sn1—Cl2i178.39 (5)H8A—C8—H8B108.2
Cl1i—Sn1—Cl2i89.41 (5)C8—C9—C10112.6 (6)
Cl2—Sn1—Cl2i90.10 (8)C8—C9—H9A109.1
C2—C1—C6118.3 (5)C10—C9—H9A109.1
C2—C1—Sn1121.5 (4)C8—C9—H9B109.1
C6—C1—Sn1120.1 (4)C10—C9—H9B109.1
C1—C2—C3122.7 (5)H9A—C9—H9B107.8
C1—C2—H2118.6C9—C10—C11110.0 (6)
C3—C2—H2118.6C9—C10—H10A109.7
C2—C3—C4118.5 (5)C11—C10—H10A109.7
C2—C3—H3120.8C9—C10—H10B109.7
C4—C3—H3120.8C11—C10—H10B109.7
C5—C4—C3119.7 (5)H10A—C10—H10B108.2
C5—C4—H4120.2C12—C11—C10113.1 (5)
C3—C4—H4120.2C12—C11—H11A109.0
C4—C5—C6121.3 (6)C10—C11—H11A109.0
C4—C5—H5119.3C12—C11—H11B109.0
C6—C5—H5119.3C10—C11—H11B109.0
C1—C6—C5119.3 (5)H11A—C11—H11B107.8
C1—C6—H6120.3C11—C12—C7111.8 (5)
C5—C6—H6120.3C11—C12—H12A109.3
C7—N1—H1A99 (5)C7—C12—H12A109.3
C7—N1—H1B118 (5)C11—C12—H12B109.3
H1A—N1—H1B103 (6)C7—C12—H12B109.3
C7—N1—H1C117 (5)H12A—C12—H12B107.9
H1A—N1—H1C122 (7)
C1i—Sn1—C1—C293.3 (8)C2—C3—C4—C53.1 (11)
Cl1—Sn1—C1—C241.0 (6)C3—C4—C5—C61.6 (12)
Cl1i—Sn1—C1—C2132.1 (6)C2—C1—C6—C52.3 (10)
Cl2—Sn1—C1—C248.4 (6)Sn1—C1—C6—C5178.6 (6)
Cl2i—Sn1—C1—C2138.5 (6)C4—C5—C6—C11.2 (11)
C1i—Sn1—C1—C687.6 (4)N1—C7—C8—C9178.7 (6)
Cl1—Sn1—C1—C6138.0 (5)C12—C7—C8—C954.3 (7)
Cl1i—Sn1—C1—C647.0 (5)C7—C8—C9—C1055.7 (10)
Cl2—Sn1—C1—C6132.5 (5)C8—C9—C10—C1155.1 (10)
Cl2i—Sn1—C1—C642.4 (5)C9—C10—C11—C1253.5 (8)
C6—C1—C2—C34.0 (12)C10—C11—C12—C753.4 (8)
Sn1—C1—C2—C3177.0 (6)N1—C7—C12—C11177.3 (6)
C1—C2—C3—C44.4 (12)C8—C7—C12—C1153.5 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2ii0.91 (3)2.35 (4)3.244 (8)166 (10)
N1—H1B···Cl1iii0.91 (3)2.36 (6)3.172 (9)148 (8)
N1—H1C···Cl2i0.90 (3)2.60 (7)3.328 (9)139 (9)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y, z1/2; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.91 (3)2.35 (4)3.244 (8)166 (10)
N1—H1B···Cl1ii0.91 (3)2.36 (6)3.172 (9)148 (8)
N1—H1C···Cl2iii0.90 (3)2.60 (7)3.328 (9)139 (9)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y, z1; (iii) x, y, z.
 

References

First citationBruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationDiop, T., Diop, L., Molloy, K. C. K. & Kocioc-Köhn, G. (2011). Acta Cryst. E67, m203–m204.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationFernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fermandez, M. E. (2002). Inorg. Chem. 41, 4435–4443.  Web of Science PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarcia-Seijo, M. I., Castineiras, A., Mahieu, B., Janosi, J., Berente, Z., Kollar, L. & Fernandez, G. (2001). Polyhedron, 20, 855–868.  CAS Google Scholar
First citationKapoor, R. N., Guillory, P., Schulte, L., Cervantes-Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L. & Cattey, H. (2013a). Acta Cryst. E69, m473–m474.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarr, M., Diallo, W., Diasse-Sarr, A., Plasseraud, L. & Cattey, H. (2013b). Acta Cryst. E69, m581–m582.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035–m1037.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m220-m221
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds