organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(2-Hy­dr­oxy­eth­yl)(meth­yl)amino]­thio­phene-2-carbaldehyde

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: ahuddl09@126.com

(Received 12 April 2014; accepted 23 May 2014; online 31 May 2014)

In the title compound, C8H11NO2S, the aldehyde group is approximately coplanar with the thio­phene ring [maximum deviation = 0.023 (2) Å]. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds into supra­molecular chains propagating along the a-axis direction.

Related literature

For potential applications of thio­phene derivatives, see: Encinas (2002[Encinas, S. (2002). Chem. Eur. J. 8, 137-150.]). For a related thio­phene derivative, see: Perašínová et al. (2006[Perašínová, L., Štefko, M., Végh, D. & Kožíšek, J. (2006). Acta Cryst. E62, o3972-o3973.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11NO2S

  • Mr = 185.24

  • Orthorhombic, P c a 21

  • a = 15.764 (5) Å

  • b = 5.136 (5) Å

  • c = 11.028 (5) Å

  • V = 892.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 5828 measured reflections

  • 1564 independent reflections

  • 1514 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.067

  • S = 1.08

  • 1564 reflections

  • 111 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 756 Friedel pairs

  • Absolute structure parameter: −0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.93 2.751 (2) 174
Symmetry code: (i) [x-{\script{1\over 2}}, -y, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The introduction about the highpolarizability of sulfur atoms in thiophene rings leads to a stabilization of the conjugated chain and to excellent charge transport properties. Functional thiophene derivatives have attracted comprehensive interest among researchers all over the world and have actually been advanced to be among the most frequently used π-conjugated materials, in particular as active components in organic electronic devices and molecular electronics (Encinas et al., 2002). In the title compound (I) (Fig. 1), the S1—C4 bond length of 1.7398 (18) Å is longer than the corresponding S1—C15 bond length of 1.708 (2) Å in related thiophene derivative (Perašínová et al. 2006), which is due to the fact that there is a higher π-electron delocalized system in the molecule 5-(fluoren-9-ylidenemethyl)thiophene-2-carbaldehyde. In the crystal structure of (I), the molecules are interconnected, via hydrogen bonds (Table 1) [O1—H1···O2i; symmetry codes: (i) x - 1/2, -y, z], forming a one-dimensional structure (Fig. 2).

Related literature top

For potential applications of thiophene derivatives, see: Encinas (2002). For a related thiophene derivative, see: Perašínová et al. (2006).

Experimental top

A 0.86 g (4.5 mmol) amount of 5-bromothiophene-2-carbaldehyde, 1.13 g (15 mmol) of 2-(methylamino)ethanol, and 0.1 g of toluene-4-sulfonic acid were mixed and stirred at a bath temperature of 373 K for 20 h. The mixture was cooled, 25 mL of water was added. The organic layer and dichloromethane extracts were combined, washed with water, and dried over MgSO4. Evaporation of the solvent, purification by column chromatography. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.):9.40 (s, 1H), 7.65 (d, 1H), 6.12 (d, 1H), 4.87 (t, 1H), 3.62 (q, 2H), 3.47 (t, 2H), 3.09 (s, 3H).

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å and O—H = 0.82 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C) and Uiso(H) = 1.5 Ueq(O)

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : The crystal packing of (I), showing O—H···O hydrogen-bonding interactions as dashed lines.
5-[(2-Hydroxyethyl)(methyl)amino]thiophene-2-carbaldehyde top
Crystal data top
C8H11NO2SF(000) = 392
Mr = 185.24Dx = 1.378 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2acCell parameters from 3223 reflections
a = 15.764 (5) Åθ = 2.6–26.8°
b = 5.136 (5) ŵ = 0.32 mm1
c = 11.028 (5) ÅT = 293 K
V = 892.9 (10) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1514 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
phi and ω scansh = 1718
5828 measured reflectionsk = 56
1564 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.0567P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1564 reflectionsΔρmax = 0.14 e Å3
111 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Flack (1983), 756 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C8H11NO2SV = 892.9 (10) Å3
Mr = 185.24Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 15.764 (5) ŵ = 0.32 mm1
b = 5.136 (5) ÅT = 293 K
c = 11.028 (5) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1514 reflections with I > 2σ(I)
5828 measured reflectionsRint = 0.020
1564 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.14 e Å3
S = 1.08Δρmin = 0.13 e Å3
1564 reflectionsAbsolute structure: Flack (1983), 756 Friedel pairs
111 parametersAbsolute structure parameter: 0.03 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53676 (3)0.28672 (8)0.22080 (5)0.04276 (14)
O10.32880 (9)0.3310 (3)0.35492 (15)0.0575 (4)
H10.28880.24790.32740.086*
N10.40014 (10)0.5376 (3)0.13076 (14)0.0446 (4)
C40.45817 (10)0.3498 (4)0.11400 (16)0.0385 (4)
C50.46620 (12)0.1849 (4)0.01313 (18)0.0459 (5)
H50.43010.18890.05350.055*
C60.53411 (13)0.0157 (4)0.02439 (17)0.0501 (5)
H60.54790.10560.03510.060*
C70.57958 (11)0.0402 (4)0.12977 (19)0.0457 (4)
O20.68678 (9)0.0828 (4)0.26743 (18)0.0723 (5)
C20.39359 (13)0.6822 (3)0.24362 (18)0.0460 (5)
H2A0.38700.86580.22510.055*
H2B0.44590.66170.28880.055*
C10.33673 (14)0.5845 (5)0.0376 (2)0.0583 (6)
H1A0.36440.61270.03890.087*
H1B0.30400.73560.05850.087*
H1C0.29990.43620.03150.087*
C80.64980 (13)0.1077 (4)0.1692 (2)0.0553 (5)
H80.67000.23510.11670.066*
C30.32038 (12)0.5959 (4)0.32204 (19)0.0490 (5)
H3A0.31840.70220.39470.059*
H3B0.26760.62040.27830.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0454 (2)0.0426 (2)0.0403 (2)0.00002 (17)0.0065 (2)0.0035 (3)
O10.0509 (8)0.0526 (8)0.0689 (10)0.0042 (7)0.0065 (8)0.0180 (7)
N10.0451 (8)0.0484 (9)0.0403 (7)0.0028 (7)0.0043 (7)0.0008 (7)
C40.0413 (10)0.0403 (9)0.0338 (9)0.0082 (7)0.0010 (7)0.0035 (8)
C50.0524 (12)0.0537 (12)0.0317 (9)0.0072 (9)0.0002 (8)0.0023 (8)
C60.0592 (13)0.0510 (12)0.0400 (10)0.0036 (9)0.0120 (9)0.0060 (9)
C70.0433 (10)0.0437 (10)0.0500 (9)0.0024 (8)0.0106 (8)0.0003 (8)
O20.0587 (9)0.0613 (10)0.0969 (13)0.0069 (8)0.0212 (9)0.0000 (9)
C20.0446 (9)0.0380 (9)0.0555 (14)0.0031 (7)0.0037 (8)0.0050 (8)
C10.0518 (12)0.0673 (15)0.0558 (12)0.0036 (11)0.0106 (9)0.0090 (10)
C80.0484 (11)0.0469 (12)0.0705 (13)0.0010 (10)0.0064 (12)0.0012 (10)
C30.0494 (11)0.0427 (10)0.0550 (12)0.0026 (9)0.0057 (9)0.0005 (9)
Geometric parameters (Å, º) top
S1—C41.7398 (18)C7—C81.411 (3)
S1—C71.751 (2)O2—C81.237 (3)
O1—C31.414 (3)C2—C31.509 (3)
O1—H10.8200C2—H2A0.9700
N1—C41.342 (3)C2—H2B0.9700
N1—C21.453 (2)C1—H1A0.9600
N1—C11.454 (3)C1—H1B0.9600
C4—C51.404 (3)C1—H1C0.9600
C5—C61.384 (3)C8—H80.9300
C5—H50.9300C3—H3A0.9700
C6—C71.371 (3)C3—H3B0.9700
C6—H60.9300
C4—S1—C791.21 (10)C3—C2—H2A108.9
C3—O1—H1109.5N1—C2—H2B108.9
C4—N1—C2122.26 (16)C3—C2—H2B108.9
C4—N1—C1119.38 (17)H2A—C2—H2B107.7
C2—N1—C1118.15 (17)N1—C1—H1A109.5
N1—C4—C5127.17 (17)N1—C1—H1B109.5
N1—C4—S1121.74 (14)H1A—C1—H1B109.5
C5—C4—S1111.08 (15)N1—C1—H1C109.5
C6—C5—C4112.17 (18)H1A—C1—H1C109.5
C6—C5—H5123.9H1B—C1—H1C109.5
C4—C5—H5123.9O2—C8—C7125.7 (2)
C7—C6—C5114.99 (18)O2—C8—H8117.1
C7—C6—H6122.5C7—C8—H8117.1
C5—C6—H6122.5O1—C3—C2110.98 (15)
C6—C7—C8128.45 (19)O1—C3—H3A109.4
C6—C7—S1110.53 (15)C2—C3—H3A109.4
C8—C7—S1120.99 (17)O1—C3—H3B109.4
N1—C2—C3113.27 (16)C2—C3—H3B109.4
N1—C2—H2A108.9H3A—C3—H3B108.0
C2—N1—C4—C5174.75 (18)C5—C6—C7—C8177.8 (2)
C1—N1—C4—C50.2 (3)C5—C6—C7—S10.2 (2)
C2—N1—C4—S16.4 (2)C4—S1—C7—C60.14 (15)
C1—N1—C4—S1179.03 (15)C4—S1—C7—C8178.05 (16)
C7—S1—C4—N1179.10 (15)C4—N1—C2—C3103.3 (2)
C7—S1—C4—C50.06 (15)C1—N1—C2—C371.4 (2)
N1—C4—C5—C6178.94 (18)C6—C7—C8—O2177.4 (2)
S1—C4—C5—C60.0 (2)S1—C7—C8—O20.5 (3)
C4—C5—C6—C70.1 (2)N1—C2—C3—O160.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.751 (2)174
Symmetry code: (i) x1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.751 (2)173.9
Symmetry code: (i) x1/2, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21271004), the Education Committee of Anhui Province (grant No. KJ2010A030) and the Undergraduate Innovative Test Program in Anhui University.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEncinas, S. (2002). Chem. Eur. J. 8, 137–150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerašínová, L., Štefko, M., Végh, D. & Kožíšek, J. (2006). Acta Cryst. E62, o3972–o3973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds