organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyclo­hexyl-6,7-dimeth­­oxy-1,4-di­hydro­naphthalene

aInstitute of Biotechnology, Zhejiang University, People's Republic of China, bCollege of Pharmaceutical Science, Zhejiang University, People's Republic of China, cCollege of Agriculture and Biotechnology, Zhejiang University, People's Republic of China, and dCollege of Environmental & Resource Sciences, Zhejiang University, People's Republic of China
*Correspondence e-mail: wyshi@zju.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 24 April 2014; accepted 6 May 2014; online 17 May 2014)

The title compound, C18H24O2, was isolated from the leaves extract of Ficus carica L. The cyclo­hexane ring displays a chair conformation whereas the cyclo­hexa-1,4-diene ring adopts a flattened boat conformation with methyl C atoms at the prow and stern. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into supra­molecular chains propagated along the b-axis direction.

Related literature

For the bioactivity of the title compound, see: Fang et al. (2008[Fang, Y.-H., Wei, Y.-X., Zhao, A.-Y. & Guo, Q. (2008). Chin. J. Biochem. Pharm. 29, 366-369.]); Xie & Zhuang (2010[Xie, M.-N. & Zhuang, W.-X. (2010). Life Sci. Res. 14, 523-527.]). For biological activity of compounds isolated from Ficus carica L, see: Joseph & Raj (2011[Joseph, B. & Raj, S. J. (2011). Int. J. PharmTech. Res. 3, 8-12.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24O2

  • Mr = 272.37

  • Monoclinic, P 21

  • a = 9.0635 (4) Å

  • b = 6.3973 (3) Å

  • c = 13.9872 (7) Å

  • β = 104.241 (5)°

  • V = 786.08 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.57 mm−1

  • T = 294 K

  • 0.28 × 0.15 × 0.12 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.76, Tmax = 0.85

  • 5062 measured reflections

  • 2737 independent reflections

  • 2318 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.04

  • 2737 reflections

  • 184 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O2i 0.96 2.59 3.272 (3) 129
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ficus carica L. is a deciduous tree belonging to the Moraceae family. Different biologically activity compounds have been isolated from this plant (Joseph & Raj, 2011). The leaf extracts of Ficus carica L. show the potential activity of inhibit the growth of the cancer cell, antioxidative and antibiosis (Xie & Zhuang, 2010; Fang et al., 2008). The title compound is one of leaves extracts from Ficus carica L.

In the title compound, the cyclohexane ring displays the chair conformation whereas the cyclohexadiene ring adopts the flattened boat conformation with the methyl-C atoms (C7 and C10) on the prow and stern, respectively. In the crystal, the molecules are linked by weak C—H···O hydrogen bonds into the supramolecular chains running along the b-axis direction.

Related literature top

For the bioactivity of the title compound, see: Fang et al. (2008); Xie & Zhuang (2010). For biologically activity compounds isolated from Ficus carica L., see: Joseph & Raj (2011).

Experimental top

The leaves of Ficus carica was be extracted by petroleum ether. The upper phase was filtered and evaporated in vacuo to obtain the crystals. The single crystals were recrystallized from a hexane solution.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
1-Cyclohexyl-6,7-dimethoxy-1,4-dihydronaphthalene top
Crystal data top
C18H24O2F(000) = 296
Mr = 272.37Dx = 1.151 Mg m3
Monoclinic, P21Melting point: 423 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54180 Å
a = 9.0635 (4) ÅCell parameters from 5062 reflections
b = 6.3973 (3) Åθ = 3.2–67.6°
c = 13.9872 (7) ŵ = 0.57 mm1
β = 104.241 (5)°T = 294 K
V = 786.08 (6) Å3Needle, colourless
Z = 20.28 × 0.15 × 0.12 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
2737 independent reflections
Radiation source: fine-focus sealed tube2318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 67.6°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1010
Tmin = 0.76, Tmax = 0.85k = 77
5062 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0278P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2737 reflectionsΔρmax = 0.10 e Å3
184 parametersΔρmin = 0.10 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0191 (17)
Crystal data top
C18H24O2V = 786.08 (6) Å3
Mr = 272.37Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.0635 (4) ŵ = 0.57 mm1
b = 6.3973 (3) ÅT = 294 K
c = 13.9872 (7) Å0.28 × 0.15 × 0.12 mm
β = 104.241 (5)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
2737 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2318 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.85Rint = 0.027
5062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.10 e Å3
2737 reflectionsΔρmin = 0.10 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67571 (16)0.5524 (2)0.46174 (9)0.0672 (4)
O20.83494 (17)0.8807 (2)0.52180 (12)0.0718 (4)
C10.2221 (5)0.3458 (6)0.8467 (4)0.1353 (15)
H1A0.25270.37280.91700.162*
H1B0.11180.33930.82730.162*
C20.2869 (5)0.1400 (6)0.8249 (3)0.1189 (12)
H2A0.24630.10530.75590.143*
H2B0.25590.03140.86420.143*
C30.4597 (4)0.1463 (4)0.8472 (2)0.0911 (8)
H3A0.49720.01330.82960.109*
H3B0.50100.16780.91730.109*
C40.5140 (3)0.3217 (3)0.78985 (15)0.0649 (5)
H40.46710.29580.71990.078*
C50.4514 (3)0.5281 (4)0.8149 (2)0.0806 (6)
H5A0.48320.63890.77710.097*
H5B0.49210.55820.88430.097*
C60.2766 (4)0.5223 (6)0.7919 (3)0.1258 (13)
H6A0.23930.65430.81070.151*
H6B0.23570.50390.72150.151*
C70.6876 (3)0.3242 (3)0.80090 (15)0.0650 (5)
H70.71560.18480.78230.078*
C80.7775 (3)0.3614 (5)0.90618 (18)0.0876 (8)
H80.77450.25880.95280.105*
C90.8597 (3)0.5300 (6)0.93588 (19)0.0947 (9)
H90.90770.54091.00260.114*
C100.8806 (3)0.7015 (5)0.87079 (18)0.0859 (8)
H10A0.98820.73430.88370.103*
H10B0.82870.82470.88650.103*
C110.8579 (2)0.7884 (3)0.69386 (17)0.0616 (5)
H110.91690.90590.71590.074*
C120.8086 (2)0.7530 (3)0.59475 (15)0.0552 (5)
C130.72044 (19)0.5754 (3)0.56185 (13)0.0501 (4)
C140.6851 (2)0.4408 (3)0.62918 (14)0.0514 (4)
H140.62740.32240.60680.062*
C150.7338 (2)0.4775 (3)0.73125 (14)0.0539 (5)
C160.8218 (2)0.6528 (3)0.76285 (14)0.0610 (5)
C170.5812 (3)0.3808 (4)0.42523 (17)0.0823 (7)
H17A0.55600.38260.35440.123*
H17B0.48960.38950.44780.123*
H17C0.63360.25320.44850.123*
C180.9424 (3)1.0441 (4)0.5498 (2)0.0919 (8)
H18A0.95781.11210.49190.138*
H18B1.03730.98720.58700.138*
H18C0.90511.14360.58960.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0746 (9)0.0747 (10)0.0547 (7)0.0196 (8)0.0205 (6)0.0016 (7)
O20.0705 (8)0.0596 (9)0.0941 (11)0.0131 (7)0.0367 (7)0.0036 (8)
C10.136 (3)0.106 (3)0.203 (4)0.003 (2)0.117 (3)0.007 (3)
C20.154 (3)0.091 (2)0.141 (3)0.035 (2)0.092 (2)0.010 (2)
C30.140 (2)0.0570 (13)0.0913 (17)0.0017 (15)0.0577 (16)0.0064 (12)
C40.0840 (13)0.0572 (11)0.0592 (11)0.0032 (10)0.0287 (10)0.0082 (9)
C50.0939 (16)0.0562 (12)0.1033 (17)0.0071 (12)0.0465 (13)0.0113 (12)
C60.097 (2)0.102 (2)0.202 (4)0.015 (2)0.081 (2)0.028 (3)
C70.0811 (13)0.0583 (11)0.0562 (11)0.0179 (11)0.0183 (9)0.0064 (9)
C80.0953 (17)0.103 (2)0.0590 (13)0.0274 (17)0.0093 (12)0.0216 (14)
C90.0919 (18)0.123 (3)0.0570 (12)0.0246 (19)0.0047 (12)0.0068 (17)
C100.0874 (16)0.094 (2)0.0661 (14)0.0091 (15)0.0004 (11)0.0205 (14)
C110.0474 (9)0.0562 (12)0.0812 (13)0.0035 (8)0.0157 (9)0.0141 (10)
C120.0431 (8)0.0527 (10)0.0743 (12)0.0006 (8)0.0229 (8)0.0012 (9)
C130.0449 (9)0.0532 (10)0.0545 (10)0.0011 (7)0.0169 (7)0.0041 (8)
C140.0488 (9)0.0498 (10)0.0570 (10)0.0028 (8)0.0157 (8)0.0043 (8)
C150.0546 (10)0.0544 (11)0.0532 (10)0.0115 (8)0.0140 (8)0.0018 (8)
C160.0533 (10)0.0637 (12)0.0623 (11)0.0095 (9)0.0070 (9)0.0139 (10)
C170.0982 (16)0.0818 (16)0.0584 (12)0.0295 (14)0.0032 (11)0.0050 (11)
C180.0838 (16)0.0603 (14)0.146 (2)0.0186 (13)0.0553 (16)0.0067 (15)
Geometric parameters (Å, º) top
O1—C131.367 (2)C7—C81.516 (3)
O1—C171.409 (3)C7—H70.9800
O2—C121.373 (2)C8—C91.318 (4)
O2—C181.417 (3)C8—H80.9300
C1—C21.503 (5)C9—C101.468 (5)
C1—C61.514 (5)C9—H90.9300
C1—H1A0.9700C10—C161.505 (3)
C1—H1B0.9700C10—H10A0.9700
C2—C31.520 (5)C10—H10B0.9700
C2—H2A0.9700C11—C121.367 (3)
C2—H2B0.9700C11—C161.395 (3)
C3—C41.529 (3)C11—H110.9300
C3—H3A0.9700C12—C131.400 (3)
C3—H3B0.9700C13—C141.371 (3)
C4—C51.512 (3)C14—C151.406 (3)
C4—C71.543 (3)C14—H140.9300
C4—H40.9800C15—C161.384 (3)
C5—C61.537 (4)C17—H17A0.9600
C5—H5A0.9700C17—H17B0.9600
C5—H5B0.9700C17—H17C0.9600
C6—H6A0.9700C18—H18A0.9600
C6—H6B0.9700C18—H18B0.9600
C7—C151.512 (3)C18—H18C0.9600
C13—O1—C17117.13 (16)C4—C7—H7106.8
C12—O2—C18117.82 (19)C9—C8—C7124.2 (2)
C2—C1—C6111.0 (3)C9—C8—H8117.9
C2—C1—H1A109.4C7—C8—H8117.9
C6—C1—H1A109.4C8—C9—C10124.4 (2)
C2—C1—H1B109.4C8—C9—H9117.8
C6—C1—H1B109.4C10—C9—H9117.8
H1A—C1—H1B108.0C9—C10—C16113.5 (2)
C1—C2—C3111.7 (3)C9—C10—H10A108.9
C1—C2—H2A109.3C16—C10—H10A108.9
C3—C2—H2A109.3C9—C10—H10B108.9
C1—C2—H2B109.3C16—C10—H10B108.9
C3—C2—H2B109.3H10A—C10—H10B107.7
H2A—C2—H2B107.9C12—C11—C16121.65 (18)
C2—C3—C4111.1 (2)C12—C11—H11119.2
C2—C3—H3A109.4C16—C11—H11119.2
C4—C3—H3A109.4C11—C12—O2125.58 (18)
C2—C3—H3B109.4C11—C12—C13119.05 (17)
C4—C3—H3B109.4O2—C12—C13115.35 (16)
H3A—C3—H3B108.0O1—C13—C14125.16 (16)
C5—C4—C3109.39 (18)O1—C13—C12115.19 (15)
C5—C4—C7113.54 (19)C14—C13—C12119.65 (16)
C3—C4—C7114.01 (19)C13—C14—C15121.65 (17)
C5—C4—H4106.4C13—C14—H14119.2
C3—C4—H4106.4C15—C14—H14119.2
C7—C4—H4106.4C16—C15—C14118.14 (17)
C4—C5—C6110.9 (3)C16—C15—C7123.28 (18)
C4—C5—H5A109.5C14—C15—C7118.58 (17)
C6—C5—H5A109.5C15—C16—C11119.85 (17)
C4—C5—H5B109.5C15—C16—C10121.5 (2)
C6—C5—H5B109.5C11—C16—C10118.7 (2)
H5A—C5—H5B108.0O1—C17—H17A109.5
C1—C6—C5111.1 (3)O1—C17—H17B109.5
C1—C6—H6A109.4H17A—C17—H17B109.5
C5—C6—H6A109.4O1—C17—H17C109.5
C1—C6—H6B109.4H17A—C17—H17C109.5
C5—C6—H6B109.4H17B—C17—H17C109.5
H6A—C6—H6B108.0O2—C18—H18A109.5
C15—C7—C8110.8 (2)O2—C18—H18B109.5
C15—C7—C4112.31 (16)H18A—C18—H18B109.5
C8—C7—C4112.98 (18)O2—C18—H18C109.5
C15—C7—H7106.8H18A—C18—H18C109.5
C8—C7—H7106.8H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O2i0.962.593.272 (3)129
Symmetry code: (i) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O2i0.962.593.272 (3)129
Symmetry code: (i) x+2, y+1/2, z+1.
 

Acknowledgements

Diffraction data was collected at the Analytical Center of the Chemistry Department of Zhejiang University, China.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFang, Y.-H., Wei, Y.-X., Zhao, A.-Y. & Guo, Q. (2008). Chin. J. Biochem. Pharm. 29, 366–369.  Google Scholar
First citationJoseph, B. & Raj, S. J. (2011). Int. J. PharmTech. Res. 3, 8–12.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, M.-N. & Zhuang, W.-X. (2010). Life Sci. Res. 14, 523–527.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds