metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m229-m230

Bis(tetra­phenyl­phospho­nium) tetra­chlorido­cobaltate(II)

aUnité de Recherche Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Constantine I, 25000 Constantine, Algeria
*Correspondence e-mail: Lamia_bendjeddou@yahoo.fr

(Received 7 May 2014; accepted 15 May 2014; online 21 May 2014)

The title compound, (C24H20P)2[CoCl4], was prepared under hydro­thermal conditions. In the crystal, the tetra­phenyl­phospho­nium cations are linked by pairs of weak C—H⋯π inter­actions into supra­molecular dimers; the CoII cations lie on twofold rotation axes and the tetra­hedral [CoCl4]2− anions are linked with the tetra­phenyl­phospho­nium cations via weak C—H⋯Cl hydrogen bonds.

Related literature

For background and applications of compounds with supramolecular structures, see: Rowsell & Yaghi (2005[Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670-4679.]); Dong et al. (2007[Dong, Y.-B., Zhang, Q., Liu, L.-L., Ma, J.-P., Tang, B. & Huang, R.-Q. (2007). J. Am. Chem. Soc. 129, 1514-1515.]); Wu & Lin (2007[Wu, C.-D. & Lin, W.-B. (2007). Angew. Chem. Int. Ed. 46, 1075-1078.]); Zhao et al. (2003[Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934-936.]); Neville et al. (2008[Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869-2876.]); Huang et al. (2007[Huang, Y.-L., Huang, M.-Y., Chan, T.-H., Chang, B. C. & Lii, K. L. (2007). Chem. Mater. 19, 3232-3237.]). For applications of the tetra­phenyl­phospho­nium ion in supra­molecular chemistry and numerous coordination polymers, see: Zacharie et al. (1985[Zacharie, B., Wuest, J. D., Olivier, M. J. & Beauchamp, A. L. (1985). Acta Cryst. C41, 369-371.]); Schlueter & Geiser (2007[Schlueter, J. A. & Geiser, U. (2007). Acta Cryst. C63, m235-m237.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H20P)2[CoCl4]

  • Mr = 879.46

  • Monoclinic, C 2/c

  • a = 10.9154 (4) Å

  • b = 19.2514 (6) Å

  • c = 20.1826 (7) Å

  • β = 91.008 (2)°

  • V = 4240.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • 12226 measured reflections

  • 3748 independent reflections

  • 3180 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.084

  • S = 1.04

  • 3748 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Cl2 2.2791 (6)
Co1—Cl1 2.2873 (6)

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C19–C24 and C7-C12 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1 0.93 2.80 3.552 (3) 138
C11—H11⋯Cl1i 0.93 2.81 3.633 (2) 148
C23—H23⋯Cl2ii 0.93 2.77 3.644 (2) 156
C14—H14⋯Cg4iii 0.93 2.88 3.650 (2) 141
C21—H21⋯Cg2iii 0.93 2.79 3.446 (2) 129
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POVRay (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ .]).

Supporting information


Comment top

Research on supramolecular compounds has become popular because of their potential applications in areas such as gas storage (Rowsell & Yaghi, 2005), selective absorption (Dong et al., 2007), catalysis (Wu & Lin, 2007), magnetics (Zhao et al., 2003; Neville et al., 2008) and optics (Huang et al., 2007). P-Ligands are important structural motifs in organic syntheses, coordination chemistry and also in various catalytically active compounds, the tetraphenylphosphonium ion have been widely used in supramolecular chemistry and numerous coordination polymers with versatile structures and potential properties have been reported (Zacharie et al., 1985; Schlueter & Geiser, 2007). Thus, we report here the synthesis of title compound [L2.CoCl4], were L is tetraphenylphosphonium and its crystal structure.

The asymmetric unit of (I) and atomic numbering are illustrated in Fig. 1. The (I) contains tetraphenylphosphonium cations linked by weak C—H···π supramolecular interactions into dimmers. The CoII ion lies on a twofold axis and has a distorted tetrahedral coordination. The [CoCl4]-2 anions are linked with the cation via weak C—H···Cl hydrogen bonds (Fig. 2, 3).

The bond lengths for coordination CoII sphere is ranging from 2.2791 (6) to 2.2873 (6) Å for Co—Cl distances (Table 1). The crystal packing in the title structure can be described by altering CoCl4 tetrahedral of complex along the a axis at b = 1/4 and 3/4 (Fig. 2).

Related literature top

For background and potential applications of supramolecular compounds, see: Rowsell & Yaghi (2005); Dong et al. (2007); Wu & Lin (2007); Zhao et al. (2003); Neville et al. (2008); Huang et al. (2007). For applications of the tetraphenylphosphonium ion in supramolecular chemistry and numerous coordination polymers, see: Zacharie et al. (1985); Schlueter & Geiser (2007).

Experimental top

A mixture of CoCl2 (2.50 g, 10 mmol), tetraphenylphosphonium chloride hydrate (3.92 g,10 mmol) was dissolved in a 20 ml EtOH/H2O(v/v,1:2). The mixture was then sealed in a 25 ml stainless steel reactor and heated to 433 K for 3 days. Then the reactant mixture was cooled to room temperature at the rate of 5 degrees per hour. Evaporation of the resulting solution for a few days afforded pink crystals of title compound.

Refinement top

The aromatic H atoms were placed at calculated positions with C—H = 0.93, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title structure with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (*): -x, y, 1/2 - z].
[Figure 2] Fig. 2. Part of the layered packing in the crystal viewed down the b axis.
[Figure 3] Fig. 3. A view along the c axis of the crystal structure of the title compound, showing C—H···Cl hydrogen-bonds.
Bis(tetraphenylphosphonium) tetrachloridocobaltate(II) top
Crystal data top
(C24H20P)2[CoCl4]F(000) = 1812
Mr = 879.46Dx = 1.378 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1536 reflections
a = 10.9154 (4) Åθ = 3.2–25.1°
b = 19.2514 (6) ŵ = 0.77 mm1
c = 20.1826 (7) ÅT = 293 K
β = 91.008 (2)°Prism, pink
V = 4240.4 (3) Å30.2 × 0.1 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3180 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
ϕ scansh = 1212
12226 measured reflectionsk = 2222
3748 independent reflectionsl = 2422
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0401P)2 + 6.1572P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.04Δρmax = 1.51 e Å3
3748 reflectionsΔρmin = 0.22 e Å3
249 parameters
Crystal data top
(C24H20P)2[CoCl4]V = 4240.4 (3) Å3
Mr = 879.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.9154 (4) ŵ = 0.77 mm1
b = 19.2514 (6) ÅT = 293 K
c = 20.1826 (7) Å0.2 × 0.1 × 0.08 mm
β = 91.008 (2)°
Data collection top
Bruker APEXII
diffractometer
3180 reflections with I > 2σ(I)
12226 measured reflectionsRint = 0.028
3748 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.04Δρmax = 1.51 e Å3
3748 reflectionsΔρmin = 0.22 e Å3
249 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.41273 (5)0.36748 (3)0.07765 (3)0.0200 (2)
C10.3837 (2)0.29974 (11)0.13639 (11)0.0233 (7)
C20.3155 (2)0.31597 (12)0.19182 (11)0.0308 (7)
C30.2894 (3)0.26481 (13)0.23755 (13)0.0376 (8)
C40.3336 (2)0.19823 (12)0.22924 (12)0.0355 (8)
C50.4026 (2)0.18228 (12)0.17495 (12)0.0335 (8)
C60.4272 (2)0.23227 (11)0.12800 (12)0.0290 (7)
C70.5226 (2)0.33873 (11)0.01785 (11)0.0238 (7)
C80.6408 (2)0.36542 (13)0.01635 (12)0.0291 (7)
C90.7214 (2)0.34138 (14)0.03052 (13)0.0375 (8)
C100.6855 (2)0.29065 (13)0.07487 (12)0.0370 (8)
C110.5686 (3)0.26452 (12)0.07432 (12)0.0363 (8)
C120.4866 (2)0.28862 (12)0.02847 (12)0.0314 (7)
C130.27533 (19)0.39129 (10)0.03328 (10)0.0199 (6)
C140.2858 (2)0.42599 (12)0.02717 (11)0.0272 (7)
C150.1824 (2)0.44748 (12)0.06129 (11)0.0297 (7)
C160.0676 (2)0.43485 (12)0.03560 (11)0.0269 (7)
C170.0570 (2)0.40171 (12)0.02446 (11)0.0271 (7)
C180.1604 (2)0.38005 (11)0.05921 (11)0.0232 (7)
C190.47179 (19)0.44088 (11)0.12202 (10)0.0205 (6)
C200.4177 (2)0.50598 (11)0.11488 (11)0.0226 (6)
C210.4699 (2)0.56215 (12)0.14713 (11)0.0289 (7)
C220.5746 (2)0.55408 (13)0.18543 (11)0.0304 (7)
C230.6265 (2)0.48956 (14)0.19401 (11)0.0315 (8)
C240.5750 (2)0.43278 (13)0.16272 (11)0.0280 (7)
Co10.000000.45721 (2)0.250000.0202 (1)
Cl10.10790 (5)0.38813 (3)0.32242 (3)0.0338 (2)
Cl20.12506 (5)0.52482 (3)0.18779 (3)0.0267 (2)
H20.287600.361100.198100.0370*
H30.241900.275300.274000.0450*
H40.316700.164100.260400.0430*
H50.432900.137500.169800.0400*
H60.472500.221000.090900.0350*
H80.665500.399200.046700.0350*
H90.800300.359600.032100.0450*
H100.741000.274000.105500.0440*
H110.544800.230600.104800.0440*
H120.407000.271400.028400.0380*
H140.362800.434600.044400.0330*
H150.189500.470500.101600.0360*
H160.002300.448800.059000.0320*
H170.020100.393800.041800.0330*
H180.152800.358000.099900.0280*
H200.347400.511500.088700.0270*
H210.434100.605800.143000.0350*
H220.610500.592600.205700.0360*
H230.696000.484300.220800.0380*
H240.609300.389000.168800.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0206 (3)0.0189 (3)0.0205 (3)0.0001 (2)0.0001 (2)0.0013 (2)
C10.0266 (12)0.0210 (11)0.0222 (11)0.0004 (9)0.0037 (9)0.0011 (9)
C20.0441 (14)0.0228 (12)0.0255 (12)0.0057 (11)0.0025 (11)0.0007 (9)
C30.0528 (16)0.0346 (14)0.0256 (13)0.0020 (12)0.0065 (12)0.0037 (11)
C40.0484 (15)0.0275 (13)0.0303 (13)0.0040 (11)0.0064 (12)0.0096 (10)
C50.0454 (15)0.0187 (11)0.0361 (14)0.0038 (11)0.0070 (12)0.0010 (10)
C60.0324 (13)0.0255 (12)0.0291 (12)0.0037 (10)0.0013 (10)0.0025 (10)
C70.0272 (12)0.0207 (11)0.0235 (11)0.0042 (9)0.0018 (9)0.0013 (9)
C80.0240 (12)0.0355 (13)0.0279 (12)0.0022 (10)0.0009 (10)0.0005 (10)
C90.0236 (12)0.0548 (16)0.0343 (14)0.0069 (12)0.0030 (11)0.0031 (12)
C100.0404 (15)0.0422 (15)0.0286 (13)0.0170 (12)0.0101 (11)0.0036 (11)
C110.0554 (17)0.0254 (12)0.0284 (13)0.0060 (12)0.0080 (12)0.0034 (10)
C120.0372 (13)0.0252 (12)0.0319 (13)0.0035 (10)0.0056 (11)0.0036 (10)
C130.0212 (11)0.0186 (10)0.0199 (11)0.0011 (9)0.0018 (9)0.0027 (8)
C140.0239 (12)0.0340 (13)0.0237 (12)0.0033 (10)0.0031 (9)0.0040 (10)
C150.0342 (13)0.0345 (13)0.0203 (11)0.0004 (11)0.0002 (10)0.0061 (10)
C160.0260 (12)0.0286 (12)0.0258 (12)0.0038 (10)0.0048 (10)0.0033 (10)
C170.0216 (11)0.0317 (12)0.0282 (12)0.0009 (10)0.0035 (9)0.0010 (10)
C180.0256 (12)0.0248 (11)0.0192 (11)0.0028 (9)0.0024 (9)0.0018 (9)
C190.0200 (11)0.0219 (11)0.0198 (11)0.0015 (9)0.0036 (9)0.0025 (9)
C200.0238 (11)0.0233 (11)0.0208 (11)0.0014 (9)0.0035 (9)0.0007 (9)
C210.0395 (14)0.0207 (11)0.0268 (12)0.0033 (10)0.0079 (11)0.0002 (9)
C220.0354 (13)0.0335 (13)0.0225 (12)0.0165 (11)0.0072 (10)0.0080 (10)
C230.0228 (12)0.0483 (15)0.0235 (12)0.0042 (11)0.0001 (10)0.0070 (11)
C240.0253 (12)0.0324 (13)0.0262 (12)0.0054 (10)0.0016 (10)0.0036 (10)
Co10.0188 (2)0.0189 (2)0.0231 (2)0.00000.0029 (2)0.0000
Cl10.0315 (3)0.0335 (3)0.0367 (3)0.0084 (3)0.0074 (3)0.0151 (3)
Cl20.0234 (3)0.0296 (3)0.0270 (3)0.0035 (2)0.0015 (2)0.0071 (2)
Geometric parameters (Å, º) top
Co1—Cl22.2791 (6)C19—C241.391 (3)
Co1—Cl1i2.2873 (6)C19—C201.392 (3)
Co1—Cl12.2873 (6)C20—C211.380 (3)
Co1—Cl2i2.2791 (6)C21—C221.377 (3)
P1—C11.794 (2)C22—C231.375 (4)
P1—C71.803 (2)C23—C241.377 (3)
P1—C131.793 (2)C2—H20.9301
P1—C191.787 (2)C3—H30.9296
C1—C61.394 (3)C4—H40.9302
C1—C21.390 (3)C5—H50.9298
C2—C31.383 (3)C6—H60.9302
C3—C41.381 (3)C8—H80.9301
C4—C51.375 (3)C9—H90.9310
C5—C61.380 (3)C10—H100.9301
C7—C81.390 (3)C11—H110.9310
C7—C121.395 (3)C12—H120.9300
C8—C91.383 (3)C14—H140.9301
C9—C101.377 (4)C15—H150.9309
C10—C111.372 (4)C16—H160.9299
C11—C121.379 (4)C17—H170.9297
C13—C141.397 (3)C18—H180.9295
C13—C181.385 (3)C20—H200.9301
C14—C151.375 (3)C21—H210.9299
C15—C161.386 (3)C22—H220.9302
C16—C171.376 (3)C23—H230.9293
C17—C181.383 (3)C24—H240.9295
Cl1—Co1—Cl2112.17 (2)C22—C23—C24119.7 (2)
Cl1—Co1—Cl1i108.90 (3)C19—C24—C23120.1 (2)
Cl1—Co1—Cl2i106.66 (2)C3—C2—H2120.17
Cl1i—Co1—Cl2106.66 (2)C1—C2—H2120.06
Cl2—Co1—Cl2i110.35 (3)C2—C3—H3119.85
Cl1i—Co1—Cl2i112.17 (2)C4—C3—H3119.91
C13—P1—C19109.84 (10)C3—C4—H4119.98
C1—P1—C19108.05 (10)C5—C4—H4119.92
C1—P1—C7110.27 (10)C6—C5—H5119.72
C1—P1—C13111.10 (10)C4—C5—H5119.80
C7—P1—C13107.73 (10)C1—C6—H6120.13
C7—P1—C19109.86 (10)C5—C6—H6120.17
P1—C1—C6122.16 (17)C7—C8—H8120.18
P1—C1—C2118.14 (17)C9—C8—H8120.26
C2—C1—C6119.7 (2)C10—C9—H9119.85
C1—C2—C3119.8 (2)C8—C9—H9119.83
C2—C3—C4120.2 (2)C9—C10—H10119.68
C3—C4—C5120.1 (2)C11—C10—H10119.72
C4—C5—C6120.5 (2)C12—C11—H11120.17
C1—C6—C5119.7 (2)C10—C11—H11120.04
P1—C7—C8121.99 (17)C7—C12—H12119.84
P1—C7—C12118.55 (17)C11—C12—H12119.90
C8—C7—C12119.5 (2)C13—C14—H14120.00
C7—C8—C9119.6 (2)C15—C14—H14119.88
C8—C9—C10120.3 (2)C16—C15—H15120.01
C9—C10—C11120.6 (2)C14—C15—H15120.04
C10—C11—C12119.8 (2)C15—C16—H16119.90
C7—C12—C11120.3 (2)C17—C16—H16120.01
C14—C13—C18119.55 (19)C16—C17—H17119.87
P1—C13—C18121.79 (16)C18—C17—H17119.73
P1—C13—C14118.54 (16)C17—C18—H18120.08
C13—C14—C15120.1 (2)C13—C18—H18120.05
C14—C15—C16120.0 (2)C19—C20—H20120.40
C15—C16—C17120.1 (2)C21—C20—H20120.54
C16—C17—C18120.4 (2)C20—C21—H21119.77
C13—C18—C17119.9 (2)C22—C21—H21119.71
P1—C19—C24119.24 (17)C23—C22—H22119.70
P1—C19—C20120.76 (16)C21—C22—H22119.73
C20—C19—C24120.0 (2)C22—C23—H23120.14
C19—C20—C21119.1 (2)C24—C23—H23120.18
C20—C21—C22120.5 (2)C23—C24—H24119.93
C21—C22—C23120.6 (2)C19—C24—H24119.98
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C19–C24 and C7-C12 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl10.932.803.552 (3)138
C11—H11···Cl1ii0.932.813.633 (2)148
C23—H23···Cl2iii0.932.773.644 (2)156
C14—H14···Cg4iv0.932.883.650 (2)141
C21—H21···Cg2iv0.932.793.446 (2)129
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z+1/2; (iv) x+1, y+1, z.
Selected bond lengths (Å) top
Co1—Cl22.2791 (6)Co1—Cl12.2873 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C19–C24 and C7-C12 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl10.932.803.552 (3)138
C11—H11···Cl1i0.932.813.633 (2)148
C23—H23···Cl2ii0.932.773.644 (2)156
C14—H14···Cg4iii0.932.883.650 (2)141
C21—H21···Cg2iii0.932.793.446 (2)129
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université de Constantine 1, Algeria. Thanks are due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algérie) for financial support via the PNR program.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDong, Y.-B., Zhang, Q., Liu, L.-L., Ma, J.-P., Tang, B. & Huang, R.-Q. (2007). J. Am. Chem. Soc. 129, 1514–1515.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, Y.-L., Huang, M.-Y., Chan, T.-H., Chang, B. C. & Lii, K. L. (2007). Chem. Mater. 19, 3232–3237.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNeville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869–2876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationRowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679.  Web of Science CrossRef CAS Google Scholar
First citationSchlueter, J. A. & Geiser, U. (2007). Acta Cryst. C63, m235–m237.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C.-D. & Lin, W.-B. (2007). Angew. Chem. Int. Ed. 46, 1075–1078.  Web of Science CSD CrossRef CAS Google Scholar
First citationZacharie, B., Wuest, J. D., Olivier, M. J. & Beauchamp, A. L. (1985). Acta Cryst. C41, 369–371.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m229-m230
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds