organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o728-o729

Methyl 2-[(3RS,4RS)-3-phenyl-4-(phenyl­sulfon­yl)isoxazolidin-2-yl]acetate

aDepartment of Chemistry, Çankırı Karatekin University, TR-18100 Çankırı, Turkey, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and cUniversität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 21 May 2014; accepted 26 May 2014; online 31 May 2014)

In the title compound, C18H19NO5S, the five-membered isoxazolidine ring is in a half-chair conformation, and the phenyl rings are oriented at a dihedral angle of 66.53 (3)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular structure. A weak C—H⋯π inter­action is also observed between adjacent mol­ecules.

Related literature

For 1,3-dipolar cyclo­addition of nitro­nes with olefins leading to isoxazolidines, see: Gothelf & Jorgensen (1994[Gothelf, K. V. & Jorgensen, K. A. (1994). J. Org. Chem. 59, 5687-5691.]); Gothelf et al. (1996[Gothelf, K. V., Thomsen, I. & Jorgensen, K. A. (1996). J. Am. Chem. Soc. 118, 59-64.]); Cicchi et al. (2003[Cicchi, S., Marradi, M., Corsi, M., Faggi, C. & Goti, A. (2003). Eur. J. Org. Chem. pp. 4152-4160.]). For the use of isoxazolidines in the syntheses of nucleosides, amino acids, peptides and β-lactams, see: Merino et al. (1998[Merino, P., Frango, S., Merchan, F. L. & Tejero, T. (1998). Tetrahedron Lett. 39, 6411-6444.]); Leggio et al. (1997[Leggio, A., Liguori, A., Maiuolo, L., Napoli, A., Procopio, A., Siciliano, C. & Sindona, G. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3097-3099.]); Langlois & Rakotondradany (2000[Langlois, N. & Rakotondradany, F. (2000). Tetrahedron, 56, 2437-2448.]); Hermkens et al. (1994[Hermkens, P. H. H., Dinther, T. G. V., Joukema, C. W., Wagenaars, G. N. & Ottenheijm, H. C. J. (1994). Tetrahedron Lett. 35, 9271-9274.]); Tran et al. (2013[Tran, T. Q., Savinkov, R. S., Diev, V. V., Starova, G. L. & Molchanov, A. P. (2013). Tetrahedron, 69, 5173-5177.]). For the synthesis of (Z)-N-benzyl­idene-2-meth­oxy-2-oxoethanamine oxide, see: Diez-Martinez et al. (2010[Diez-Martinez, A., Gültekin, Z., Delso, I., Tejero, T. & Merino, P. (2010). Synthesis, pp. 678-688.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO5S

  • Mr = 361.40

  • Monoclinic, P 21 /c

  • a = 8.2346 (2) Å

  • b = 15.1469 (5) Å

  • c = 13.7410 (4) Å

  • β = 103.362 (3)°

  • V = 1667.50 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.50 × 0.47 × 0.37 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.896, Tmax = 0.922

  • 34342 measured reflections

  • 5105 independent reflections

  • 4839 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.03

  • 5105 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 1.00 2.32 3.2778 (11) 159
C14—H14⋯O2ii 0.95 2.48 3.3326 (11) 150
C15—H15⋯O3iii 0.95 2.60 3.4543 (12) 150
C18—H18⋯O5iv 0.95 2.50 3.4401 (12) 169
C6—H6BCg1v 0.98 2.74 3.6157 (12) 149
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3-dipolar cycloaddition of nitrones with olefines leads to isoxazolidines (Gothelf & Jorgensen, 1994; Gothelf et al., 1996; Cicchi et al., 2003). Isoxazolidines have been used for the syntheses of nucleosides (Merino et al., 1998; Leggio et al., 1997), amino acids (Langlois & Rakotondradany, 2000), peptides (Hermkens et al., 1994) and β-lactams (Tran et al., 2013). The title compound can be a useful intermediate for the preparation of 1,3-aminoalcohols in organic chemistry. The present study was undertaken to ascertain the crystal , structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths are within normal ranges (Allen et al., 1987). The five-membered isoxazolidine ring [C (O1/N1/C1–C3)] is in half-chair conformation with puckering parameter (Cremer & Pople, 1975) of ϕ = -161.72 (6)°. The phenyl rings [A (C7–C12) and B (C13–C18)] are oriented at a dihedral angle of 66.53 (3)°. C1 and S1 atoms are -0.0301 (8) and -0.0326 (2) Å away from the corresponding planes of the phenyl rings A and B, respectively.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional structure, in which they may be effective in the stabilization of the structure. π···π contact between the phenyl rings, Cg1—Cg2i [symmetry code: (i) - x, 1/2 + y, 1/2 - z, where Cg1 and Cg2 are the centroids of the rings A and B, respectively] may further stabilize the structure, with centroid-centroid distance of 3.9100 (5) Å. A weak C–H···π interaction (Table 1) has also been observed.

Related literature top

For 1,3-dipolar cycloaddition of nitrones with olefines leading to isoxazolidines, see: Gothelf & Jorgensen (1994); Gothelf et al. (1996); Cicchi et al. (2003). For the use of isoxazolidines in the syntheses of nucleosides, amino acids, peptides and β-lactams, see: Merino et al. (1998); Leggio et al. (1997); Langlois & Rakotondradany (2000); Hermkens et al. (1994); Tran et al. (2013). For the synthesis of (Z)-N-benzylidene-2-methoxy-2-oxoethanamine oxide, see: Diez-Martinez et al. (2010). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The starting material, (Z)-N-benzylidene-2-methoxy-2-oxoethanamine oxide, was prepared by the literature method (Diez-Martinez et al., 2010). For the synthesis of the title compound, (Z)-N-benzylidene-2-methoxy-2-oxo- ethanamine oxide (0.117 g, 0.605 mmol) was dissolved in toluene (2 ml), and then phenyl vinyl sulfone (0.102 g, 0.605 mmol) was added. The mixture was heated at 273 K for 5 h until the starting material was completely consumed as monitored by tlc. The resultant residue was directly purified by flash chromatography on silica using ethyl acetate as solvent. Crystallization of the product in ethyl acetate gave a colorless crystalline solid (yield: 92%), m.p.: 400-401 K.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The reaction scheme.
Methyl 2-[(3RS,4RS)-3-phenyl-4-(phenylsulfonyl)isoxazolidin-2-yl]acetate top
Crystal data top
C18H19NO5SF(000) = 760
Mr = 361.40Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4839 reflections
a = 8.2346 (2) Åθ = 2.0–30.6°
b = 15.1469 (5) ŵ = 0.22 mm1
c = 13.7410 (4) ÅT = 100 K
β = 103.362 (3)°Block, colourless
V = 1667.50 (8) Å30.50 × 0.47 × 0.37 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5105 independent reflections
Radiation source: fine-focus sealed tube4839 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.022
ω + Phi Scans scansθmax = 30.6°, θmin = 2.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1111
Tmin = 0.896, Tmax = 0.922k = 2121
34342 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.6732P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
5105 reflectionsΔρmax = 0.44 e Å3
228 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0182 (13)
Crystal data top
C18H19NO5SV = 1667.50 (8) Å3
Mr = 361.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2346 (2) ŵ = 0.22 mm1
b = 15.1469 (5) ÅT = 100 K
c = 13.7410 (4) Å0.50 × 0.47 × 0.37 mm
β = 103.362 (3)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5105 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4839 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.922Rint = 0.022
34342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
5105 reflectionsΔρmin = 0.32 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79940 (2)1.032574 (13)0.635211 (14)0.01200 (6)
O10.70058 (8)0.81466 (4)0.54622 (5)0.01522 (13)
O20.72422 (9)1.03940 (4)0.52956 (5)0.01772 (13)
O30.96262 (8)1.07049 (5)0.67213 (5)0.01888 (14)
O40.80821 (10)0.63499 (6)0.40190 (6)0.02603 (16)
O50.86652 (9)0.60662 (5)0.56648 (5)0.02053 (14)
N10.86900 (9)0.78645 (5)0.59648 (5)0.01279 (13)
C10.95186 (10)0.87109 (5)0.63373 (6)0.01223 (14)
H10.98070.90490.57750.015*
C20.81075 (10)0.91865 (5)0.67116 (6)0.01263 (14)
H20.83240.91400.74560.015*
C30.65340 (11)0.86529 (6)0.62291 (7)0.01560 (16)
H3A0.62020.82620.67270.019*
H3B0.55920.90510.59420.019*
C40.93803 (11)0.74795 (6)0.51777 (6)0.01446 (15)
H4A1.06050.74200.54170.017*
H4B0.91570.78770.45900.017*
C50.86226 (10)0.65792 (6)0.48709 (7)0.01502 (16)
C60.79515 (15)0.51924 (7)0.54660 (9)0.0275 (2)
H6A0.67630.52430.51430.041*
H6B0.80820.48690.60970.041*
H6C0.85270.48740.50230.041*
C71.10686 (10)0.85329 (5)0.71446 (6)0.01261 (15)
C81.10257 (11)0.79292 (6)0.79082 (6)0.01487 (15)
H81.00230.76220.79150.018*
C91.24526 (11)0.77794 (6)0.86569 (6)0.01609 (16)
H91.24230.73660.91720.019*
C101.39254 (11)0.82316 (6)0.86564 (7)0.01755 (17)
H101.48980.81270.91690.021*
C111.39663 (11)0.88376 (6)0.79017 (7)0.01806 (17)
H111.49630.91540.79050.022*
C121.25445 (11)0.89810 (6)0.71397 (7)0.01584 (16)
H121.25830.93850.66170.019*
C130.66058 (10)1.07755 (5)0.70249 (6)0.01229 (14)
C140.49136 (11)1.08311 (6)0.65773 (7)0.01553 (16)
H140.44991.06390.59080.019*
C150.38351 (11)1.11734 (6)0.71286 (8)0.01927 (17)
H150.26741.12150.68350.023*
C160.44528 (12)1.14540 (6)0.81051 (8)0.01993 (18)
H160.37111.16830.84800.024*
C170.61525 (13)1.14025 (7)0.85386 (7)0.02118 (18)
H170.65681.16020.92050.025*
C180.72483 (11)1.10607 (6)0.80006 (7)0.01731 (16)
H180.84101.10230.82930.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01266 (10)0.01083 (10)0.01277 (10)0.00014 (6)0.00347 (7)0.00027 (6)
O10.0121 (3)0.0164 (3)0.0166 (3)0.0018 (2)0.0022 (2)0.0024 (2)
O20.0230 (3)0.0180 (3)0.0123 (3)0.0022 (2)0.0046 (2)0.0020 (2)
O30.0131 (3)0.0166 (3)0.0276 (3)0.0022 (2)0.0059 (2)0.0041 (2)
O40.0288 (4)0.0321 (4)0.0171 (3)0.0077 (3)0.0053 (3)0.0090 (3)
O50.0263 (3)0.0146 (3)0.0199 (3)0.0044 (2)0.0036 (3)0.0014 (2)
N10.0122 (3)0.0127 (3)0.0134 (3)0.0013 (2)0.0028 (2)0.0020 (2)
C10.0137 (3)0.0113 (3)0.0120 (3)0.0005 (3)0.0036 (3)0.0004 (3)
C20.0143 (3)0.0112 (3)0.0130 (3)0.0014 (3)0.0044 (3)0.0007 (3)
C30.0151 (4)0.0130 (3)0.0204 (4)0.0004 (3)0.0076 (3)0.0018 (3)
C40.0162 (4)0.0142 (4)0.0139 (3)0.0003 (3)0.0054 (3)0.0020 (3)
C50.0122 (3)0.0170 (4)0.0165 (4)0.0008 (3)0.0047 (3)0.0037 (3)
C60.0315 (5)0.0157 (4)0.0376 (6)0.0070 (4)0.0126 (4)0.0047 (4)
C70.0139 (3)0.0118 (3)0.0123 (3)0.0014 (3)0.0034 (3)0.0009 (3)
C80.0161 (4)0.0140 (4)0.0146 (3)0.0000 (3)0.0039 (3)0.0004 (3)
C90.0193 (4)0.0147 (4)0.0142 (4)0.0028 (3)0.0037 (3)0.0010 (3)
C100.0155 (4)0.0203 (4)0.0160 (4)0.0038 (3)0.0020 (3)0.0015 (3)
C110.0139 (4)0.0218 (4)0.0188 (4)0.0007 (3)0.0045 (3)0.0013 (3)
C120.0154 (4)0.0168 (4)0.0161 (4)0.0006 (3)0.0050 (3)0.0005 (3)
C130.0129 (3)0.0105 (3)0.0138 (3)0.0004 (3)0.0036 (3)0.0004 (3)
C140.0137 (3)0.0147 (4)0.0173 (4)0.0003 (3)0.0018 (3)0.0003 (3)
C150.0146 (4)0.0162 (4)0.0281 (5)0.0016 (3)0.0071 (3)0.0018 (3)
C160.0234 (4)0.0137 (4)0.0268 (5)0.0016 (3)0.0141 (4)0.0000 (3)
C170.0259 (4)0.0212 (4)0.0178 (4)0.0000 (3)0.0078 (3)0.0051 (3)
C180.0165 (4)0.0192 (4)0.0155 (4)0.0004 (3)0.0022 (3)0.0036 (3)
Geometric parameters (Å, º) top
S1—O21.4444 (7)C6—H6C0.9800
S1—O31.4417 (7)C7—C121.3933 (12)
S1—C131.7646 (8)C7—C81.3985 (12)
S1—C21.7914 (8)C8—C91.3898 (12)
O1—N11.4630 (9)C8—H80.9500
O1—C31.4278 (10)C9—C101.3931 (13)
O4—C51.2034 (11)C9—H90.9500
O5—C51.3333 (11)C10—C111.3911 (13)
O5—C61.4483 (12)C10—H100.9500
N1—C11.4865 (11)C11—C121.3956 (12)
N1—C41.4551 (10)C11—H110.9500
C1—C71.5092 (11)C12—H120.9500
C1—C21.5524 (11)C13—C141.3896 (11)
C1—H11.0000C13—C181.3914 (12)
C2—C31.5410 (12)C14—C151.3937 (13)
C2—H21.0000C14—H140.9500
C3—H3A0.9900C15—C161.3871 (14)
C3—H3B0.9900C15—H150.9500
C4—C51.5182 (12)C16—C171.3909 (14)
C4—H4A0.9900C16—H160.9500
C4—H4B0.9900C17—C181.3918 (13)
C6—H6A0.9800C17—H170.9500
C6—H6B0.9800C18—H180.9500
O2—S1—C2109.21 (4)O5—C6—H6C109.5
O2—S1—C13108.66 (4)H6A—C6—H6B109.5
O3—S1—O2118.25 (4)H6A—C6—H6C109.5
O3—S1—C2107.56 (4)H6B—C6—H6C109.5
O3—S1—C13109.03 (4)C8—C7—C1120.30 (7)
C13—S1—C2103.07 (4)C12—C7—C1119.99 (7)
C3—O1—N1101.44 (6)C12—C7—C8119.70 (8)
C5—O5—C6116.45 (8)C7—C8—H8120.0
O1—N1—C1102.73 (6)C9—C8—C7119.90 (8)
C4—N1—O1104.87 (6)C9—C8—H8120.0
C4—N1—C1112.00 (7)C8—C9—C10120.43 (8)
N1—C1—C2101.25 (6)C8—C9—H9119.8
N1—C1—C7109.99 (7)C10—C9—H9119.8
N1—C1—H1110.3C9—C10—H10120.1
C2—C1—H1110.3C11—C10—C9119.73 (8)
C7—C1—C2114.21 (7)C11—C10—H10120.1
C7—C1—H1110.3C10—C11—C12120.09 (8)
S1—C2—H2109.6C10—C11—H11120.0
C1—C2—S1110.55 (5)C12—C11—H11120.0
C1—C2—H2109.6C7—C12—C11120.14 (8)
C3—C2—S1113.67 (6)C7—C12—H12119.9
C3—C2—C1103.50 (6)C11—C12—H12119.9
C3—C2—H2109.6C14—C13—S1119.75 (6)
O1—C3—C2104.72 (6)C14—C13—C18121.79 (8)
O1—C3—H3A110.8C18—C13—S1118.46 (6)
O1—C3—H3B110.8C13—C14—C15118.80 (8)
C2—C3—H3A110.8C13—C14—H14120.6
C2—C3—H3B110.8C15—C14—H14120.6
H3A—C3—H3B108.9C14—C15—H15119.9
N1—C4—C5111.12 (7)C16—C15—C14120.16 (8)
N1—C4—H4A109.4C16—C15—H15119.9
N1—C4—H4B109.4C15—C16—C17120.32 (8)
C5—C4—H4A109.4C15—C16—H16119.8
C5—C4—H4B109.4C17—C16—H16119.8
H4A—C4—H4B108.0C16—C17—C18120.34 (9)
O4—C5—O5124.17 (9)C16—C17—H17119.8
O4—C5—C4124.42 (9)C18—C17—H17119.8
O5—C5—C4111.40 (7)C13—C18—C17118.58 (8)
O5—C6—H6A109.5C13—C18—H18120.7
O5—C6—H6B109.5C17—C18—H18120.7
O2—S1—C2—C174.55 (6)C7—C1—C2—C3133.54 (7)
O2—S1—C2—C341.32 (7)N1—C1—C7—C845.64 (10)
O3—S1—C2—C154.94 (6)N1—C1—C7—C12135.35 (8)
O3—S1—C2—C3170.82 (6)C2—C1—C7—C867.39 (10)
C13—S1—C2—C1170.06 (6)C2—C1—C7—C12111.62 (9)
C13—S1—C2—C374.06 (6)S1—C2—C3—O1104.22 (7)
O2—S1—C13—C1422.31 (8)C1—C2—C3—O115.74 (8)
O2—S1—C13—C18158.13 (7)N1—C4—C5—O4132.00 (9)
O3—S1—C13—C14152.47 (7)N1—C4—C5—O549.40 (9)
O3—S1—C13—C1827.97 (8)C1—C7—C8—C9179.03 (8)
C2—S1—C13—C1493.47 (7)C12—C7—C8—C90.02 (13)
C2—S1—C13—C1886.09 (7)C1—C7—C12—C11178.06 (8)
C3—O1—N1—C152.69 (7)C8—C7—C12—C110.95 (13)
C3—O1—N1—C4169.90 (6)C7—C8—C9—C100.46 (13)
N1—O1—C3—C241.37 (7)C8—C9—C10—C110.06 (13)
C6—O5—C5—O42.30 (13)C9—C10—C11—C121.03 (14)
C6—O5—C5—C4179.09 (8)C10—C11—C12—C71.48 (14)
O1—N1—C1—C240.94 (7)S1—C13—C14—C15178.83 (7)
O1—N1—C1—C7162.10 (6)C18—C13—C14—C150.72 (13)
C4—N1—C1—C2152.97 (7)S1—C13—C18—C17178.97 (7)
C4—N1—C1—C785.88 (8)C14—C13—C18—C170.59 (14)
O1—N1—C4—C574.22 (8)C13—C14—C15—C160.17 (13)
C1—N1—C4—C5175.10 (7)C14—C15—C16—C170.50 (14)
N1—C1—C2—S1137.47 (5)C15—C16—C17—C180.64 (15)
N1—C1—C2—C315.40 (8)C16—C17—C18—C130.10 (14)
C7—C1—C2—S1104.39 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i1.002.323.2778 (11)159
C14—H14···O2ii0.952.483.3326 (11)150
C15—H15···O3iii0.952.603.4543 (12)150
C18—H18···O5iv0.952.503.4401 (12)169
C6—H6B···Cg1v0.982.743.6157 (12)149
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x+2, y+1/2, z+3/2; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i1.002.323.2778 (11)159
C14—H14···O2ii0.952.483.3326 (11)150
C15—H15···O3iii0.952.603.4543 (12)150
C18—H18···O5iv0.952.503.4401 (12)169
C6—H6B···Cg1v0.982.743.6157 (12)149
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x+2, y+1/2, z+3/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors wish to acknowledge the financial support of this work by the Çankırı Karatekin University Research Fund (grant No. BAP: 2012/06).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicchi, S., Marradi, M., Corsi, M., Faggi, C. & Goti, A. (2003). Eur. J. Org. Chem. pp. 4152–4160.  Web of Science CSD CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDiez-Martinez, A., Gültekin, Z., Delso, I., Tejero, T. & Merino, P. (2010). Synthesis, pp. 678–688.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGothelf, K. V. & Jorgensen, K. A. (1994). J. Org. Chem. 59, 5687–5691.  CrossRef CAS Web of Science Google Scholar
First citationGothelf, K. V., Thomsen, I. & Jorgensen, K. A. (1996). J. Am. Chem. Soc. 118, 59–64.  CrossRef CAS Web of Science Google Scholar
First citationHermkens, P. H. H., Dinther, T. G. V., Joukema, C. W., Wagenaars, G. N. & Ottenheijm, H. C. J. (1994). Tetrahedron Lett. 35, 9271–9274.  CrossRef CAS Web of Science Google Scholar
First citationLanglois, N. & Rakotondradany, F. (2000). Tetrahedron, 56, 2437–2448.  Web of Science CrossRef CAS Google Scholar
First citationLeggio, A., Liguori, A., Maiuolo, L., Napoli, A., Procopio, A., Siciliano, C. & Sindona, G. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3097–3099.  CrossRef Web of Science Google Scholar
First citationMerino, P., Frango, S., Merchan, F. L. & Tejero, T. (1998). Tetrahedron Lett. 39, 6411–6444.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTran, T. Q., Savinkov, R. S., Diev, V. V., Starova, G. L. & Molchanov, A. P. (2013). Tetrahedron, 69, 5173–5177.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o728-o729
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds