organic compounds
(5E)-1-Benzyl-5-(3,3,3-trichloro-2-oxopropylidene)pyrrolidin-2-one
aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália, km 08, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil, bUniversidade Federal da Grande Dourados, UFGD, CEP 79825-070, Dourados, MS, Brazil, and cInstituto Federal Farroupilha, Campus Júlio de Castilhos, CEP 98130-000, Júlio de Castilhos, RS, Brazil
*Correspondence e-mail: alexflores@furg.br
In the 14H12Cl3NO2, no classical hydrogen-bonding interactions are observed. The methylene fragments of the benzyl groups participate in non-classic hydrogen-bond interactions with the carbonyl O atoms of neighboring molecules, generating co-operative centrosymmetric dimers with R55(10) ring motifs. The overall molecular arrangement in the seems to be highly influenced by secondary non-covalent weak C—Cl⋯π [Cl⋯Cg(phenyl ring) = 3.732 (2) Å] and C—O⋯π [O⋯Cg(pyrrolidine ring) = 2.985 (2) Å] contacts.
of the title compound, CCCDC reference: 740177
Related literature
For the synthesis of the title compound, see: Flores et al. (2008). For pharmacological effects, see: Van der Schyf et al. (2006). For non-classical weak contacts, see: Irving & Irving (1994); Bissantz et al. (2010). For related structures, see: Bandeira et al. (2013); de Oliveira et al. (2012); de Bittencourt et al. (2014).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 740177
10.1107/S160053681400751X/zq2220sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681400751X/zq2220Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681400751X/zq2220Isup3.cml
To a stirred solution of methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate (5 mmol, 1.52 g) in CHCl3 (5 ml) kept at 25 °C, was added benzylamine (Aldrich, 185701, 5.1 mmol, 0.58 ml) in CHCl3 (5 ml). The mixture was stirred at 25 °C for 2 h. Then the solvent was evaporated and residue was dried under vacuum. The brown amorphous solid was recrystallized in hexane to furnish yellowish needles with 94% yield. M.p. 88 - 89°C. 1H NMR (400 MHz, CDCl3/TMS): δ 2.72 (m, 2H, H3), 3.34 (m, 2H, H4), 4.8 (s, 2H, H9), 6.2 (s, 1H, H6), 7.3 (m, 5H, Ph) p.p.m. 13C NMR (100 MHz, CDCl3): 26.1, 27.5, 44.6, 91.7, 97.1, 127.6, 128.1, 128.9, 134.1, 166.4, 177.1, 180 p.p.m. Crystals were grown from a diluted hexane solution at room temperature.
All H atoms attached to C atoms were positioned with idealized geometry and were refined isotropic with Ueq(H) set to 1.2 times of the Ueq(C). It was used a riding model with C—H = 0.97 Å for CH2 and C—H = 0.93 Å for CH. Reflection (101) was omitted due to the large difference observed between Fo2 and Fc2. The crystals were relatively weak in terms of intensity of diffraction, prompting us to select a big crystal for the measurement and consequently a collimator with a larger diameter (0.6 mm) than in routine studies.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C14H12Cl3NO2 | F(000) = 680 |
Mr = 332.60 | Dx = 1.430 Mg m−3 |
Monoclinic, P21/n | Melting point: 361 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 15.7822 (5) Å | Cell parameters from 3113 reflections |
b = 5.8465 (2) Å | θ = 2.4–21.5° |
c = 17.4107 (5) Å | µ = 0.59 mm−1 |
β = 105.885 (1)° | T = 293 K |
V = 1545.15 (8) Å3 | Block, yellow |
Z = 4 | 0.83 × 0.23 × 0.19 mm |
Bruker APEXII CCD diffractometer | 5069 independent reflections |
Radiation source: fine-focus sealed tube | 2436 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 31.5°, θmin = 2.7° |
Absorption correction: gaussian (XPREP; Bruker, 2009) | h = −23→23 |
Tmin = 0.814, Tmax = 1 | k = −8→3 |
21458 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.217 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.1095P)2 + 0.2217P] where P = (Fo2 + 2Fc2)/3 |
5069 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
C14H12Cl3NO2 | V = 1545.15 (8) Å3 |
Mr = 332.60 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 15.7822 (5) Å | µ = 0.59 mm−1 |
b = 5.8465 (2) Å | T = 293 K |
c = 17.4107 (5) Å | 0.83 × 0.23 × 0.19 mm |
β = 105.885 (1)° |
Bruker APEXII CCD diffractometer | 5069 independent reflections |
Absorption correction: gaussian (XPREP; Bruker, 2009) | 2436 reflections with I > 2σ(I) |
Tmin = 0.814, Tmax = 1 | Rint = 0.033 |
21458 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.217 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.43 e Å−3 |
5069 reflections | Δρmin = −0.51 e Å−3 |
181 parameters |
Experimental. Gaussian absorption correction based on the face-indexed crystal size |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl11 | −0.04344 (5) | −0.0759 (2) | 0.73859 (6) | 0.0958 (3) | |
Cl12 | 0.01375 (6) | 0.32178 (15) | 0.83385 (6) | 0.0921 (3) | |
Cl13 | 0.03185 (7) | −0.11995 (17) | 0.90926 (6) | 0.0955 (3) | |
O71 | 0.50426 (12) | 0.2290 (4) | 0.95046 (11) | 0.0688 (5) | |
N1 | 0.35352 (12) | 0.2022 (3) | 0.92101 (10) | 0.0485 (5) | |
O21 | 0.13827 (13) | −0.1294 (4) | 0.75824 (13) | 0.0766 (6) | |
C9 | 0.30299 (15) | 0.3271 (4) | 1.03807 (14) | 0.0517 (6) | |
C4 | 0.28593 (15) | 0.0825 (4) | 0.87105 (13) | 0.0473 (5) | |
C2 | 0.13065 (16) | −0.0046 (4) | 0.81150 (14) | 0.0541 (6) | |
C3 | 0.20017 (17) | 0.1159 (4) | 0.86770 (14) | 0.0537 (6) | |
H3 | 0.1858 | 0.2195 | 0.9027 | 0.064* | |
C8 | 0.34165 (19) | 0.3933 (4) | 0.97121 (15) | 0.0573 (6) | |
H81 | 0.3035 | 0.5058 | 0.9379 | 0.069* | |
H82 | 0.3984 | 0.4653 | 0.9939 | 0.069* | |
C6 | 0.42339 (17) | −0.0584 (5) | 0.85719 (15) | 0.0584 (6) | |
H62 | 0.4489 | −0.1974 | 0.8843 | 0.070* | |
H61 | 0.4507 | −0.0263 | 0.8148 | 0.070* | |
C5 | 0.32443 (16) | −0.0833 (4) | 0.82383 (14) | 0.0507 (5) | |
H51 | 0.3062 | −0.0455 | 0.7674 | 0.061* | |
H52 | 0.3060 | −0.2384 | 0.8308 | 0.061* | |
C10 | 0.32564 (18) | 0.1269 (5) | 1.08009 (16) | 0.0614 (7) | |
H10 | 0.3654 | 0.0275 | 1.0667 | 0.074* | |
C7 | 0.43644 (17) | 0.1369 (4) | 0.91455 (14) | 0.0536 (6) | |
C11 | 0.2900 (2) | 0.0712 (7) | 1.14227 (18) | 0.0810 (9) | |
H11 | 0.3059 | −0.0653 | 1.1699 | 0.097* | |
C14 | 0.2441 (2) | 0.4725 (6) | 1.0591 (2) | 0.0778 (8) | |
H14 | 0.2273 | 0.6087 | 1.0315 | 0.093* | |
C13 | 0.2094 (2) | 0.4110 (8) | 1.1238 (2) | 0.0972 (12) | |
H13 | 0.1704 | 0.5088 | 1.1389 | 0.117* | |
C1 | 0.03650 (17) | 0.0294 (5) | 0.82250 (16) | 0.0615 (6) | |
C12 | 0.2326 (2) | 0.2126 (8) | 1.1629 (2) | 0.0930 (11) | |
H12 | 0.2089 | 0.1729 | 1.2044 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl11 | 0.0520 (4) | 0.1369 (8) | 0.0932 (6) | −0.0116 (4) | 0.0110 (4) | −0.0291 (5) |
Cl12 | 0.0838 (6) | 0.0785 (6) | 0.1221 (7) | 0.0163 (4) | 0.0416 (5) | −0.0080 (5) |
Cl13 | 0.0997 (7) | 0.1099 (7) | 0.0892 (6) | −0.0161 (5) | 0.0465 (5) | 0.0130 (5) |
O71 | 0.0531 (10) | 0.0804 (13) | 0.0728 (11) | −0.0168 (9) | 0.0169 (9) | −0.0078 (10) |
N1 | 0.0497 (10) | 0.0571 (11) | 0.0417 (9) | −0.0128 (8) | 0.0175 (8) | −0.0064 (8) |
O21 | 0.0558 (11) | 0.0922 (15) | 0.0809 (13) | −0.0063 (10) | 0.0169 (10) | −0.0388 (11) |
C9 | 0.0454 (12) | 0.0599 (14) | 0.0497 (12) | −0.0087 (10) | 0.0130 (10) | −0.0156 (11) |
C4 | 0.0522 (13) | 0.0517 (12) | 0.0396 (11) | −0.0085 (10) | 0.0155 (9) | −0.0008 (9) |
C2 | 0.0508 (13) | 0.0580 (14) | 0.0547 (14) | −0.0029 (11) | 0.0166 (11) | −0.0057 (11) |
C3 | 0.0545 (13) | 0.0597 (14) | 0.0491 (13) | −0.0055 (11) | 0.0176 (11) | −0.0090 (10) |
C8 | 0.0633 (15) | 0.0533 (13) | 0.0576 (14) | −0.0138 (11) | 0.0205 (12) | −0.0080 (11) |
C6 | 0.0532 (14) | 0.0696 (16) | 0.0537 (14) | 0.0010 (11) | 0.0167 (11) | −0.0030 (12) |
C5 | 0.0551 (13) | 0.0542 (13) | 0.0441 (11) | −0.0039 (10) | 0.0158 (10) | −0.0027 (10) |
C10 | 0.0568 (15) | 0.0748 (17) | 0.0579 (14) | −0.0009 (12) | 0.0245 (12) | −0.0040 (13) |
C7 | 0.0545 (14) | 0.0640 (14) | 0.0433 (12) | −0.0096 (11) | 0.0150 (10) | 0.0011 (10) |
C11 | 0.088 (2) | 0.101 (2) | 0.0599 (17) | −0.0077 (18) | 0.0312 (16) | 0.0037 (16) |
C14 | 0.0735 (19) | 0.081 (2) | 0.082 (2) | 0.0109 (15) | 0.0257 (16) | −0.0153 (16) |
C13 | 0.075 (2) | 0.140 (4) | 0.089 (2) | 0.013 (2) | 0.0438 (19) | −0.033 (2) |
C1 | 0.0522 (14) | 0.0691 (16) | 0.0661 (16) | −0.0036 (12) | 0.0208 (12) | −0.0052 (13) |
C12 | 0.088 (2) | 0.131 (3) | 0.074 (2) | −0.013 (2) | 0.0459 (19) | −0.012 (2) |
Cl11—C1 | 1.760 (3) | C8—H82 | 0.9700 |
Cl12—C1 | 1.769 (3) | C6—C7 | 1.494 (3) |
Cl13—C1 | 1.764 (3) | C6—C5 | 1.517 (4) |
O71—C7 | 1.208 (3) | C6—H62 | 0.9700 |
N1—C4 | 1.370 (3) | C6—H61 | 0.9700 |
N1—C7 | 1.397 (3) | C5—H51 | 0.9700 |
N1—C8 | 1.462 (3) | C5—H52 | 0.9700 |
O21—C2 | 1.212 (3) | C10—C11 | 1.389 (4) |
C9—C10 | 1.375 (4) | C10—H10 | 0.9300 |
C9—C14 | 1.381 (4) | C11—C12 | 1.345 (5) |
C9—C8 | 1.505 (3) | C11—H11 | 0.9300 |
C4—C3 | 1.353 (3) | C14—C13 | 1.426 (5) |
C4—C5 | 1.503 (3) | C14—H14 | 0.9300 |
C2—C3 | 1.439 (4) | C13—C12 | 1.345 (6) |
C2—C1 | 1.562 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C8—H81 | 0.9700 | ||
C4—N1—C7 | 113.14 (19) | C6—C5—H51 | 110.8 |
C4—N1—C8 | 124.4 (2) | C4—C5—H52 | 110.8 |
C7—N1—C8 | 122.2 (2) | C6—C5—H52 | 110.8 |
C10—C9—C14 | 118.6 (2) | H51—C5—H52 | 108.8 |
C10—C9—C8 | 121.9 (2) | C9—C10—C11 | 120.8 (3) |
C14—C9—C8 | 119.4 (3) | C9—C10—H10 | 119.6 |
C3—C4—N1 | 123.4 (2) | C11—C10—H10 | 119.6 |
C3—C4—C5 | 128.2 (2) | O71—C7—N1 | 123.6 (2) |
N1—C4—C5 | 108.4 (2) | O71—C7—C6 | 128.8 (2) |
O21—C2—C3 | 126.8 (2) | N1—C7—C6 | 107.6 (2) |
O21—C2—C1 | 117.9 (2) | C12—C11—C10 | 120.7 (4) |
C3—C2—C1 | 115.4 (2) | C12—C11—H11 | 119.7 |
C4—C3—C2 | 121.8 (2) | C10—C11—H11 | 119.7 |
C4—C3—H3 | 119.1 | C9—C14—C13 | 119.1 (3) |
C2—C3—H3 | 119.1 | C9—C14—H14 | 120.5 |
N1—C8—C9 | 114.3 (2) | C13—C14—H14 | 120.5 |
N1—C8—H81 | 108.7 | C12—C13—C14 | 120.5 (3) |
C9—C8—H81 | 108.7 | C12—C13—H13 | 119.8 |
N1—C8—H82 | 108.7 | C14—C13—H13 | 119.8 |
C9—C8—H82 | 108.7 | C2—C1—Cl11 | 110.10 (18) |
H81—C8—H82 | 107.6 | C2—C1—Cl13 | 107.82 (19) |
C7—C6—C5 | 105.6 (2) | Cl11—C1—Cl13 | 110.45 (15) |
C7—C6—H62 | 110.6 | C2—C1—Cl12 | 111.45 (18) |
C5—C6—H62 | 110.6 | Cl11—C1—Cl12 | 108.04 (16) |
C7—C6—H61 | 110.6 | Cl13—C1—Cl12 | 109.00 (15) |
C5—C6—H61 | 110.6 | C13—C12—C11 | 120.3 (3) |
H62—C6—H61 | 108.8 | C13—C12—H12 | 119.8 |
C4—C5—C6 | 104.88 (19) | C11—C12—H12 | 119.8 |
C4—C5—H51 | 110.8 | ||
C7—N1—C4—C3 | 179.4 (2) | C8—N1—C7—O71 | 1.3 (4) |
C8—N1—C4—C3 | −5.8 (3) | C4—N1—C7—C6 | −3.7 (3) |
C7—N1—C4—C5 | −0.5 (3) | C8—N1—C7—C6 | −178.6 (2) |
C8—N1—C4—C5 | 174.3 (2) | C5—C6—C7—O71 | −173.7 (3) |
N1—C4—C3—C2 | 176.7 (2) | C5—C6—C7—N1 | 6.2 (3) |
C5—C4—C3—C2 | −3.4 (4) | C9—C10—C11—C12 | −0.2 (5) |
O21—C2—C3—C4 | −6.5 (4) | C10—C9—C14—C13 | 0.4 (4) |
C1—C2—C3—C4 | 172.5 (2) | C8—C9—C14—C13 | −178.5 (3) |
C4—N1—C8—C9 | 67.9 (3) | C9—C14—C13—C12 | −1.0 (6) |
C7—N1—C8—C9 | −117.8 (2) | O21—C2—C1—Cl11 | −13.2 (3) |
C10—C9—C8—N1 | 38.3 (3) | C3—C2—C1—Cl11 | 167.62 (19) |
C14—C9—C8—N1 | −142.8 (3) | O21—C2—C1—Cl13 | 107.3 (3) |
C3—C4—C5—C6 | −175.6 (2) | C3—C2—C1—Cl13 | −71.8 (3) |
N1—C4—C5—C6 | 4.3 (2) | O21—C2—C1—Cl12 | −133.1 (2) |
C7—C6—C5—C4 | −6.3 (2) | C3—C2—C1—Cl12 | 47.8 (3) |
C14—C9—C10—C11 | 0.2 (4) | C14—C13—C12—C11 | 1.0 (6) |
C8—C9—C10—C11 | 179.1 (3) | C10—C11—C12—C13 | −0.4 (6) |
C4—N1—C7—O71 | 176.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H82···O71i | 0.97 | 2.38 | 3.292 (3) | 156 |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H82···O71i | 0.97 | 2.38 | 3.292 (3) | 156 |
Symmetry code: (i) −x+1, −y+1, −z+2. |
Acknowledgements
The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Universal grant 6577818477962764–01), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-PROEX) and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, PqG grant 1016236) for financial support.
References
Bandeira, K. C. T., Bresolin, L., Näther, C., Jess, I. & Oliveira, A. B. (2013). Acta Cryst. E69, o1251–o1252. CSD CrossRef CAS IUCr Journals Google Scholar
Bissantz, C., Kuhn, B. & Stahl, M. (2010). J. Med. Chem. 53, 5061–5084. Web of Science CrossRef CAS PubMed Google Scholar
Bittencourt, V. C. D. de, Vicenti, J. R. de M., Velasques, J. M., Zambiazi, P. J. & Gervini, V. C. (2014). Acta Cryst. E70, o64–o65. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flores, A. F. C., Flores, D. C., Oliveira, G., Pizzuti, L., Silva, R. M. S., Martins, M. A. P. & Bonacorso, H. G. (2008). J. Braz. Chem. Soc. 19, 184–193. Web of Science CSD CrossRef CAS Google Scholar
Irving, A. & Irving, H. M. N. H. (1994). J. Chem. Crystallogr. 24, 251–257. CSD CrossRef CAS Web of Science Google Scholar
Oliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. & Jess, I. (2012). Acta Cryst. E68, o2581. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Van der Schyf, C., Geldenhuys, W. J. & Youdim, M. B. H. (2006). J. Neurochem. 99, 1033–1048. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrrolidin-2-ones have received considerable attention due to their activity in CNS as nootropic drugs. Piracetam-like nootropics revert amnesia induced by scopolamine and other amnesing drugs, electroconvulsive shock and hypoxia with an unknown mechanism. In general, they show no affinity for the most important central receptors, but are able to modulate the action of these most important central neurotransmitters, in particular acetylcholine and glutamate. Extensive study of the modes of action of the 2-pyrrolidinones has revealed various pharmacological effects, with striking differences between drugs (Van der Schyf et al., 2006). This work is a continuation of the research on the synthesis of 1-[alkyl(aryl)]-5-(3,3,3-trihalo-2-oxopropylidene)pyrrolidin-2-nes (Flores et al., 2008). In the crystal structure of the title compound, C14H12O2NCl3 (Fig. 1), no classic hydrogen bonds are observed. There is a non-classic intramolecular hydrogen bond with a distance C8—H82···O71 of 2.442 Å, generating a S(5) ring motif (de Bittencourt et al., 2014). The molecule possesses two sites revealing an interesting geometric conformation: the plane defined by the aromatic ring (r.m.s. of 0.0032 Å) revealed a dihedral angle of 87.03 (8)° with respect to the second plane formed by C1/C2/O21/C3/C4/C5/C6/C7/N1/C8/O71 atoms (r.m.s. of 0.0978 Å; Bandeira et al., 2013; de Oliveira et al., 2012). This almost orthogonal configuration (Fig. 2) seems to be related with the crystal packing. In this context, the CH2 fragment of the benzyl group participates in non-classic hydrogen bonding with carbonyl oxygen of the neighbor molecules. This feature generates co-operative centrosymmetric dimers related through inversion centers, displaying C8ii—H82ii···O71i distances of 2.382 Å in a R55(10) ring fashion (de Bittencourt et al., 2014). The overall molecular arrangement in the unit cell (Fig. 3) seems to be highly influenced by weak interactions, where O21iii are clearly pointing to C(1) (2.985 Å), related to the centroid of the neighbor ring formed by C4ii/C5ii/C6ii/C7ii/N1ii atoms. Similarly, the centroid C(2) of the ring formed by C9iv/C10iv/C11iv/C12iv/C13iv/C14iv atoms from the benzyl fragment presented directional long range interactions with adjacent Cl11ii atoms (Irving & Irving, 1994; Bissantz et al., 2010), with distances of 3.732 Å (symmetry codes: (i) –x + 3/2, y + 1/2, –z + 3/2; (ii) x + 1/2, –y + 3/2, z–1/2; (iii) –x + 1, –y + 1, –z + 1; (iv) x, y + 1, z–1).