organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Z)-1,1-Dioxo-2-(2,4,5-tri­fluoro­benz­yl)-3,4-di­hydro-2H-1,2-benzo­thia­zin-4-yl­­idene]acetic acid

aSchool of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: zcj@bit.edu.cn

(Received 1 April 2014; accepted 18 April 2014; online 3 May 2014)

In the title compound, C17H12F3NO4S, the heterocyclic thia­zine ring adopts a half-chair conformation and the dihedral angle between the benzene rings is 43.28 (9)°. The α,β-unsaturated C=C group is inclined at an angle of 21.0 (3)° to the benzene ring of the benzo­thia­zine moiety. In the crystal, inversion dimers linked by pairs of carb­oxy­lic acid O—H⋯O hydrogen bonds generate R22(8) loops. Each of the F atoms accepts a Ca—H⋯F (a = aromatic) hydrogen bond from an adjacent mol­ecule, resulting in (001) sheets.

Related literature

For pharmaceuticals properties of 1,2-benzo­thia­zines, see: Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171-1175.]); Turck et al. (1996[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Anwar, J. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1775.]). For the biological properties and synthetic details of the title compound, see: Parveen et al. (2014[Parveen, S., Hussain, S., Zhu, S., Qin, X., Hao, X., Zhang, S., Lu, J. & Zhu, C. (2014). Roy. Soc. Chem. Adv. doi:10.1039/C4RA01016G.]). For related structures, see: Ahmad et al. (2008[Ahmad, M., Latif Siddiqui, H., Zia-ur-Rehman, M., Tizzard, G. J. & Ahmad, S. (2008). Acta Cryst. E64, o1392.]); Zia-ur-Rehman et al. (2008[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Akbar, N. & Latif Siddiqui, H. (2008). Acta Cryst. E64, o1508.]); Yang et al. (2012[Yang, Y., Yu, Y. & Zhu, C. (2012). Acta Cryst. E68, o1364.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12F3NO4S

  • Mr = 383.34

  • Monoclinic, P 21 /n

  • a = 6.6085 (12) Å

  • b = 12.649 (3) Å

  • c = 18.757 (4) Å

  • β = 99.601 (2)°

  • V = 1545.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 153 K

  • 0.31 × 0.21 × 0.07 mm

Data collection
  • Rigaku AFC10/Saturn724+ CCD-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear and CrystalStructure. Rigaku Inc., Tokyo, Japan.]) Tmin = 0.910, Tmax = 0.970

  • 13553 measured reflections

  • 4123 independent reflections

  • 3594 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.130

  • S = 1.00

  • 4123 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4i 0.95 (3) 1.71 (3) 2.6454 (19) 170 (3)
C12—H12⋯F3ii 0.95 2.50 3.448 (2) 178
C15—H15⋯F1iii 0.95 2.48 3.430 (2) 179
C5—H5⋯F2iv 0.95 2.49 3.269 (2) 140
Symmetry codes: (i) -x, -y, -z; (ii) x+1, y, z; (iii) x-1, y, z; (iv) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear and CrystalStructure. Rigaku Inc., Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2008[Rigaku (2008). CrystalClear and CrystalStructure. Rigaku Inc., Tokyo, Japan.]).

Supporting information


Comment top

Benzothiazine derivatives have been found to posses versatile biological activities such as anti-inflammatory, antioxidant and anti-bacterial (Lombardino et al., 1971; Zia-ur-Rehman et al., 2005). Derivatives of 1,2-benzothiazine-1,1-dioxide also reported as aldose reductase inhibitors (Parveen et al., 2014). We report here the structure of the title compound, C17H12F3NO4S, as an extension of this study. In this compound, (Fig. 1) the heterocyclic thiazine ring adopts a half chair conformation and the dihedral angle between the two benzene rings is 43.28 (9)°. The α,β-unsaturated CC is inclined at an angle of 21.0 (3)° (torsion angle C5—C6—C7—C16) to the mean plane of the benzene ring (C1–C6). In the crystal, the molecules form centrosymmetric cyclic dimers through duplex intermolecular carboxylic acid O—H···O hydrogen bonds [graph set R22(8) (Etter et al., 1990)] (Table 1) while all of the fluorine atoms on the benzyl ring are involved in intermolecular aromatic C—H···F hydrogen-bonding interactions, giving a two-dimensional network structure lying parallel to (001) (Fig. 3).

Related literature top

For pharmaceuticals properties of 1,2-benzothiazines, see: Lombardino et al. (1971); Turck et al. (1996); Zia-ur-Rehman et al. (2005). For the biological properties and synthetic details of the title compound, see: Parveen et al. (2014). For related structures, see: Ahmad et al. (2008); Zia-ur-Rehman et al. (2008); Yang et al. (2012). For graph-set analysis, see: Etter et al. (1990).

Experimental top

A mixture of Z-2-[2-(2,4,5-trifluorobenzyl)-1,1-dioxido-2H-1,2-benzothiazin- 4(3H)-ylidene]acetic acid methyl ester (0.5 mmol), 1,4-dioxane (5 mL) and 10M hydrochloric acid (8 mL) was refluxed at 80°C for 12 h. The precipitate formed was then filtered and washed with cold water. The crude product was purified by flash chromatography. Crystals suitable for X-ray crystallography were obtained by slow evaporation of a solution of the title compound in ethanol (yield = 70%).

Refinement top

The H atom bonded to O1 was located from a difference-Fourier map and refined freely. The remaining H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: CrystalStructure (Rigaku, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the O—H···O and C—H···F hydrogen-bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding are omitted for clarity.
2-[(Z)-1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2H-1,2-benzothiazin-4-ylidene]acetic acid top
Crystal data top
C17H12F3NO4SF(000) = 784
Mr = 383.34Dx = 1.647 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.6085 (12) ÅCell parameters from 5016 reflections
b = 12.649 (3) Åθ = 2.2–29.1°
c = 18.757 (4) ŵ = 0.27 mm1
β = 99.601 (2)°T = 153 K
V = 1545.9 (5) Å3Prism, colorless
Z = 40.31 × 0.21 × 0.07 mm
Data collection top
Rigaku AFC10/Saturn724+ CCD-detector
diffractometer
4123 independent reflections
Radiation source: Rotating Anode3594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 3.1°
ϕ and ω scansh = 79
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1717
Tmin = 0.910, Tmax = 0.970l = 2425
13553 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.960P]
where P = (Fo2 + 2Fc2)/3
4123 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C17H12F3NO4SV = 1545.9 (5) Å3
Mr = 383.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6085 (12) ŵ = 0.27 mm1
b = 12.649 (3) ÅT = 153 K
c = 18.757 (4) Å0.31 × 0.21 × 0.07 mm
β = 99.601 (2)°
Data collection top
Rigaku AFC10/Saturn724+ CCD-detector
diffractometer
4123 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
3594 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.970Rint = 0.033
13553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
4123 reflectionsΔρmin = 0.46 e Å3
239 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77960 (7)0.24006 (4)0.22711 (2)0.01907 (13)
F11.19907 (18)0.38684 (10)0.09496 (7)0.0309 (3)
F20.9333 (2)0.73151 (9)0.06966 (8)0.0356 (3)
F30.5560 (2)0.65732 (11)0.07640 (9)0.0451 (4)
O10.6212 (2)0.21803 (12)0.26843 (8)0.0274 (3)
O20.9255 (2)0.32226 (11)0.24924 (8)0.0278 (3)
O30.2021 (2)0.09741 (11)0.02713 (8)0.0225 (3)
O40.1809 (2)0.07828 (11)0.04036 (8)0.0236 (3)
N10.6674 (2)0.26344 (12)0.14388 (8)0.0179 (3)
C10.9094 (3)0.12210 (15)0.21459 (9)0.0184 (4)
C21.1103 (3)0.10765 (16)0.24959 (10)0.0231 (4)
H21.17820.16130.28000.028*
C31.2102 (3)0.01352 (17)0.23936 (11)0.0237 (4)
H31.34760.00240.26260.028*
C41.1085 (3)0.06389 (15)0.19517 (11)0.0221 (4)
H41.17480.12950.19010.027*
C50.9114 (3)0.04731 (15)0.15816 (10)0.0195 (4)
H50.84690.10050.12650.023*
C60.8059 (3)0.04668 (14)0.16672 (9)0.0156 (3)
C70.5982 (3)0.06696 (14)0.12487 (9)0.0161 (3)
C80.5169 (3)0.18039 (14)0.11740 (11)0.0193 (4)
H8A0.46350.19410.06570.023*
H8B0.40000.18630.14400.023*
C90.8116 (3)0.29315 (15)0.09448 (11)0.0208 (4)
H9A0.75630.26820.04500.025*
H9B0.94490.25760.11030.025*
C100.8449 (3)0.41109 (14)0.09298 (10)0.0182 (4)
C111.0366 (3)0.45337 (15)0.09093 (10)0.0195 (4)
C121.0725 (3)0.56021 (16)0.08396 (10)0.0230 (4)
H121.20680.58640.08290.028*
C130.9075 (3)0.62708 (15)0.07861 (10)0.0236 (4)
C140.7142 (3)0.58847 (16)0.08163 (12)0.0262 (4)
C150.6818 (3)0.48208 (16)0.08880 (12)0.0252 (4)
H150.54770.45670.09090.030*
C160.4816 (3)0.01466 (14)0.09595 (10)0.0186 (4)
H160.53640.08380.10450.022*
C170.2763 (3)0.00501 (15)0.05225 (10)0.0184 (4)
H3O0.064 (4)0.083 (2)0.0060 (15)0.043 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0204 (2)0.0161 (2)0.0201 (2)0.00048 (17)0.00145 (17)0.00322 (16)
F10.0183 (6)0.0291 (7)0.0454 (8)0.0025 (5)0.0058 (5)0.0017 (6)
F20.0519 (9)0.0149 (6)0.0427 (8)0.0093 (6)0.0157 (6)0.0012 (5)
F30.0326 (7)0.0217 (7)0.0823 (12)0.0090 (6)0.0130 (7)0.0066 (7)
O10.0321 (8)0.0254 (7)0.0268 (7)0.0035 (6)0.0113 (6)0.0000 (6)
O20.0283 (8)0.0197 (7)0.0324 (8)0.0045 (6)0.0040 (6)0.0075 (6)
O30.0186 (7)0.0180 (6)0.0294 (7)0.0040 (5)0.0005 (5)0.0066 (5)
O40.0183 (6)0.0183 (6)0.0315 (7)0.0028 (5)0.0034 (5)0.0009 (5)
N10.0173 (7)0.0143 (7)0.0214 (7)0.0022 (6)0.0010 (6)0.0003 (6)
C10.0204 (9)0.0176 (8)0.0167 (8)0.0008 (7)0.0020 (7)0.0003 (6)
C20.0211 (9)0.0265 (10)0.0193 (9)0.0010 (8)0.0037 (7)0.0014 (7)
C30.0166 (9)0.0307 (10)0.0227 (9)0.0035 (8)0.0002 (7)0.0041 (8)
C40.0218 (9)0.0185 (9)0.0264 (9)0.0049 (7)0.0053 (7)0.0044 (7)
C50.0194 (9)0.0162 (8)0.0231 (9)0.0016 (7)0.0039 (7)0.0005 (7)
C60.0157 (8)0.0141 (8)0.0173 (8)0.0017 (6)0.0033 (6)0.0014 (6)
C70.0158 (8)0.0162 (8)0.0165 (8)0.0013 (6)0.0034 (6)0.0012 (6)
C80.0141 (8)0.0139 (8)0.0283 (9)0.0026 (7)0.0016 (7)0.0003 (7)
C90.0232 (9)0.0146 (8)0.0257 (9)0.0012 (7)0.0074 (7)0.0007 (7)
C100.0193 (9)0.0158 (8)0.0191 (8)0.0016 (7)0.0020 (7)0.0007 (6)
C110.0175 (9)0.0219 (9)0.0188 (8)0.0007 (7)0.0019 (7)0.0014 (7)
C120.0231 (9)0.0262 (10)0.0195 (9)0.0088 (8)0.0035 (7)0.0021 (7)
C130.0352 (11)0.0140 (8)0.0218 (9)0.0066 (8)0.0056 (8)0.0008 (7)
C140.0244 (10)0.0178 (9)0.0365 (11)0.0035 (8)0.0056 (8)0.0022 (8)
C150.0179 (9)0.0194 (9)0.0387 (11)0.0026 (7)0.0059 (8)0.0009 (8)
C160.0185 (9)0.0151 (8)0.0220 (9)0.0002 (7)0.0030 (7)0.0009 (7)
C170.0172 (8)0.0185 (8)0.0194 (8)0.0038 (7)0.0028 (7)0.0011 (7)
Geometric parameters (Å, º) top
S1—O11.4302 (15)C5—C61.401 (2)
S1—O21.4316 (14)C5—H50.9500
S1—N11.6395 (16)C6—C71.485 (2)
S1—C11.7562 (19)C7—C161.347 (2)
F1—C111.356 (2)C7—C81.530 (2)
F2—C131.346 (2)C8—H8A0.9900
F3—C141.352 (2)C8—H8B0.9900
O3—C171.323 (2)C9—C101.509 (2)
O3—H3O0.95 (3)C9—H9A0.9900
O4—C171.229 (2)C9—H9B0.9900
N1—C81.475 (2)C10—C111.381 (3)
N1—C91.484 (2)C10—C151.395 (3)
C1—C21.392 (3)C11—C121.382 (3)
C1—C61.407 (2)C12—C131.371 (3)
C2—C31.390 (3)C12—H120.9500
C2—H20.9500C13—C141.377 (3)
C3—C41.383 (3)C14—C151.373 (3)
C3—H30.9500C15—H150.9500
C4—C51.386 (3)C16—C171.468 (3)
C4—H40.9500C16—H160.9500
O1—S1—O2120.19 (9)N1—C8—H8B108.4
O1—S1—N1107.19 (9)C7—C8—H8B108.4
O2—S1—N1108.70 (9)H8A—C8—H8B107.5
O1—S1—C1108.97 (9)N1—C9—C10111.90 (15)
O2—S1—C1109.60 (9)N1—C9—H9A109.2
N1—S1—C1100.32 (8)C10—C9—H9A109.2
C17—O3—H3O104.8 (17)N1—C9—H9B109.2
C8—N1—C9115.93 (15)C10—C9—H9B109.2
C8—N1—S1111.38 (12)H9A—C9—H9B107.9
C9—N1—S1113.89 (12)C11—C10—C15116.92 (17)
C2—C1—C6122.42 (17)C11—C10—C9121.38 (17)
C2—C1—S1119.82 (14)C15—C10—C9121.57 (17)
C6—C1—S1117.72 (14)F1—C11—C10118.64 (17)
C3—C2—C1119.01 (18)F1—C11—C12117.72 (17)
C3—C2—H2120.5C10—C11—C12123.64 (18)
C1—C2—H2120.5C13—C12—C11117.60 (18)
C4—C3—C2119.67 (17)C13—C12—H12121.2
C4—C3—H3120.2C11—C12—H12121.2
C2—C3—H3120.2F2—C13—C12119.94 (19)
C3—C4—C5121.01 (18)F2—C13—C14119.38 (19)
C3—C4—H4119.5C12—C13—C14120.68 (18)
C5—C4—H4119.5F3—C14—C15120.48 (19)
C4—C5—C6121.01 (17)F3—C14—C13118.68 (18)
C4—C5—H5119.5C15—C14—C13120.83 (19)
C6—C5—H5119.5C14—C15—C10120.32 (18)
C5—C6—C1116.76 (16)C14—C15—H15119.8
C5—C6—C7121.31 (16)C10—C15—H15119.8
C1—C6—C7121.89 (16)C7—C16—C17125.05 (17)
C16—C7—C6119.77 (16)C7—C16—H16117.5
C16—C7—C8120.87 (16)C17—C16—H16117.5
C6—C7—C8119.33 (15)O4—C17—O3122.95 (17)
N1—C8—C7115.47 (15)O4—C17—C16124.81 (16)
N1—C8—H8A108.4O3—C17—C16112.24 (16)
C7—C8—H8A108.4
O1—S1—N1—C849.50 (15)S1—N1—C8—C752.72 (19)
O2—S1—N1—C8179.16 (13)C16—C7—C8—N1173.12 (17)
C1—S1—N1—C864.22 (14)C6—C7—C8—N19.0 (2)
O1—S1—N1—C9177.10 (12)C8—N1—C9—C10138.74 (16)
O2—S1—N1—C945.76 (15)S1—N1—C9—C1090.06 (17)
C1—S1—N1—C969.18 (14)N1—C9—C10—C11140.18 (18)
O1—S1—C1—C2110.27 (17)N1—C9—C10—C1544.1 (2)
O2—S1—C1—C223.12 (19)C15—C10—C11—F1179.92 (17)
N1—S1—C1—C2137.38 (16)C9—C10—C11—F14.2 (3)
O1—S1—C1—C671.95 (16)C15—C10—C11—C121.0 (3)
O2—S1—C1—C6154.67 (14)C9—C10—C11—C12174.89 (18)
N1—S1—C1—C640.41 (16)F1—C11—C12—C13178.87 (16)
C6—C1—C2—C32.7 (3)C10—C11—C12—C130.2 (3)
S1—C1—C2—C3179.63 (15)C11—C12—C13—F2178.12 (17)
C1—C2—C3—C40.3 (3)C11—C12—C13—C141.3 (3)
C2—C3—C4—C53.0 (3)F2—C13—C14—F30.8 (3)
C3—C4—C5—C62.7 (3)C12—C13—C14—F3179.76 (19)
C4—C5—C6—C10.3 (3)F2—C13—C14—C15178.26 (19)
C4—C5—C6—C7177.32 (17)C12—C13—C14—C151.1 (3)
C2—C1—C6—C53.0 (3)F3—C14—C15—C10178.94 (19)
S1—C1—C6—C5179.31 (13)C13—C14—C15—C100.1 (3)
C2—C1—C6—C7174.62 (17)C11—C10—C15—C141.2 (3)
S1—C1—C6—C73.1 (2)C9—C10—C15—C14174.72 (19)
C5—C6—C7—C1621.0 (3)C6—C7—C16—C17178.59 (16)
C1—C6—C7—C16161.52 (18)C8—C7—C16—C173.5 (3)
C5—C6—C7—C8161.05 (17)C7—C16—C17—O44.6 (3)
C1—C6—C7—C816.4 (3)C7—C16—C17—O3176.17 (17)
C9—N1—C8—C779.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.95 (3)1.71 (3)2.6454 (19)170 (3)
C12—H12···F3ii0.952.503.448 (2)178
C15—H15···F1iii0.952.483.430 (2)179
C5—H5···F2iv0.952.493.269 (2)140
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.95 (3)1.71 (3)2.6454 (19)170 (3)
C12—H12···F3ii0.952.503.448 (2)178.3
C15—H15···F1iii0.952.483.430 (2)178.7
C5—H5···F2iv0.952.493.269 (2)139.6
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21272025), the Research Fund for the Doctoral Program of Higher Education of China (grant No. 20111101110042) and the Science and Technology Commission of Beijing (China) (grant No. Z131100004013003).

References

First citationAhmad, M., Latif Siddiqui, H., Zia-ur-Rehman, M., Tizzard, G. J. & Ahmad, S. (2008). Acta Cryst. E64, o1392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171–1175.  CrossRef CAS PubMed Web of Science Google Scholar
First citationParveen, S., Hussain, S., Zhu, S., Qin, X., Hao, X., Zhang, S., Lu, J. & Zhu, C. (2014). Roy. Soc. Chem. Adv. doi:10.1039/C4RA01016G.  Google Scholar
First citationRigaku (2008). CrystalClear and CrystalStructure. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.  PubMed Web of Science Google Scholar
First citationYang, Y., Yu, Y. & Zhu, C. (2012). Acta Cryst. E68, o1364.  CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Anwar, J. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1775.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Akbar, N. & Latif Siddiqui, H. (2008). Acta Cryst. E64, o1508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds