organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one

aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by G. Smith, Queensland University of Technology, Australia (Received 18 April 2014; accepted 29 April 2014; online 3 May 2014)

In the racemic title compound, C19H14N2OS, the two phenyl substituents on the 1,3-thia­zine ring are almost perpendicular to the pyridine ring which is fused to the thia­zine ring [inter-ring dihedral angles = 87.90 (8) and 85.54 (7)°]. The dihedral angle between the two phenyl rings is 75.11 (7)°. The six-membered thia­zine ring has an envelope conformation with the ortho-related C atom forming the flap. The crystals exhibit face-to-edge aromatic-ring interactions with the nearest C—H⋯C distance equal to 3.676 (3) Å.

Related literature

For the syntheses and crystal structures of related compounds, see: Yennawar et al. (2013[Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.], 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]); Yennawar & Silverberg (2013[Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.], 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.]). For the formation of amide bonds using 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-trioxide (T3P) and pyridine, see: Dunetz et al. (2011[Dunetz, J. R., Xiang, Y., Baldwin, A. & Ringling, J. (2011). Org. Lett. 13, 5048-5051.]). For the microwave-promoted reaction of an N-aryl imine with 2-thio­nicotinic acid, see: Dandia et al. (2004[Dandia, A., Arya, K., Sati, M. & Gautam, S. (2004). Tetrahedron, 60, 5253-5258.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N2OS

  • Mr = 318.38

  • Triclinic, [P \overline 1]

  • a = 9.069 (7) Å

  • b = 9.772 (7) Å

  • c = 10.150 (7) Å

  • α = 80.320 (11)°

  • β = 63.737 (10)°

  • γ = 78.591 (12)°

  • V = 787.4 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.29 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.959

  • 7363 measured reflections

  • 3795 independent reflections

  • 3322 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.05

  • 3795 reflections

  • 208 parameters

  • H-atom parameters not refined

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XSHELL (Bruker, 2001[Bruker (2001). SMART, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Dandia et al. (2004) have reported that in the attempted reaction of N-(4-methylphenyl)-1-phenylmethanimine with 2-thionicotinic acid at 142 °C for 26 h, no product formed, which they attributed to the "low reactivity" of 2-thionicotinic acid. However, under microwave irradiation for 10 minutes in DMF, the reaction gave an 85% yield of the desired 3-(4-methylphenyl)-2-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one. This appears to be the only previous report of a 2,3-diaryl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one. We report here the synthesis of 2,3-diphenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one, the title compound, at room temperature, without the use of microwaves, by the reaction of N-benzylideneaniline with 2-thionicotinic acid using 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) and pyridine (Dunetz et al., 2011; Yennawar & Silverberg, 2013, 2014; Yennawar et al., 2013, 2014). This compound continues our study of the structures of 1,3-thiaza-4-one heterocycles (Yennawar et al., 2013, 2014; Yennawar & Silverberg, 2013, 2014), the most closely analogous compound among them being 2,3-diphenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one (Yennawar et al., 2014), which has a benzene ring fused to the 1,3-thiazin-4-one ring instead of the pyridine ring, as reported here.

In the racemic title compound, C19H14N2OS (Fig. 1), the two phenyl substituents on the 1,3-thiazine ring are almost perpendicular to the pyridine ring which is fused to the thiazine ring [pyridyl to benzene inter-ring dihedral angles are 87.90 (8) and 85.54 (7)°]. The dihedral angle between the two benzene rings is 75.11 (7)°. The six-membered thiazine ring has an envelope conformation with the ortho-related carbon (C7) forming the flap. In the crystal, no formal intermolecular hydrogen bonds are present but face-to-edge interactions between the aromatic rings are found (Fig. 2).

Related literature top

For the syntheses and crystal structures of related compounds, see: Yennawar et al. (2013, 2014); Yennawar & Silverberg (2013, 2014). For the formation of amide bonds using 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) and pyridine, see: Dunetz et al. (2011). For the microwave-promoted reaction of an N-aryl imine with 2-thionicotinic acid, see: Dandia et al. (2004).

Experimental top

A two-necked 25 ml round bottom flask was oven-dried, cooled under N2, and charged with a stirring bar and N-benzylideneaniline (1.087 g, 6 mmol). Tetrahydrofuran (2.3 ml) was added, the solid dissolved, and the solution was stirred. Pyridine (1.95 ml, 24 mmol) and then 2-thionicotinic acid (0.931 g, 6 mmol) were added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide in 2-methyltetrahydrofuran (50 weight percent; 7.1 ml, 12 mmol) was added. The reaction was stirred at room temperature until completed as indicated by TLC, then poured into a separatory funnel along with dichloromethane and water. The layers were separated and the aqueous was extracted twice with dichloromethane. The organics were combined and washed with saturated sodium bicarbonate and saturated sodium chloride. The organic layer was dried over sodium sulfate, concentrated under vacuum and chromatographed on 30 g flash silica gel, eluting with mixtures of ethyl acetate and hexanes (10% to 50% ethyl acetate). The product was eluted with 40–50% EtOAc/hexanes and was concentrated under vacuum to give a solid (0.8724 g, 45.7%). Recrystallization from ethanol gave a white solid (0.6927 g, 36.3%). m.p. 134–135 °C; Rf = 0.33 (40% EtOAc/hexanes). Crystals for X-ray crystallography were grown by slow evaporation from ethanol.

Refinement top

The C-bound H atoms were geometrically placed with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2001); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title comound. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing in the unit cell.
2,3-Diphenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one top
Crystal data top
C19H14N2OSZ = 2
Mr = 318.38F(000) = 332
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Melting point: 407.5 K
a = 9.069 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.772 (7) ÅCell parameters from 4119 reflections
c = 10.150 (7) Åθ = 2.3–28.2°
α = 80.320 (11)°µ = 0.21 mm1
β = 63.737 (10)°T = 298 K
γ = 78.591 (12)°Block, colourless
V = 787.4 (10) Å30.29 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3795 independent reflections
Radiation source: fine-focus sealed tube3322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 8.34 pixels mm-1θmax = 28.3°, θmin = 2.1°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1211
Tmin = 0.941, Tmax = 0.959l = 1313
7363 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters not refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1486P]
where P = (Fo2 + 2Fc2)/3
3795 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H14N2OSγ = 78.591 (12)°
Mr = 318.38V = 787.4 (10) Å3
Triclinic, P1Z = 2
a = 9.069 (7) ÅMo Kα radiation
b = 9.772 (7) ŵ = 0.21 mm1
c = 10.150 (7) ÅT = 298 K
α = 80.320 (11)°0.29 × 0.23 × 0.20 mm
β = 63.737 (10)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3795 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3322 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.959Rint = 0.013
7363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters not refined
S = 1.05Δρmax = 0.34 e Å3
3795 reflectionsΔρmin = 0.28 e Å3
208 parameters
Special details top

Experimental. Absorption correction: SADABS (Sheldrick, 2004) was used for absorption correction. Rint was 0.0331 before and 0.0128 after correction. The ratio of minimum to maximum transmission is 0.8482. The λ/2 correction factor is 0.0015.

The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different ϕ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19222 (17)0.19834 (14)0.51794 (14)0.0451 (3)
C20.01727 (17)0.24186 (15)0.62281 (14)0.0467 (3)
C30.1009 (2)0.1554 (2)0.65325 (17)0.0602 (4)
H30.06860.06590.62130.072*
C40.2667 (2)0.2042 (3)0.7316 (2)0.0766 (6)
H40.34800.14740.75610.092*
C50.3088 (2)0.3386 (3)0.7723 (2)0.0799 (6)
H50.42110.37260.81970.096*
C60.03959 (18)0.37357 (16)0.67724 (15)0.0498 (3)
C70.27666 (16)0.35802 (14)0.62977 (14)0.0430 (3)
H70.37220.40920.59130.052*
C80.26430 (15)0.28466 (13)0.77829 (13)0.0412 (3)
C90.2928 (2)0.14162 (16)0.80549 (17)0.0562 (4)
H90.31260.08410.73340.067*
C100.2920 (3)0.08234 (19)0.9406 (2)0.0701 (5)
H100.31060.01460.95820.084*
C110.2641 (2)0.1654 (2)1.04781 (18)0.0660 (4)
H110.26520.12521.13720.079*
C120.2347 (2)0.3081 (2)1.02200 (17)0.0620 (4)
H120.21530.36501.09440.074*
C130.23370 (18)0.36766 (16)0.88894 (16)0.0526 (3)
H130.21230.46460.87300.063*
C140.47645 (16)0.24896 (14)0.40084 (14)0.0435 (3)
C150.4999 (2)0.29060 (18)0.25726 (16)0.0576 (4)
H150.40950.32540.23510.069*
C160.6598 (2)0.2800 (2)0.14615 (18)0.0723 (5)
H160.67620.30740.04890.087*
C170.7934 (2)0.23006 (19)0.1770 (2)0.0689 (5)
H170.90020.22330.10130.083*
C180.7697 (2)0.1902 (2)0.3191 (2)0.0736 (5)
H180.86090.15760.34060.088*
C190.6115 (2)0.1978 (2)0.43170 (19)0.0666 (4)
H190.59630.16840.52830.080*
N10.31171 (14)0.26429 (12)0.51779 (12)0.0452 (3)
N20.19949 (17)0.42352 (18)0.74849 (15)0.0673 (4)
O10.22485 (14)0.11017 (12)0.43317 (12)0.0589 (3)
S10.09809 (5)0.49046 (4)0.64714 (4)0.05549 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0498 (7)0.0485 (7)0.0426 (6)0.0085 (5)0.0234 (6)0.0060 (5)
C20.0463 (7)0.0579 (8)0.0415 (6)0.0094 (6)0.0234 (5)0.0029 (5)
C30.0595 (9)0.0792 (11)0.0528 (8)0.0234 (8)0.0304 (7)0.0010 (7)
C40.0540 (9)0.1285 (18)0.0571 (9)0.0349 (10)0.0282 (8)0.0058 (10)
C50.0447 (9)0.1375 (19)0.0563 (9)0.0019 (10)0.0224 (7)0.0157 (11)
C60.0488 (7)0.0625 (8)0.0417 (6)0.0003 (6)0.0251 (6)0.0056 (6)
C70.0435 (6)0.0461 (7)0.0435 (6)0.0081 (5)0.0189 (5)0.0109 (5)
C80.0369 (6)0.0487 (7)0.0423 (6)0.0065 (5)0.0177 (5)0.0118 (5)
C90.0744 (10)0.0499 (8)0.0532 (8)0.0098 (7)0.0323 (7)0.0109 (6)
C100.0976 (13)0.0576 (9)0.0649 (10)0.0148 (9)0.0447 (10)0.0030 (8)
C110.0705 (10)0.0854 (12)0.0470 (8)0.0160 (9)0.0290 (7)0.0011 (8)
C120.0624 (9)0.0820 (11)0.0492 (8)0.0037 (8)0.0266 (7)0.0246 (8)
C130.0561 (8)0.0541 (8)0.0553 (8)0.0011 (6)0.0282 (7)0.0200 (6)
C140.0448 (7)0.0458 (6)0.0415 (6)0.0055 (5)0.0183 (5)0.0090 (5)
C150.0584 (9)0.0695 (9)0.0472 (7)0.0113 (7)0.0256 (7)0.0002 (7)
C160.0765 (11)0.0902 (13)0.0435 (8)0.0266 (10)0.0146 (8)0.0020 (8)
C170.0527 (9)0.0664 (10)0.0707 (11)0.0141 (7)0.0042 (8)0.0190 (8)
C180.0475 (8)0.0818 (12)0.0854 (13)0.0007 (8)0.0265 (8)0.0082 (10)
C190.0529 (9)0.0902 (12)0.0555 (9)0.0032 (8)0.0271 (7)0.0001 (8)
N10.0431 (6)0.0556 (6)0.0402 (5)0.0071 (5)0.0172 (4)0.0136 (5)
N20.0490 (7)0.0977 (11)0.0548 (7)0.0103 (7)0.0262 (6)0.0176 (7)
O10.0654 (6)0.0604 (6)0.0578 (6)0.0134 (5)0.0254 (5)0.0196 (5)
S10.0646 (2)0.0454 (2)0.0607 (2)0.00138 (16)0.03260 (19)0.00882 (15)
Geometric parameters (Å, º) top
C1—O11.2220 (17)C9—H90.9300
C1—N11.3653 (18)C10—C111.371 (3)
C1—C21.491 (2)C10—H100.9300
C2—C31.391 (2)C11—C121.369 (3)
C2—C61.397 (2)C11—H110.9300
C3—C41.381 (3)C12—C131.381 (2)
C3—H30.9300C12—H120.9300
C4—C51.373 (3)C13—H130.9300
C4—H40.9300C14—C191.376 (2)
C5—N21.333 (3)C14—C151.377 (2)
C5—H50.9300C14—N11.4371 (18)
C6—N21.332 (2)C15—C161.385 (2)
C6—S11.7511 (18)C15—H150.9300
C7—N11.4654 (17)C16—C171.362 (3)
C7—C81.522 (2)C16—H160.9300
C7—S11.8230 (17)C17—C181.359 (3)
C7—H70.9800C17—H170.9300
C8—C91.374 (2)C18—C191.380 (3)
C8—C131.3921 (19)C18—H180.9300
C9—C101.393 (2)C19—H190.9300
O1—C1—N1122.08 (13)C12—C11—C10119.39 (15)
O1—C1—C2120.66 (12)C12—C11—H11120.3
N1—C1—C2117.23 (12)C10—C11—H11120.3
C3—C2—C6117.43 (14)C11—C12—C13120.27 (14)
C3—C2—C1118.63 (14)C11—C12—H12119.9
C6—C2—C1123.37 (13)C13—C12—H12119.9
C4—C3—C2119.06 (18)C12—C13—C8120.93 (15)
C4—C3—H3120.5C12—C13—H13119.5
C2—C3—H3120.5C8—C13—H13119.5
C5—C4—C3118.40 (17)C19—C14—C15119.68 (14)
C5—C4—H4120.8C19—C14—N1120.54 (13)
C3—C4—H4120.8C15—C14—N1119.74 (13)
N2—C5—C4124.37 (17)C14—C15—C16119.18 (15)
N2—C5—H5117.8C14—C15—H15120.4
C4—C5—H5117.8C16—C15—H15120.4
N2—C6—C2123.93 (15)C17—C16—C15121.06 (17)
N2—C6—S1114.61 (13)C17—C16—H16119.5
C2—C6—S1121.38 (12)C15—C16—H16119.5
N1—C7—C8115.03 (12)C18—C17—C16119.54 (16)
N1—C7—S1111.09 (9)C18—C17—H17120.2
C8—C7—S1112.49 (9)C16—C17—H17120.2
N1—C7—H7105.8C17—C18—C19120.59 (17)
C8—C7—H7105.8C17—C18—H18119.7
S1—C7—H7105.8C19—C18—H18119.7
C9—C8—C13118.39 (13)C14—C19—C18119.94 (16)
C9—C8—C7123.51 (11)C14—C19—H19120.0
C13—C8—C7117.95 (13)C18—C19—H19120.0
C8—C9—C10120.29 (13)C1—N1—C14120.09 (11)
C8—C9—H9119.9C1—N1—C7122.27 (11)
C10—C9—H9119.9C14—N1—C7117.56 (11)
C11—C10—C9120.73 (17)C5—N2—C6116.65 (17)
C11—C10—H10119.6C6—S1—C796.48 (9)
C9—C10—H10119.6
O1—C1—C2—C318.1 (2)C14—C15—C16—C170.4 (3)
N1—C1—C2—C3164.00 (12)C15—C16—C17—C180.1 (3)
O1—C1—C2—C6152.95 (14)C16—C17—C18—C191.1 (3)
N1—C1—C2—C624.91 (19)C15—C14—C19—C180.8 (3)
C6—C2—C3—C41.5 (2)N1—C14—C19—C18176.76 (16)
C1—C2—C3—C4170.08 (13)C17—C18—C19—C141.4 (3)
C2—C3—C4—C52.1 (2)O1—C1—N1—C1410.5 (2)
C3—C4—C5—N23.9 (3)C2—C1—N1—C14167.36 (11)
C3—C2—C6—N24.0 (2)O1—C1—N1—C7172.88 (13)
C1—C2—C6—N2167.17 (13)C2—C1—N1—C79.29 (18)
C3—C2—C6—S1179.39 (10)C19—C14—N1—C1122.82 (16)
C1—C2—C6—S19.42 (18)C15—C14—N1—C159.58 (19)
N1—C7—C8—C93.60 (18)C19—C14—N1—C760.37 (19)
S1—C7—C8—C9132.15 (13)C15—C14—N1—C7117.22 (15)
N1—C7—C8—C13179.04 (11)C8—C7—N1—C177.79 (15)
S1—C7—C8—C1352.41 (14)S1—C7—N1—C151.45 (16)
C13—C8—C9—C100.5 (2)C8—C7—N1—C14105.48 (13)
C7—C8—C9—C10174.93 (15)S1—C7—N1—C14125.27 (11)
C8—C9—C10—C110.5 (3)C4—C5—N2—C61.6 (3)
C9—C10—C11—C120.8 (3)C2—C6—N2—C52.5 (2)
C10—C11—C12—C130.2 (3)S1—C6—N2—C5179.27 (12)
C11—C12—C13—C80.8 (2)N2—C6—S1—C7156.14 (11)
C9—C8—C13—C121.1 (2)C2—C6—S1—C726.97 (12)
C7—C8—C13—C12174.57 (13)N1—C7—S1—C653.86 (10)
C19—C14—C15—C160.1 (2)C8—C7—S1—C676.72 (10)
N1—C14—C15—C16177.69 (14)

Experimental details

Crystal data
Chemical formulaC19H14N2OS
Mr318.38
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.069 (7), 9.772 (7), 10.150 (7)
α, β, γ (°)80.320 (11), 63.737 (10), 78.591 (12)
V3)787.4 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.29 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.941, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
7363, 3795, 3322
Rint0.013
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.05
No. of reflections3795
No. of parameters208
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XSHELL (Bruker, 2001), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer. We also express gratitude to Oakwood Products, Inc. for the gift of 2-thio­nicotinic acid and to Euticals for the gift of T3P in 2-methyl­tetra­hydro­furan.

References

First citationBruker (2001). SMART, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDandia, A., Arya, K., Sati, M. & Gautam, S. (2004). Tetrahedron, 60, 5253–5258.  CrossRef CAS Google Scholar
First citationDunetz, J. R., Xiang, Y., Baldwin, A. & Ringling, J. (2011). Org. Lett. 13, 5048–5051.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds