organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o651-o652

De­acetyl­cinobufalactam monohydrate

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

Edited by G. Smith, Queensland University of Technology, Australia (Received 25 April 2014; accepted 5 May 2014; online 10 May 2014)

The title compound, C24H33NO4·H2O, the reaction product of de­acetyl­cinobufagin with ammonium acetate, consists of three cyclo­hexane rings (A, B and C), one five-membered ring (D), one six-membered lactone ring (E) and an epoxide ring (F). The stereochemistry of the ring junctures are A/B cis, B/C trans, C/D cis and D/F cis. Cyclo­hexane rings A, B and C have normal chair conformations. The five-membered ring D adopts an envelope conformation (with the C atom bearing the lactone ring as the flap) and the lactone ring E is planar. In the crystal, hy­droxy and water O—H⋯O and amine N—H⋯O hydrogen bonds involving carbonyl, hy­droxy and water O-atom acceptors link the mol­ecules into a three-dimensional network.

Related literature

For a previous isolation of de­acetyl­cinobufagin [cinobufagin systematic name: (3β,5β,15β,16β)-16-acet­oxy-3-hy­droxy-14,15-ep­oxy­bufa-20,22-dienolide] see: Li et al. (2007[Li, W. X., Sun, H., Li, Q., Zhang, X. Q., Ye, W. C. & Yao, X. S. (2007). Chin. Trad. Herbal Drugs, 38, 183-185.]). For the biosynthesis of de­acetyl­cinobufagin, see: Zhan et al. (2003[Zhan, J., Liu, W., Guo, H., Zhang, Y. & Guo, D. (2003). Enzyme Microb. Tech. 33, 29-32.]). For its pharmacological activity, see: Yu et al. (2008[Yu, C. H., Kan, S. F., Pu, H. F., Chien, E. J. & Wang, P. S. (2008). Cancer Sci. 99, 2467-2476.]); Tian et al. (2013[Tian, H. Y., Luo, S. L., Liu, J. S., Wang, L., Wang, Y., Zhang, D. M., Zhang, X. Q., Jiang, R. W. & Ye, W. C. (2013). J. Nat. Prod. 76, 1842-1847.]). For the stereochemistry of bufalin, see: Rohrer et al. (1982[Rohrer, D. C., Fullerton, D. S., Kitatsuji, E., Nambara, T. & Yoshii, E. (1982). Acta Cryst. B38, 1865-1868.]).

[Scheme 1]

Experimental

Crystal data
  • C24H33NO4·H2O

  • Mr = 417.53

  • Monoclinic, P 21

  • a = 8.0097 (2) Å

  • b = 12.1155 (4) Å

  • c = 11.3627 (3) Å

  • β = 95.077 (3)°

  • V = 1098.33 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 290 K

  • 0.40 × 0.32 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini-S Ultra sapphire CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.806, Tmax = 1.0

  • 3289 measured reflections

  • 2396 independent reflections

  • 2261 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.08

  • 2396 reflections

  • 280 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.93 (4) 1.79 (4) 2.710 (3) 170 (4)
O1W—H1WB⋯O3 0.80 (5) 2.07 (5) 2.867 (3) 170 (4)
N1—H1A⋯O1ii 0.86 2.00 2.839 (3) 165
O1—H1B⋯O1Wiii 0.82 1.90 2.690 (3) 161
O3—H3A⋯O1iv 0.82 2.09 2.868 (2) 157
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Deacetylcinobufagin is a natural cardiactonic steroid which has been isolated from the skin of the toad (Li et al., 2007) and has also been biosynthesized by microbial transformation of cinobufagin (Zhan et al., 2003). Compounds of this type have shown strong cytotoxic effects against a wide range of cancer cells (Yu et al., 2008). However they also possess cardiac toxicity due to the inhibition of sodium-potassium ATPase (Tian et al., 2013). Thus structural modification of the pharmacological profile of the molecule was warranted. Recently we treated deacetylcinobufagin (isolated in our laboratory) with ammonium acetate, and a new hydrated derivative, C24H33O4N . H2O, the title compound, named deacetylcinobufalactam, was obtained after recrystallization from methanol at room temperature. We report herein the crystal structure of this compound.

The molecule of the title compound (Fig. 1) consists of three cyclohexane rings (A, B and C), one five-membered ring (D), one six-membered lactam ring (E) and an epoxide ring (F). The stereochemistry of the ring juncture is A/B cis, B/C trans, C/D cis and D/F cis. The cyclohexane rings A, B and C have normal chair conformations. The five-membered ring (D adopts an envelope conformation with C17 displaced by -0.381 (3) Å from the mean plane of the remaining four atoms (C13, C14, C15 and C16). The lactam ring (E) and the epoxide ring (F) are planar and roughly perpendicular to each other with a dihedral angle of 96.6 (4)°. The absolute configuration determined for bufalin (Rohrer et al., 1982), a similar cardiactonic steroid, was invoked, giving the assignments of the 10 chiral centres in the title molecule as shown in Fig. 1.

In the crystal, intermolecular hydroxyl and water O—H···O hydrogen bonds to hydroxyl, carbonyl and water O-atom acceptors and a hetero-amine N—H···Ohydroxyl hydrogen bond (Table 1) link the molecules into a three-dimensional network structure (Figure 2).

Related literature top

For a previous isolation of deacetylcinobufagin [cinobufagin systematic name: (3β,5β,15β,16β)-16-acetoxy-3-hydroxy-14,15-epoxybufa-20,22-dienolide] see: Li et al. (2007). For the biosynthesis of deacetylcinobufagin, see: Zhan et al. (2003). For its pharmacological activity, see: Yu et al. (2008); Tian et al. (2013). For the stereochemistry of bufalin, see: Rohrer et al. (1982).

Experimental top

Deacetylcinobufagin (40.0 mg) was dissolved in DMF, then ammonium acetate (38.5 mg) was added under nitrogen protection. The mixture was stirred for three hours at 100 °C. After completion of the reaction, the mixture was poured into water and extracted with ethyl acetate. The ethyl acetate extract was washed with water to remove the solvent DMF and the excess ammonium acetate and condensed by rotary evaporation under reduced pressure. The residue was recrystallized in methanol at room temperature to afford colorless crystals (28.6 mg, yield 71.7%).

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C); 0.93 Å (aryl H) and Uiso(H)= 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The Friedel pair coverage for the collection is low. It may be due to an inadequate collection strategy. Recollection of diffraction data was not thought to be necessary since the absolute configuration can be unambiguously assigned with reference to the known configuration of the closely related compound bufalin (Rohrer et al., 1982) [(C3S,C5R, C8R,C9S,C10S,C13R,C14S,C15R, C16R,C17R) for the 10 chiral centres in the title compound using the arbitrarily named atoms employed]. The Flack parameter was refined to 0.0 (3) for 571 Friedel pairs. There are 32 reflections missing between θ(min) and θ(max), which might be also due to the inadequate collection strategy, and adjustment of the orientation to tilt the crystal axis might be helpful for collecting a complete set of diffraction data. In addition, both hydrogen atoms on the water molecule are involved in hydrogen bonding. The O—H bond distances are significantly different from the ideal bond length so these two hydrogen atoms were refined freely. The highest residual electron density was 0.142 eÅ3 and has no particular structural significance.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing atom the numbering scheme and 30% probability displacement ellipsoids. The inter-species hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The packing diagram showing the intermolecular O—H···O and N—H···O hydrogen bonds which are represented by dashed lines. Selected H-atoms highlighting the hydrogen bonding are shown.
Deacetylcinobufalactam monohydrate top
Crystal data top
C24H33NO4·H2OF(000) = 452
Mr = 417.53Dx = 1.263 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 2374 reflections
a = 8.0097 (2) Åθ = 3.9–62.8°
b = 12.1155 (4) ŵ = 0.71 mm1
c = 11.3627 (3) ÅT = 290 K
β = 95.077 (3)°Plate, colorless
V = 1098.33 (5) Å30.40 × 0.32 × 0.10 mm
Z = 2
Data collection top
Oxford Diffraction Gemini-S Ultra sapphire CCD
diffractometer
2396 independent reflections
Radiation source: fine-focus sealed tube2261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 62.8°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 98
Tmin = 0.806, Tmax = 1.0k = 813
3289 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.128P]
where P = (Fo2 + 2Fc2)/3
2396 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C24H33NO4·H2OV = 1098.33 (5) Å3
Mr = 417.53Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.0097 (2) ŵ = 0.71 mm1
b = 12.1155 (4) ÅT = 290 K
c = 11.3627 (3) Å0.40 × 0.32 × 0.10 mm
β = 95.077 (3)°
Data collection top
Oxford Diffraction Gemini-S Ultra sapphire CCD
diffractometer
2396 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2261 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 1.0Rint = 0.018
3289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.14 e Å3
2396 reflectionsΔρmin = 0.13 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2500 (2)0.63824 (18)0.52081 (16)0.0396 (5)
H1A0.32960.67200.55200.048*
O10.5226 (2)0.78557 (15)0.38275 (14)0.0450 (4)
H1B0.57280.83390.41590.067*
O20.2223 (2)0.53707 (14)0.21889 (13)0.0404 (4)
O30.3082 (2)0.66560 (16)0.44674 (14)0.0506 (5)
H3A0.38300.70420.47880.076*
O40.3079 (2)0.48508 (18)0.62396 (15)0.0529 (5)
C10.2137 (3)0.8092 (2)0.2603 (2)0.0375 (5)
H1C0.20090.79310.34420.045*
H1D0.11840.85360.24240.045*
C20.3714 (3)0.8770 (2)0.2341 (2)0.0430 (6)
H2A0.37990.90030.15210.052*
H2B0.36530.94260.28320.052*
C30.5255 (3)0.8109 (2)0.2575 (2)0.0410 (6)
H3B0.62630.85370.23270.049*
C40.5291 (3)0.7026 (2)0.1897 (2)0.0399 (6)
H4A0.62330.65910.21130.048*
H4B0.54730.71850.10580.048*
C50.3701 (3)0.6345 (2)0.21181 (18)0.0347 (5)
H5A0.36170.61350.29540.042*
C60.3824 (4)0.5274 (2)0.1411 (2)0.0465 (6)
H6A0.48960.49280.15040.056*
H6B0.29510.47730.17270.056*
C70.3649 (3)0.5455 (2)0.0095 (2)0.0449 (6)
H7A0.36300.47450.02990.054*
H7B0.46140.58620.02510.054*
C80.2052 (3)0.6091 (2)0.01045 (19)0.0343 (5)
H8A0.11040.56400.02180.041*
C90.1961 (3)0.71946 (19)0.05767 (19)0.0305 (5)
H9A0.29510.76240.02870.037*
C100.2087 (3)0.6997 (2)0.19199 (18)0.0328 (5)
C110.0424 (3)0.7867 (2)0.0302 (2)0.0420 (6)
H11A0.04660.85850.06750.050*
H11B0.05810.74940.06340.050*
C120.0323 (3)0.8024 (2)0.1027 (2)0.0405 (6)
H12A0.06800.84410.11510.049*
H12B0.12810.84520.13450.049*
C130.0287 (3)0.69225 (19)0.17083 (18)0.0324 (5)
C140.1819 (3)0.62930 (19)0.13928 (18)0.0320 (5)
C150.3140 (3)0.6388 (2)0.2355 (2)0.0392 (5)
H15A0.43140.64190.21770.047*
C160.2557 (3)0.7099 (2)0.33232 (19)0.0387 (6)
H16A0.30310.78400.32600.046*
C170.0623 (3)0.71678 (19)0.30680 (18)0.0336 (5)
H17A0.03130.79410.31810.040*
C180.0561 (3)0.6373 (3)0.2475 (2)0.0516 (7)
H18A0.06750.62580.33000.077*
H18B0.04330.67970.23850.077*
H18C0.04790.56730.20900.077*
C190.1342 (3)0.6303 (3)0.1395 (2)0.0452 (6)
H19A0.14840.61790.05580.068*
H19B0.22640.67320.16300.068*
H19C0.13070.56070.18000.068*
C200.0349 (3)0.6490 (2)0.38948 (18)0.0329 (5)
C210.1599 (3)0.6964 (2)0.44449 (19)0.0358 (5)
H21A0.18540.77030.43010.043*
C220.0037 (3)0.5362 (2)0.41596 (18)0.0349 (5)
H22A0.08050.49980.38000.042*
C230.0930 (3)0.4799 (2)0.49229 (19)0.0375 (5)
H23A0.06890.40580.50680.045*
C240.2220 (3)0.5307 (2)0.55044 (19)0.0379 (6)
O1W0.3771 (3)0.4443 (2)0.5263 (2)0.0555 (5)
H1WA0.480 (5)0.462 (3)0.567 (3)0.092 (13)*
H1WB0.355 (5)0.503 (4)0.496 (3)0.084 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0374 (10)0.0467 (13)0.0365 (10)0.0049 (9)0.0131 (8)0.0015 (10)
O10.0544 (10)0.0426 (11)0.0413 (9)0.0053 (8)0.0232 (8)0.0012 (8)
O20.0541 (9)0.0351 (9)0.0335 (8)0.0123 (8)0.0119 (7)0.0039 (8)
O30.0563 (10)0.0580 (12)0.0357 (9)0.0091 (9)0.0054 (7)0.0029 (9)
O40.0498 (10)0.0619 (12)0.0490 (10)0.0076 (9)0.0154 (8)0.0124 (10)
C10.0428 (12)0.0421 (14)0.0288 (12)0.0056 (11)0.0091 (9)0.0046 (11)
C20.0593 (15)0.0318 (13)0.0403 (13)0.0022 (12)0.0179 (11)0.0008 (11)
C30.0437 (13)0.0431 (14)0.0380 (13)0.0094 (11)0.0139 (10)0.0045 (12)
C40.0373 (12)0.0458 (15)0.0379 (12)0.0043 (11)0.0105 (10)0.0002 (12)
C50.0467 (12)0.0323 (13)0.0269 (10)0.0007 (11)0.0132 (9)0.0032 (10)
C60.0635 (15)0.0373 (15)0.0422 (13)0.0084 (12)0.0240 (11)0.0007 (12)
C70.0616 (15)0.0407 (14)0.0353 (12)0.0193 (13)0.0209 (11)0.0068 (12)
C80.0421 (12)0.0317 (13)0.0304 (11)0.0025 (10)0.0100 (9)0.0012 (10)
C90.0351 (11)0.0301 (12)0.0274 (11)0.0008 (9)0.0084 (8)0.0013 (10)
C100.0342 (11)0.0378 (13)0.0273 (11)0.0027 (10)0.0067 (8)0.0021 (11)
C110.0512 (14)0.0439 (16)0.0330 (13)0.0135 (12)0.0156 (10)0.0118 (11)
C120.0526 (14)0.0336 (13)0.0377 (13)0.0144 (12)0.0181 (11)0.0054 (11)
C130.0390 (12)0.0310 (12)0.0287 (11)0.0024 (10)0.0105 (9)0.0000 (10)
C140.0406 (11)0.0262 (12)0.0305 (11)0.0025 (10)0.0116 (9)0.0036 (10)
C150.0346 (11)0.0459 (15)0.0379 (12)0.0011 (11)0.0080 (9)0.0021 (12)
C160.0462 (13)0.0370 (14)0.0335 (12)0.0076 (11)0.0065 (10)0.0030 (11)
C170.0444 (12)0.0273 (12)0.0306 (12)0.0012 (10)0.0117 (9)0.0019 (10)
C180.0508 (14)0.0668 (19)0.0370 (13)0.0149 (14)0.0033 (10)0.0092 (14)
C190.0417 (12)0.0595 (17)0.0353 (12)0.0028 (13)0.0082 (10)0.0001 (13)
C200.0382 (11)0.0357 (13)0.0258 (10)0.0009 (10)0.0076 (9)0.0025 (10)
C210.0391 (12)0.0361 (13)0.0332 (11)0.0050 (11)0.0088 (9)0.0038 (11)
C220.0401 (12)0.0357 (13)0.0295 (11)0.0019 (11)0.0063 (9)0.0037 (11)
C230.0468 (12)0.0336 (13)0.0326 (11)0.0016 (11)0.0058 (10)0.0011 (11)
C240.0361 (12)0.0457 (15)0.0316 (11)0.0050 (11)0.0010 (9)0.0034 (12)
O1W0.0558 (13)0.0493 (13)0.0618 (13)0.0030 (10)0.0073 (10)0.0124 (12)
Geometric parameters (Å, º) top
O1—C31.454 (3)C20—C221.417 (3)
O2—C141.456 (3)C20—C211.354 (3)
O2—C151.439 (3)C22—C231.356 (3)
O3—C161.435 (3)C23—C241.416 (3)
O4—C241.256 (3)C1—H1C0.9700
O1—H1B0.8200C1—H1D0.9700
O3—H3A0.8200C2—H2B0.9700
O1W—H1WB0.80 (5)C2—H2A0.9700
O1W—H1WA0.93 (4)C3—H3B0.9800
N1—C241.359 (3)C4—H4A0.9700
N1—C211.371 (3)C4—H4B0.9700
N1—H1A0.8600C5—H5A0.9800
C1—C21.514 (3)C6—H6B0.9700
C1—C101.539 (3)C6—H6A0.9700
C2—C31.515 (3)C7—H7B0.9700
C3—C41.521 (3)C7—H7A0.9700
C4—C51.520 (3)C8—H8A0.9800
C5—C101.548 (3)C9—H9A0.9800
C5—C61.525 (3)C11—H11A0.9700
C6—C71.530 (3)C11—H11B0.9700
C7—C81.527 (3)C12—H12A0.9700
C8—C141.512 (3)C12—H12B0.9700
C8—C91.543 (3)C15—H15A0.9800
C9—C101.557 (3)C16—H16A0.9800
C9—C111.531 (3)C17—H17A0.9800
C10—C181.525 (4)C18—H18B0.9600
C11—C121.531 (3)C18—H18A0.9600
C12—C131.544 (3)C18—H18C0.9600
C13—C191.520 (4)C19—H19B0.9600
C13—C141.515 (3)C19—H19C0.9600
C13—C171.573 (3)C19—H19A0.9600
C14—C151.457 (3)C21—H21A0.9300
C15—C161.504 (3)C22—H22A0.9300
C16—C171.553 (3)C23—H23A0.9300
C17—C201.514 (3)
C14—O2—C1560.45 (15)C3—C2—H2A109.00
C3—O1—H1B109.00C1—C2—H2A109.00
C16—O3—H3A109.00H2A—C2—H2B108.00
H1WA—O1W—H1WB99 (4)C3—C2—H2B109.00
C21—N1—C24124.38 (19)O1—C3—H3B110.00
C21—N1—H1A118.00C4—C3—H3B109.00
C24—N1—H1A118.00C2—C3—H3B109.00
C2—C1—C10115.27 (19)C3—C4—H4B109.00
C1—C2—C3110.9 (2)C5—C4—H4A109.00
O1—C3—C4108.16 (19)C5—C4—H4B109.00
C2—C3—C4110.28 (19)H4A—C4—H4B108.00
O1—C3—C2109.92 (18)C3—C4—H4A109.00
C3—C4—C5114.00 (19)C6—C5—H5A107.00
C4—C5—C10113.4 (2)C10—C5—H5A107.00
C6—C5—C10111.9 (2)C4—C5—H5A107.00
C4—C5—C6111.2 (2)C5—C6—H6B109.00
C5—C6—C7112.69 (19)C7—C6—H6A109.00
C6—C7—C8111.6 (2)C7—C6—H6B109.00
C9—C8—C14109.93 (19)H6A—C6—H6B108.00
C7—C8—C14113.71 (19)C5—C6—H6A109.00
C7—C8—C9111.45 (19)C6—C7—H7A109.00
C8—C9—C11111.21 (19)C6—C7—H7B109.00
C8—C9—C10110.74 (18)C8—C7—H7B109.00
C10—C9—C11113.87 (19)H7A—C7—H7B108.00
C5—C10—C18109.6 (2)C8—C7—H7A109.00
C1—C10—C18105.9 (2)C7—C8—H8A107.00
C1—C10—C5107.88 (19)C9—C8—H8A107.00
C9—C10—C18111.25 (19)C14—C8—H8A107.00
C1—C10—C9111.63 (19)C8—C9—H9A107.00
C5—C10—C9110.39 (18)C10—C9—H9A107.00
C9—C11—C12112.38 (19)C11—C9—H9A107.00
C11—C12—C13113.08 (19)C9—C11—H11B109.00
C14—C13—C17104.82 (18)C12—C11—H11A109.00
C12—C13—C14105.37 (18)C9—C11—H11A109.00
C14—C13—C19113.1 (2)H11A—C11—H11B108.00
C17—C13—C19113.08 (18)C12—C11—H11B109.00
C12—C13—C17108.66 (18)C11—C12—H12A109.00
C12—C13—C19111.3 (2)C13—C12—H12A109.00
O2—C14—C8115.95 (19)C13—C12—H12B109.00
O2—C14—C1559.19 (14)H12A—C12—H12B108.00
C8—C14—C13118.86 (19)C11—C12—H12B109.00
O2—C14—C13112.31 (17)O2—C15—H15A120.00
C13—C14—C15109.41 (18)C14—C15—H15A120.00
C8—C14—C15126.6 (2)C16—C15—H15A120.00
O2—C15—C16113.50 (19)O3—C16—H16A109.00
O2—C15—C1460.36 (14)C15—C16—H16A109.00
C14—C15—C16110.0 (2)C17—C16—H16A109.00
C15—C16—C17105.27 (18)C16—C17—H17A107.00
O3—C16—C17113.38 (18)C20—C17—H17A107.00
O3—C16—C15111.32 (19)C13—C17—H17A107.00
C16—C17—C20114.47 (18)C10—C18—H18B109.00
C13—C17—C20117.02 (19)C10—C18—H18C110.00
C13—C17—C16104.74 (18)C10—C18—H18A109.00
C17—C20—C21119.9 (2)H18A—C18—H18C109.00
C21—C20—C22115.8 (2)H18B—C18—H18C109.00
C17—C20—C22124.4 (2)H18A—C18—H18B109.00
N1—C21—C20121.7 (2)C13—C19—H19A109.00
C20—C22—C23121.9 (2)C13—C19—H19B109.00
C22—C23—C24121.9 (2)H19A—C19—H19B109.00
O4—C24—C23125.8 (2)H19A—C19—H19C109.00
O4—C24—N1119.9 (2)C13—C19—H19C109.00
N1—C24—C23114.4 (2)H19B—C19—H19C109.00
C2—C1—H1C108.00C20—C21—H21A119.00
C10—C1—H1C108.00N1—C21—H21A119.00
C10—C1—H1D108.00C20—C22—H22A119.00
C2—C1—H1D108.00C23—C22—H22A119.00
H1C—C1—H1D108.00C22—C23—H23A119.00
C1—C2—H2B109.00C24—C23—H23A119.00
C15—O2—C14—C8118.8 (2)C10—C9—C11—C12178.82 (19)
C15—O2—C14—C13100.0 (2)C9—C11—C12—C1357.6 (3)
C14—O2—C15—C16100.5 (2)C11—C12—C13—C1454.6 (2)
C24—N1—C21—C201.4 (3)C11—C12—C13—C17166.44 (19)
C21—N1—C24—O4177.9 (2)C11—C12—C13—C1968.4 (3)
C21—N1—C24—C232.1 (3)C12—C13—C14—O2164.85 (17)
C10—C1—C2—C356.9 (3)C12—C13—C14—C855.1 (3)
C2—C1—C10—C553.0 (2)C12—C13—C14—C15101.1 (2)
C2—C1—C10—C968.5 (3)C17—C13—C14—O250.3 (2)
C2—C1—C10—C18170.3 (2)C17—C13—C14—C8169.7 (2)
C1—C2—C3—O165.1 (2)C17—C13—C14—C1513.5 (2)
C1—C2—C3—C454.1 (2)C19—C13—C14—O273.4 (2)
O1—C3—C4—C566.7 (2)C19—C13—C14—C866.7 (3)
C2—C3—C4—C553.6 (3)C19—C13—C14—C15137.1 (2)
C3—C4—C5—C6179.94 (18)C12—C13—C17—C1689.8 (2)
C3—C4—C5—C1052.8 (2)C12—C13—C17—C20142.3 (2)
C4—C5—C6—C774.5 (3)C14—C13—C17—C1622.5 (2)
C10—C5—C6—C753.5 (3)C14—C13—C17—C20105.5 (2)
C4—C5—C10—C149.7 (2)C19—C13—C17—C16146.2 (2)
C4—C5—C10—C972.6 (2)C19—C13—C17—C2018.2 (3)
C4—C5—C10—C18164.56 (19)O2—C14—C15—C16106.3 (2)
C6—C5—C10—C1176.39 (18)C8—C14—C15—O2101.1 (2)
C6—C5—C10—C954.2 (3)C8—C14—C15—C16152.6 (2)
C6—C5—C10—C1868.7 (2)C13—C14—C15—O2104.98 (19)
C5—C6—C7—C853.6 (3)C13—C14—C15—C161.3 (3)
C6—C7—C8—C955.0 (3)O2—C15—C16—O373.6 (2)
C6—C7—C8—C14180.0 (2)O2—C15—C16—C1749.7 (2)
C7—C8—C9—C1056.5 (2)C14—C15—C16—O3139.0 (2)
C7—C8—C9—C11175.82 (18)C14—C15—C16—C1715.8 (2)
C14—C8—C9—C10176.48 (19)O3—C16—C17—C13145.25 (19)
C14—C8—C9—C1148.8 (3)O3—C16—C17—C2015.8 (3)
C7—C8—C14—O241.8 (3)C15—C16—C17—C1323.3 (2)
C7—C8—C14—C13179.6 (2)C15—C16—C17—C20106.2 (2)
C7—C8—C14—C1527.8 (3)C13—C17—C20—C21107.9 (2)
C9—C8—C14—O2167.51 (19)C13—C17—C20—C2272.7 (3)
C9—C8—C14—C1353.9 (3)C16—C17—C20—C21129.0 (2)
C9—C8—C14—C1597.9 (3)C16—C17—C20—C2250.4 (3)
C8—C9—C10—C1175.57 (19)C17—C20—C21—N1179.4 (2)
C8—C9—C10—C555.6 (3)C22—C20—C21—N10.0 (3)
C8—C9—C10—C1866.3 (3)C17—C20—C22—C23178.9 (2)
C11—C9—C10—C158.2 (3)C21—C20—C22—C230.5 (3)
C11—C9—C10—C5178.21 (19)C20—C22—C23—C240.3 (4)
C11—C9—C10—C1859.9 (3)C22—C23—C24—O4178.5 (2)
C8—C9—C11—C1252.9 (3)C22—C23—C24—N11.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.93 (4)1.79 (4)2.710 (3)170 (4)
O1W—H1WB···O30.80 (5)2.07 (5)2.867 (3)170 (4)
N1—H1A···O1ii0.862.002.839 (3)165
O1—H1B···O1Wiii0.821.902.690 (3)161
O3—H3A···O1iv0.822.092.868 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z+1; (iii) x+1, y+1/2, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.93 (4)1.79 (4)2.710 (3)170 (4)
O1W—H1WB···O30.80 (5)2.07 (5)2.867 (3)170 (4)
N1—H1A···O1ii0.862.002.839 (3)165
O1—H1B···O1Wiii0.821.902.690 (3)161
O3—H3A···O1iv0.822.092.868 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z+1; (iii) x+1, y+1/2, z; (iv) x, y, z+1.
 

Acknowledgements

This work was supported by the 111 Project (No. B13038) from the Ministry of Education of the People's Republic of China.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationLi, W. X., Sun, H., Li, Q., Zhang, X. Q., Ye, W. C. & Yao, X. S. (2007). Chin. Trad. Herbal Drugs, 38, 183–185.  CAS Google Scholar
First citationRohrer, D. C., Fullerton, D. S., Kitatsuji, E., Nambara, T. & Yoshii, E. (1982). Acta Cryst. B38, 1865–1868.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, H. Y., Luo, S. L., Liu, J. S., Wang, L., Wang, Y., Zhang, D. M., Zhang, X. Q., Jiang, R. W. & Ye, W. C. (2013). J. Nat. Prod. 76, 1842–1847.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYu, C. H., Kan, S. F., Pu, H. F., Chien, E. J. & Wang, P. S. (2008). Cancer Sci. 99, 2467–2476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhan, J., Liu, W., Guo, H., Zhang, Y. & Guo, D. (2003). Enzyme Microb. Tech. 33, 29–32.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o651-o652
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds