organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Deacet­­oxy-1-oxocaesalmin

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 6 May 2014; accepted 13 May 2014; online 17 May 2014)

The title compound, C24H30O7, is a diterpenoid isolated from the seeds of Caesalpinia minax. It consists of two cyclo­hexane rings (A and B), one unsaturated six-membered ring (C) and one furan ring (D). The stereochemistry of the ring junctures is A/B trans and B/C trans. Rings A and B have normal chair conformations while C adopts a twisted half-chair conformation due to fusion to the furan ring which is planar [r.m.s. deviation = 0.0009 (2) Å]. In the crystal, hydroxyl O—H⋯Ocarbon­yl hydrogen bonds link the mol­ecules into a chain structure extending along the a-axis direction.

Related literature

For previous isolation of 1-deacet­oxy-1-oxocaesalmin, see: Kalauni et al. (2005[Kalauni, S. K., Awale, S., Tezuka, Y., Banskota, A. H., Linn, T. Z. & Kadota, S. (2005). Chem. Pharm. Bull. 53, 1300-1304.]). For the anti­viral activity of similar diterpenoids, see: Jiang et al. (2001[Jiang, R. W., Ma, S. C., But, P. P. H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266-1272.]). For the anti­malarial activity of similar diterpenoids, see: Kalauni et al. (2006[Kalauni, S. K., Awale, S., Tezuka, Y., Banskota, A. H., Linn, T. Z., Asih, P. B. S., Syafrunddin, D. & Kadota, S. (2006). Biol. Pharm. Bull. 29, 1050-1052.]). For the anti­tumor activity of similar diterpenoids, see: Ma et al. (2013[Ma, G., Yuan, J., Wu, H., Cao, L., Zhang, X., Xu, L., Wei, H. & Wu, L. (2013). J. Nat. Prod. 76, 1025-1031.]). For the stereochemistry of caesalmin C, see: Jiang et al. (2001[Jiang, R. W., Ma, S. C., But, P. P. H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266-1272.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30O7

  • Mr = 430.48

  • Orthorhombic, P 21 21 21

  • a = 6.7744 (1) Å

  • b = 17.2209 (4) Å

  • c = 19.1592 (5) Å

  • V = 2235.14 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 173 K

  • 0.38 × 0.27 × 0.22 mm

Data collection
  • Oxford Diffraction Gemini-S ultra Sapphire CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.83, Tmax = 1.00

  • 4463 measured reflections

  • 3080 independent reflections

  • 2845 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.05

  • 3080 reflections

  • 287 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]: 1031 Friedel pairs

  • Absolute structure parameter: −0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.04 2.804 (2) 156
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-Deacetoxy-1-oxocaesalmin is a natural diterpenoid which has been isolated from the seeds of Caesalpinia crista (Kalauni et al., 2005). Though the biological activity of this compound was not reported, similar diterpenoids were reported to have antiviral (Jiang et al., 2001), antimalarial (Kalauni et al., 2006) and antitumor (Ma et al., 2013) activities. Caesalpinia minax is a prickly scandent shrub distributing widely in the tropics and subtropics. The seeds of this plant have been used in Chinese folk medicine for the treatment of prostatitis. In order to characterize the active components, we performed a phytochemical study on the seeds of this plant. The title compound was isolated from the ethyl acetate fraction of the 95% ethanol extract followed by recrystallization from the methanol solution at room temperature. Isolation of this compound, C24H30O7, from Caesalpinia minax and Caesalpinia crista of the same genus indicated that it can be served as a chemotaxonomic marker for this genus.

The title compound (Fig. 1) contains two cyclohexane rings (A and B), one unsaturated six-membered ring (C) and one furan ring (D). The stereochemistry of the ring juncture is A/B trans and B/C trans. The cyclohexane rings A and B have normal chair conformations. The unsaturated six-membered ring (C) adopts a twisted half-chair conformation due to fusion to the furan ring D which is planar.

The absolute configuration determined for caesalmin C (Jiang et al., 2001), a similar diterpenoid, was invoked, giving the assignments of the chiral centres in the molecule as shown in Fig. 1.

An intermolecular hydroxyl O2—H···O1i (carbonyl) hydrogen bond (Table 1) links the molecules into a one-dimensional chain structure extending along a (Fig. 2).

Related literature top

For previous isolation of 1-deacetoxy-1-oxocaesalmin, see: Kalauni et al. (2005). For the antiviral activity of similar diterpenoids, see: Jiang et al. (2001). For the antimalarial activity of similar diterpenoids, see: Kalauni et al. (2006). For the antitumor activity of similar diterpenoids, see: Ma et al. (2013). For the stereochemistry of caesalmin C, see: Jiang et al. (2001).

Experimental top

The dry ground seeds of Caesalpinia minax (5.0 kg) were refluxed with 95% EtOH. After evaporation of the solvent, the crude extract was suspended in distilled water and extracted with hexane (800 ml), ethyl acetate (800 ml) and butanol (600 ml), successively. The ethyl acetate fraction (65 g) was subjected to column chromatography over silica gel, and eluted with a cyclohexane-ethyl acetate gradient (10:1 to 0:1) to afford the title compound, which was further recrystallized from methanol at room temperature to give colorless crystals (18 mg).

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C); 0.93 Å (aryl H) and Uiso(H)= 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The absolute configuration can be unambiguously assigned with reference to the known configuration of the closely related compound caesalmin C (Jiang et al., 2001). [C5(R),C6(S), C7(R),C8(R),C9(S),C10(R] were assigned for the six chiral centres in the title compound using the arbitrarily named atoms employed. The Flack parameter (Flack, 1983) was refined to -0.1 (2) for 1031 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional chain structure in the title compound showing the intermolecular O—H···O hydrogen bonds which are represented by dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted.
1-Deacetoxy-1-oxocaesalmin top
Crystal data top
C24H30O7F(000) = 920
Mr = 430.48Dx = 1.279 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 2218 reflections
a = 6.7744 (1) Åθ = 4.6–62.6°
b = 17.2209 (4) ŵ = 0.77 mm1
c = 19.1592 (5) ÅT = 173 K
V = 2235.14 (8) Å3Block, colorless
Z = 40.38 × 0.27 × 0.22 mm
Data collection top
Oxford Diffraction Gemini-S ultra Sapphire CCD
diffractometer
3080 independent reflections
Radiation source: fine-focus sealed tube2845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scanθmax = 62.7°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 47
Tmin = 0.83, Tmax = 1.00k = 1919
4463 measured reflectionsl = 2113
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.203P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.14 e Å3
3080 reflectionsΔρmin = 0.12 e Å3
287 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0052 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack, 1983: 1031 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.1 (2)
Crystal data top
C24H30O7V = 2235.14 (8) Å3
Mr = 430.48Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.7744 (1) ŵ = 0.77 mm1
b = 17.2209 (4) ÅT = 173 K
c = 19.1592 (5) Å0.38 × 0.27 × 0.22 mm
Data collection top
Oxford Diffraction Gemini-S ultra Sapphire CCD
diffractometer
3080 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2845 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 1.00Rint = 0.020
4463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.14 e Å3
S = 1.05Δρmin = 0.12 e Å3
3080 reflectionsAbsolute structure: Flack, 1983: 1031 Friedel pairs
287 parametersAbsolute structure parameter: 0.1 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6154 (2)0.74496 (9)0.53183 (8)0.0547 (5)
O21.00500 (18)0.62367 (8)0.54535 (7)0.0354 (3)
H21.00350.66030.51800.053*
O31.0530 (2)0.45663 (8)0.55179 (7)0.0420 (4)
O40.8847 (3)0.34413 (10)0.55089 (12)0.0795 (6)
O50.9459 (2)0.45522 (8)0.69152 (7)0.0443 (4)
O61.2768 (3)0.46401 (12)0.69992 (11)0.0765 (6)
O70.3966 (3)0.73518 (10)0.77457 (10)0.0655 (5)
C1'1.2248 (5)0.34629 (16)0.51680 (16)0.0804 (9)
H1'11.20950.29160.50870.121*
H1'21.32500.35450.55150.121*
H1'31.26270.37140.47410.121*
C2'1.0337 (4)0.37944 (13)0.54191 (13)0.0546 (6)
C1''1.1107 (5)0.35621 (16)0.75089 (14)0.0767 (9)
H1'41.23740.33130.75240.115*
H1'51.01760.32280.72790.115*
H1'61.06660.36650.79760.115*
C2''1.1270 (4)0.43059 (14)0.71173 (12)0.0519 (6)
C10.6091 (3)0.67845 (13)0.51015 (11)0.0431 (5)
C20.5798 (4)0.66072 (14)0.43471 (11)0.0518 (6)
H2A0.54680.70760.40920.062*
H2B0.47360.62360.42870.062*
C30.7740 (3)0.62687 (14)0.40805 (11)0.0460 (5)
H3A0.87460.66690.41070.055*
H3B0.75780.61340.35920.055*
C40.8484 (3)0.55493 (12)0.44730 (10)0.0395 (5)
C50.8484 (3)0.57154 (11)0.52880 (10)0.0330 (4)
C60.8845 (3)0.50065 (11)0.57584 (11)0.0352 (5)
H60.76710.46740.57580.042*
C70.9308 (3)0.52595 (11)0.65015 (10)0.0355 (5)
H71.05600.55440.65140.043*
C80.7674 (3)0.57465 (12)0.68305 (11)0.0367 (5)
H80.65970.53900.69490.044*
C90.6799 (3)0.63698 (12)0.63335 (10)0.0369 (5)
H90.77330.68040.63200.044*
C100.6501 (3)0.60885 (11)0.55740 (11)0.0356 (5)
C110.4861 (3)0.66772 (15)0.66522 (12)0.0518 (6)
H11A0.44240.71350.64010.062*
H11B0.38390.62840.66180.062*
C120.5223 (4)0.68734 (13)0.73927 (12)0.0486 (6)
C130.6726 (4)0.66413 (12)0.77927 (12)0.0495 (6)
C140.8301 (3)0.61460 (12)0.75107 (11)0.0426 (5)
C150.6410 (5)0.70010 (16)0.84602 (14)0.0683 (8)
H150.72080.69540.88530.082*
C160.4758 (5)0.74136 (17)0.84077 (15)0.0755 (9)
H160.42110.77050.87680.091*
C171.0046 (4)0.60919 (15)0.78090 (12)0.0564 (6)
H17A1.03150.63730.82120.068*
H17B1.10100.57730.76160.068*
C180.7257 (4)0.48423 (14)0.42442 (13)0.0557 (6)
H18A0.58860.49830.42270.084*
H18B0.74380.44270.45730.084*
H18C0.76800.46760.37900.084*
C191.0596 (3)0.54143 (16)0.41966 (12)0.0532 (6)
H19A1.05800.54100.36960.080*
H19B1.10790.49250.43650.080*
H19C1.14430.58240.43580.080*
C200.4714 (3)0.55316 (14)0.55402 (12)0.0469 (6)
H20A0.35130.58280.55400.070*
H20B0.47310.51940.59390.070*
H20C0.47860.52270.51210.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0695 (11)0.0417 (9)0.0530 (9)0.0148 (8)0.0001 (9)0.0065 (8)
O20.0329 (7)0.0355 (7)0.0378 (7)0.0067 (6)0.0040 (6)0.0067 (6)
O30.0434 (8)0.0341 (7)0.0486 (8)0.0060 (6)0.0001 (7)0.0012 (7)
O40.0966 (15)0.0402 (10)0.1016 (15)0.0114 (11)0.0139 (13)0.0059 (10)
O50.0491 (8)0.0377 (8)0.0461 (8)0.0054 (7)0.0038 (7)0.0120 (7)
O60.0493 (10)0.0942 (15)0.0858 (14)0.0124 (10)0.0027 (10)0.0337 (13)
O70.0731 (12)0.0582 (10)0.0650 (11)0.0128 (9)0.0214 (10)0.0058 (9)
C1'0.097 (2)0.0611 (18)0.083 (2)0.0382 (17)0.0011 (18)0.0062 (16)
C2'0.0810 (18)0.0343 (12)0.0484 (13)0.0089 (13)0.0038 (13)0.0009 (11)
C1''0.097 (2)0.0647 (18)0.0682 (17)0.0341 (17)0.0125 (17)0.0269 (14)
C2''0.0611 (15)0.0550 (14)0.0397 (12)0.0224 (13)0.0053 (12)0.0086 (11)
C10.0332 (10)0.0490 (13)0.0469 (12)0.0080 (10)0.0011 (10)0.0077 (11)
C20.0526 (13)0.0573 (14)0.0456 (13)0.0102 (12)0.0103 (11)0.0094 (11)
C30.0488 (13)0.0519 (13)0.0373 (11)0.0008 (11)0.0069 (10)0.0029 (11)
C40.0391 (11)0.0425 (12)0.0368 (11)0.0004 (10)0.0038 (9)0.0005 (10)
C50.0293 (10)0.0306 (10)0.0390 (11)0.0033 (8)0.0031 (8)0.0011 (9)
C60.0320 (10)0.0317 (10)0.0418 (11)0.0012 (9)0.0007 (9)0.0019 (9)
C70.0383 (11)0.0312 (10)0.0372 (11)0.0021 (9)0.0001 (9)0.0091 (9)
C80.0369 (10)0.0322 (10)0.0409 (11)0.0016 (9)0.0028 (9)0.0053 (9)
C90.0370 (11)0.0338 (11)0.0400 (11)0.0015 (9)0.0010 (9)0.0028 (9)
C100.0305 (10)0.0366 (11)0.0396 (11)0.0010 (9)0.0018 (9)0.0046 (9)
C110.0468 (13)0.0568 (14)0.0517 (13)0.0116 (11)0.0076 (11)0.0038 (12)
C120.0574 (13)0.0378 (12)0.0508 (13)0.0029 (11)0.0158 (12)0.0007 (10)
C130.0698 (16)0.0348 (11)0.0438 (12)0.0012 (12)0.0095 (12)0.0010 (10)
C140.0543 (13)0.0367 (11)0.0368 (11)0.0029 (10)0.0026 (10)0.0056 (9)
C150.104 (2)0.0528 (15)0.0483 (14)0.0038 (17)0.0083 (16)0.0071 (12)
C160.108 (2)0.0606 (17)0.0575 (17)0.0113 (18)0.0218 (18)0.0094 (14)
C170.0662 (16)0.0608 (15)0.0423 (12)0.0050 (13)0.0025 (12)0.0024 (12)
C180.0631 (15)0.0510 (14)0.0529 (14)0.0068 (12)0.0073 (13)0.0088 (12)
C190.0477 (13)0.0703 (16)0.0417 (12)0.0091 (13)0.0033 (11)0.0005 (12)
C200.0297 (10)0.0550 (14)0.0559 (14)0.0018 (10)0.0022 (10)0.0013 (12)
Geometric parameters (Å, º) top
O1—C11.219 (3)C6—C71.522 (3)
O2—C51.426 (2)C6—H60.9800
O2—H20.8200C7—C81.525 (3)
O3—C2'1.349 (3)C7—H70.9800
O3—C61.445 (2)C8—C141.534 (3)
O4—C2'1.191 (3)C8—C91.552 (3)
O5—C2''1.355 (3)C8—H80.9800
O5—C71.457 (2)C9—C111.542 (3)
O6—C2''1.188 (3)C9—C101.547 (3)
O7—C121.364 (3)C9—H90.9800
O7—C161.381 (4)C10—C201.546 (3)
C1'—C2'1.494 (4)C11—C121.479 (3)
C1'—H1'10.9600C11—H11A0.9700
C1'—H1'20.9600C11—H11B0.9700
C1'—H1'30.9600C12—C131.336 (3)
C1''—C2''1.489 (3)C13—C151.437 (3)
C1''—H1'40.9600C13—C141.469 (3)
C1''—H1'50.9600C14—C171.316 (3)
C1''—H1'60.9600C15—C161.329 (4)
C1—C21.491 (3)C15—H150.9300
C1—C101.527 (3)C16—H160.9300
C2—C31.527 (3)C17—H17A0.9300
C2—H2A0.9700C17—H17B0.9300
C2—H2B0.9700C18—H18A0.9600
C3—C41.534 (3)C18—H18B0.9600
C3—H3A0.9700C18—H18C0.9600
C3—H3B0.9700C19—H19A0.9600
C4—C181.538 (3)C19—H19B0.9600
C4—C191.543 (3)C19—H19C0.9600
C4—C51.587 (3)C20—H20A0.9600
C5—C61.537 (3)C20—H20B0.9600
C5—C101.587 (3)C20—H20C0.9600
C5—O2—H2109.5C7—C8—C14113.38 (17)
C2'—O3—C6119.02 (18)C7—C8—C9113.82 (16)
C2''—O5—C7118.75 (17)C14—C8—C9108.46 (16)
C12—O7—C16105.0 (2)C7—C8—H8106.9
C2'—C1'—H1'1109.5C14—C8—H8106.9
C2'—C1'—H1'2109.5C9—C8—H8106.9
H1'1—C1'—H1'2109.5C11—C9—C10111.64 (17)
C2'—C1'—H1'3109.5C11—C9—C8108.64 (17)
H1'1—C1'—H1'3109.5C10—C9—C8114.23 (16)
H1'2—C1'—H1'3109.5C11—C9—H9107.3
O4—C2'—O3124.4 (2)C10—C9—H9107.3
O4—C2'—C1'125.8 (2)C8—C9—H9107.3
O3—C2'—C1'109.7 (2)C1—C10—C20108.65 (16)
C2''—C1''—H1'4109.5C1—C10—C9109.61 (16)
C2''—C1''—H1'5109.5C20—C10—C9109.63 (16)
H1'4—C1''—H1'5109.5C1—C10—C5105.48 (16)
C2''—C1''—H1'6109.5C20—C10—C5113.41 (16)
H1'4—C1''—H1'6109.5C9—C10—C5109.94 (15)
H1'5—C1''—H1'6109.5C12—C11—C9108.5 (2)
O6—C2''—O5124.6 (2)C12—C11—H11A110.0
O6—C2''—C1''125.2 (2)C9—C11—H11A110.0
O5—C2''—C1''110.3 (2)C12—C11—H11B110.0
O1—C1—C2121.8 (2)C9—C11—H11B110.0
O1—C1—C10121.94 (19)H11A—C11—H11B108.4
C2—C1—C10115.99 (19)C13—C12—O7111.8 (2)
C1—C2—C3106.73 (18)C13—C12—C11127.5 (2)
C1—C2—H2A110.4O7—C12—C11120.7 (2)
C3—C2—H2A110.4C12—C13—C15105.6 (2)
C1—C2—H2B110.4C12—C13—C14121.1 (2)
C3—C2—H2B110.4C15—C13—C14133.3 (2)
H2A—C2—H2B108.6C17—C14—C13122.3 (2)
C2—C3—C4115.30 (18)C17—C14—C8125.9 (2)
C2—C3—H3A108.4C13—C14—C8111.82 (19)
C4—C3—H3A108.4C16—C15—C13106.8 (3)
C2—C3—H3B108.4C16—C15—H15126.6
C4—C3—H3B108.4C13—C15—H15126.6
H3A—C3—H3B107.5C15—C16—O7110.8 (2)
C3—C4—C18108.77 (17)C15—C16—H16124.6
C3—C4—C19104.95 (18)O7—C16—H16124.6
C18—C4—C19106.51 (19)C14—C17—H17A120.0
C3—C4—C5109.67 (16)C14—C17—H17B120.0
C18—C4—C5115.01 (18)H17A—C17—H17B120.0
C19—C4—C5111.41 (16)C4—C18—H18A109.5
O2—C5—C6104.55 (15)C4—C18—H18B109.5
O2—C5—C10107.36 (14)H18A—C18—H18B109.5
C6—C5—C10104.72 (15)C4—C18—H18C109.5
O2—C5—C4109.38 (15)H18A—C18—H18C109.5
C6—C5—C4115.69 (16)H18B—C18—H18C109.5
C10—C5—C4114.39 (16)C4—C19—H19A109.5
O3—C6—C7106.61 (16)C4—C19—H19B109.5
O3—C6—C5110.82 (15)H19A—C19—H19B109.5
C7—C6—C5110.73 (16)C4—C19—H19C109.5
O3—C6—H6109.5H19A—C19—H19C109.5
C7—C6—H6109.5H19B—C19—H19C109.5
C5—C6—H6109.5C10—C20—H20A109.5
O5—C7—C6106.51 (15)C10—C20—H20B109.5
O5—C7—C8106.62 (15)H20A—C20—H20B109.5
C6—C7—C8113.25 (17)C10—C20—H20C109.5
O5—C7—H7110.1H20A—C20—H20C109.5
C6—C7—H7110.1H20B—C20—H20C109.5
C8—C7—H7110.1
C6—O3—C2'—O40.9 (4)C2—C1—C10—C2061.1 (2)
C6—O3—C2'—C1'179.70 (19)O1—C1—C10—C94.7 (3)
C7—O5—C2''—O62.4 (3)C2—C1—C10—C9179.16 (18)
C7—O5—C2''—C1''177.83 (18)O1—C1—C10—C5113.6 (2)
O1—C1—C2—C3111.0 (2)C2—C1—C10—C560.8 (2)
C10—C1—C2—C363.5 (2)C11—C9—C10—C169.0 (2)
C1—C2—C3—C456.6 (2)C8—C9—C10—C1167.21 (17)
C2—C3—C4—C1876.1 (2)C11—C9—C10—C2050.1 (2)
C2—C3—C4—C19170.24 (18)C8—C9—C10—C2073.6 (2)
C2—C3—C4—C550.5 (2)C11—C9—C10—C5175.44 (17)
C3—C4—C5—O272.5 (2)C8—C9—C10—C551.7 (2)
C18—C4—C5—O2164.53 (17)O2—C5—C10—C170.52 (18)
C19—C4—C5—O243.2 (2)C6—C5—C10—C1178.73 (16)
C3—C4—C5—C6169.76 (16)C4—C5—C10—C151.0 (2)
C18—C4—C5—C646.8 (2)O2—C5—C10—C20170.70 (15)
C19—C4—C5—C674.5 (2)C6—C5—C10—C2060.0 (2)
C3—C4—C5—C1047.9 (2)C4—C5—C10—C2067.7 (2)
C18—C4—C5—C1075.0 (2)O2—C5—C10—C947.6 (2)
C19—C4—C5—C10163.66 (18)C6—C5—C10—C963.17 (19)
C2'—O3—C6—C7110.59 (19)C4—C5—C10—C9169.14 (16)
C2'—O3—C6—C5128.84 (19)C10—C9—C11—C12175.38 (18)
O2—C5—C6—O372.25 (18)C8—C9—C11—C1248.5 (2)
C10—C5—C6—O3174.99 (14)C16—O7—C12—C130.1 (3)
C4—C5—C6—O348.1 (2)C16—O7—C12—C11179.3 (2)
O2—C5—C6—C745.8 (2)C9—C11—C12—C1317.5 (3)
C10—C5—C6—C766.91 (19)C9—C11—C12—O7161.5 (2)
C4—C5—C6—C7166.20 (16)O7—C12—C13—C150.0 (3)
C2''—O5—C7—C6105.7 (2)C11—C12—C13—C15179.0 (2)
C2''—O5—C7—C8133.07 (19)O7—C12—C13—C14177.6 (2)
O3—C6—C7—O564.06 (18)C11—C12—C13—C141.4 (4)
C5—C6—C7—O5175.31 (15)C12—C13—C14—C17159.7 (2)
O3—C6—C7—C8179.06 (15)C15—C13—C14—C1717.1 (4)
C5—C6—C7—C858.4 (2)C12—C13—C14—C817.9 (3)
O5—C7—C8—C1475.5 (2)C15—C13—C14—C8165.3 (2)
C6—C7—C8—C14167.69 (16)C7—C8—C14—C170.5 (3)
O5—C7—C8—C9159.89 (16)C9—C8—C14—C17127.9 (2)
C6—C7—C8—C943.1 (2)C7—C8—C14—C13177.05 (17)
C7—C8—C9—C11166.11 (18)C9—C8—C14—C1349.6 (2)
C14—C8—C9—C1166.7 (2)C12—C13—C15—C160.2 (3)
C7—C8—C9—C1040.8 (2)C14—C13—C15—C16177.4 (3)
C14—C8—C9—C10167.97 (16)C13—C15—C16—O70.3 (3)
O1—C1—C10—C20124.5 (2)C12—O7—C16—C150.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.042.804 (2)156
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.042.804 (2)156
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by the 111 Project (No. B13038) of the Ministry of Education of the People's Republic of China.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiang, R. W., Ma, S. C., But, P. P. H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266–1272.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKalauni, S. K., Awale, S., Tezuka, Y., Banskota, A. H., Linn, T. Z., Asih, P. B. S., Syafrunddin, D. & Kadota, S. (2006). Biol. Pharm. Bull. 29, 1050–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalauni, S. K., Awale, S., Tezuka, Y., Banskota, A. H., Linn, T. Z. & Kadota, S. (2005). Chem. Pharm. Bull. 53, 1300–1304.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, G., Yuan, J., Wu, H., Cao, L., Zhang, X., Xu, L., Wei, H. & Wu, L. (2013). J. Nat. Prod. 76, 1025–1031.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds