organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o717-o718

4-Acetyl­piperazinium picrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 9 May 2014; accepted 21 May 2014; online 31 May 2014)

In the title salt, C6H13N2O+·C6H2N3O7 (systematic name: 4-acetyl­piperazin-1-ium 2,4,6-tri­nitro­phenolate), the piperazin-1-ium ring has a slightly distorted chair conformation. In the picrate anion, the mean planes of the two o-NO2 and p-NO2 groups are twisted with respect to the benzene ring by 15.0 (2), 68.9 (4) and 4.4 (3)°, respectively. In the crystal, N—H⋯O hydrogen bonds are observed, linking the ions into an infinite chain along [010]. In addition, weak cation–anion C—H⋯O inter­molecular inter­actions and a weak ππ stacking inter­action between the benzene rings of the anions, with an inter-centroid distance of 3.771 (8) Å, help to stabilize the crystal packing, giving an overall sheet structure lying parallel to (100). Disorder was modelled for one of the O atoms in one of the o-NO2 groups over two sites with an occupancy ratio of 0.57 (6):0.43 (6).

Related literature

Piperazines and substituted piperazines are important pharmacophores that can be found in many biologically active compounds across a number of different therapeutic areas, see: Berkheij (2005[Berkheij, M. (2005). Tetrahedron Lett. 46, 2369-2371.]); Choudhary et al. (2006[Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819-1826.]); Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470-2488.]); Upadhayaya et al. (2004[Upadhayaya, P. S., Sinha, N. & Jain, S. (2004). Bioorg. Med. Chem. 12, 2225-2238.]). For picric acid salts, see: Hundal et al. (1997[Hundal, G., Kumar, S., Hundal, M. S., Singh, H., Sanz-Aparicio, J. & Martinez-Ripoll, M. (1997). Acta Cryst. C53, 799-801.]); Szumna et al. (2000[Szumna, A., Jurczak, J. & Urbanczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165-175.]); Colquhoun et al. (1986[Colquhoun, H. M., Doughty, S. M., Stoddart, J. F., Slawin, A. M. Z. & Williams, D. J. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 253-257.]). For related structures, see: Kavitha et al. (2013[Kavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1671.], 2014[Kavitha, C. N., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o208-o209.]); Loughlin et al. (2003[Loughlin, W. A., McCleary, M. A. & Healy, P. C. (2003). Acta Cryst. E59, o1807-o1809.]); Wang & Jia (2008[Wang, Z.-L. & Jia, L.-H. (2008). Acta Cryst. E64, o665-o666.]); Song et al. (2012[Song, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13N2O+·C6H2N3O7

  • Mr = 357.29

  • Monoclinic, P 21 /n

  • a = 6.6843 (7) Å

  • b = 11.5971 (12) Å

  • c = 20.131 (2) Å

  • β = 90.000 (4)°

  • V = 1560.5 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.12 mm−1

  • T = 173 K

  • 0.32 × 0.28 × 0.06 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.631, Tmax = 1.000

  • 9739 measured reflections

  • 2993 independent reflections

  • 2690 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.10

  • 2993 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AA⋯O1Ai 0.97 1.78 2.7057 (19) 159
N2A—H2AB⋯O1Bii 0.97 1.82 2.7401 (19) 157
C3A—H3AA⋯O5Bi 0.97 2.46 3.333 (2) 150
C3A—H3AB⋯O3Biii 0.97 2.55 3.469 (3) 158
C5A—H5AA⋯O7Biv 0.97 2.57 3.365 (2) 139
C5B—H5B⋯O1A 0.93 2.47 3.307 (2) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Piperazines and substituted piperazines are important pharmacophores that can be found in many biologically active compounds across a number of different therapeutic areas (Berkheij, 2005) such as antifungal (Upadhayaya et al., 2004), anti-bacterial, anti-malarial and anti-psychotic agents (Choudhary et al., 2006). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives has been reported (Kharb et al., 2012). Also picric acid forms salts which exhibit electrostatic forces, multiple hydrogen bonds (Hundal et al., 1997; Szumna et al., 2000) and ππ stacking interactions (Colquhoun et al., 1986), which improve the quality of the crystalline materials. The supra-molecular structure of molecular adducts of picric acid and piperazine have been reported (Wang & Jia, 2008). The crystal structures of some related compounds, viz., 1-[4-(4-hydroxyphenyl)piperazin-1-yl]ethanone (Kavitha et al., 2013), 3-(Z)-isobutylidene-1-acetylpiperazine-2,5-dione (Loughlin et al. , 2003), piperazine-1,4-diium picrate-piperazine (Wang & Jia, 2008), cinnarizinium picrate (Song et al., 2012) and 1-piperonylpiperazinium picrate (Kavitha et al., 2014) have been reported. In view of the importance of the title compound, C6H13N2O+. C6H2N3O7-, this paper reports its crystal structure.

The title salt crystallizes with one piperazinium cation (A) and a picrate anion (B) in the asymmetric unit (Fig. 1). In the cation, the piperazine ring is in a slightly distorted chair conformation (puckering parameters Q, θ, and ϕ = 0.569 (2)Å, 178.3 (5)° and 197 (9)°, respectively (Cremer & Pople, 1975). In the picrate anion, the mean planes of the two o-NO2 groups and the p-NO2 group are twisted with respect to the phenyl ring plane by 15.0 (2)°, 68.9 (4)° and 4.4 (3)°, respectively. Bond lengths are in normal ranges (Allen et al., 1987). Intermolecular N—H···O hydrogen bonds are observed (Table 1) linking the anions with the cations and other anions forming an infinite one-dimensional chain along [010] (Fig. 2). In addition, weak cation-anion intermolecular C—H···O interactions and a weak ππ stacking interaction between the anionic phenyl rings [inter-centroid distance = 3.771 (8) Å] stabilize the crystal packing and generate a overall two-dimensional sheet structure lying parallel to (100). Disorder was modelled for the O2B oxygen atom in one of the o-NO2 groups over two sites with an occupancy ratio of 0.57 (6):0.43 (6).

Related literature top

Piperazines and substituted piperazines are important pharmacophores that

can be found in many biologically active compounds across a number of

different therapeutic areas, see: Berkheij (2005); Choudhary et al. (2006); Kharb et al. (2012); Upadhayaya et al. (2004). For picric acid salts, see: Hundal et al. (1997); Szumna et al. (2000); Colquhoun et al.(1986). For related structures, see: Kavitha et al. (2013, 2014); Loughlin et al. (2003); Wang & Jia, (2008); Song et al. (2012); For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Picric acid (1.14 g, 0.005 mol) was dissolved in methanol and acetyl piperazine (0.63 ml, 0.005 mol) was added to it with stirring. A yellow precipitate was obtained instantaneously. The precipitate was recrystallized from ethanol by slow evaporation (m.p.: 443–448 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93 Å(CH); 0.97 Å (CH2); 0.96 Å (CH3) or 0.97 Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3) times Ueq of the parent atom. The methyl group was refined as a rotating group. Disorder was modelled for O2B in one of the o-NO2 groups over two sites with an occupancy ratio of 0.57 (6):0.43 (6). The incorrect orthorhombic unit cell was transformed into the correct monoclinic P21/n cell having β = 90.000 (4)°, which prompted the checkCIF/PLATON B-ALERT (SYMMS 02).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound showing the labeling scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing viewed along the a axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds forming infinite one-dimensional chains along [0 1 0] and further supported by weak C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity. The disordered component of the C2 o-NO2 group is also omitted.
4-Acetylpiperazin-1-ium 2,4,6-trinitrophenolate top
Crystal data top
C6H13N2O+·C6H2N3O7Dx = 1.521 Mg m3
Mr = 357.29Melting point = 443–448 K
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.6843 (7) ÅCell parameters from 4582 reflections
b = 11.5971 (12) Åθ = 4.4–71.6°
c = 20.131 (2) ŵ = 1.12 mm1
β = 90.000 (4)°T = 173 K
V = 1560.5 (3) Å3Block, yellow
Z = 40.32 × 0.28 × 0.06 mm
F(000) = 744
Data collection top
Agilent Eos Gemini
diffractometer
2993 independent reflections
Radiation source: Enhance (Cu) X-ray Source2690 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.036
ω scansθmax = 72.0°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 87
Tmin = 0.631, Tmax = 1.000k = 1411
9739 measured reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.6066P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.27 e Å3
2993 reflectionsΔρmin = 0.20 e Å3
238 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0018 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C6H13N2O+·C6H2N3O7V = 1560.5 (3) Å3
Mr = 357.29Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.6843 (7) ŵ = 1.12 mm1
b = 11.5971 (12) ÅT = 173 K
c = 20.131 (2) Å0.32 × 0.28 × 0.06 mm
β = 90.000 (4)°
Data collection top
Agilent Eos Gemini
diffractometer
2993 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
2690 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 1.000Rint = 0.036
9739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.10Δρmax = 0.27 e Å3
2993 reflectionsΔρmin = 0.20 e Å3
238 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2014), Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1B0.10430 (19)0.26818 (11)0.61927 (6)0.0352 (3)
O2B0.175 (7)0.1019 (8)0.7106 (4)0.076 (5)0.57 (6)
O2BA0.082 (4)0.0947 (14)0.7071 (7)0.051 (4)0.43 (6)
O3B0.1631 (3)0.07329 (14)0.67738 (7)0.0541 (4)
O4B0.3371 (2)0.17212 (11)0.45759 (7)0.0395 (3)
O5B0.3065 (2)0.04833 (12)0.37818 (6)0.0434 (3)
O6B0.0003 (2)0.34623 (15)0.45462 (9)0.0573 (4)
O7B0.2665 (3)0.39977 (12)0.50421 (8)0.0551 (4)
N1B0.1575 (2)0.02945 (14)0.66573 (7)0.0378 (4)
N2B0.3023 (2)0.07436 (12)0.43751 (7)0.0291 (3)
N3B0.1445 (2)0.32723 (12)0.48878 (7)0.0304 (3)
C1B0.1524 (2)0.18809 (14)0.58083 (8)0.0255 (3)
C2B0.1827 (2)0.06833 (15)0.59752 (8)0.0274 (4)
C3B0.2322 (2)0.01538 (14)0.55123 (8)0.0259 (3)
H3B0.25130.09130.56460.031*
C4B0.2531 (2)0.01431 (14)0.48536 (8)0.0247 (3)
C5B0.2228 (2)0.12757 (14)0.46350 (7)0.0249 (3)
H5B0.23320.14690.41880.030*
C6B0.1776 (2)0.20831 (13)0.51029 (8)0.0244 (3)
O1A0.31825 (19)0.29011 (10)0.33233 (6)0.0341 (3)
N1A0.3133 (2)0.48149 (12)0.34934 (7)0.0290 (3)
N2A0.1899 (2)0.69006 (13)0.28906 (7)0.0359 (4)
H2AA0.19230.74220.25140.043*
H2AB0.10460.72370.32290.043*
C1A0.4034 (2)0.37845 (14)0.35166 (8)0.0282 (4)
C2A0.1095 (3)0.49259 (15)0.32500 (9)0.0328 (4)
H2AC0.02310.51960.36050.039*
H2AD0.06090.41800.31030.039*
C3A0.1047 (3)0.57715 (17)0.26784 (9)0.0389 (4)
H3AA0.18160.54680.23090.047*
H3AB0.03220.58780.25310.047*
C4A0.3952 (3)0.67764 (15)0.31576 (9)0.0365 (4)
H4AA0.44250.75160.33180.044*
H4AB0.48450.65200.28080.044*
C5A0.3959 (3)0.59116 (15)0.37192 (9)0.0361 (4)
H5AA0.53180.57970.38750.043*
H5AB0.31680.62040.40860.043*
C6A0.6101 (3)0.37046 (19)0.37903 (12)0.0475 (5)
H6AA0.61050.39670.42420.071*
H6AB0.69840.41770.35310.071*
H6AC0.65450.29180.37740.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1B0.0435 (7)0.0337 (7)0.0286 (6)0.0049 (5)0.0062 (5)0.0059 (5)
O2B0.143 (15)0.062 (3)0.0223 (16)0.009 (4)0.002 (4)0.0016 (14)
O2BA0.089 (9)0.044 (4)0.021 (3)0.014 (3)0.014 (3)0.002 (2)
O3B0.0824 (11)0.0453 (9)0.0347 (7)0.0073 (7)0.0086 (7)0.0161 (6)
O4B0.0513 (8)0.0266 (6)0.0406 (7)0.0050 (5)0.0031 (6)0.0035 (5)
O5B0.0643 (9)0.0419 (7)0.0241 (6)0.0098 (6)0.0067 (6)0.0033 (5)
O6B0.0440 (8)0.0534 (9)0.0744 (11)0.0097 (7)0.0153 (7)0.0236 (8)
O7B0.0842 (11)0.0311 (7)0.0501 (9)0.0127 (7)0.0205 (8)0.0036 (6)
N1B0.0489 (9)0.0413 (9)0.0232 (7)0.0041 (7)0.0007 (6)0.0058 (6)
N2B0.0293 (7)0.0285 (7)0.0295 (7)0.0008 (5)0.0022 (5)0.0038 (6)
N3B0.0381 (8)0.0290 (7)0.0240 (7)0.0052 (6)0.0020 (6)0.0007 (5)
C1B0.0222 (7)0.0325 (8)0.0218 (7)0.0007 (6)0.0001 (5)0.0021 (6)
C2B0.0287 (8)0.0327 (9)0.0206 (8)0.0008 (6)0.0002 (6)0.0029 (6)
C3B0.0238 (7)0.0260 (8)0.0280 (8)0.0007 (6)0.0008 (6)0.0035 (6)
C4B0.0213 (7)0.0276 (8)0.0252 (8)0.0005 (6)0.0013 (6)0.0022 (6)
C5B0.0248 (7)0.0295 (8)0.0206 (7)0.0000 (6)0.0001 (5)0.0014 (6)
C6B0.0229 (7)0.0257 (8)0.0244 (8)0.0014 (6)0.0007 (5)0.0016 (6)
O1A0.0473 (7)0.0235 (6)0.0315 (6)0.0022 (5)0.0039 (5)0.0024 (5)
N1A0.0326 (7)0.0235 (7)0.0308 (7)0.0001 (5)0.0057 (6)0.0032 (5)
N2A0.0523 (9)0.0291 (7)0.0263 (7)0.0109 (6)0.0108 (6)0.0039 (6)
C1A0.0353 (9)0.0263 (8)0.0229 (7)0.0008 (6)0.0029 (6)0.0005 (6)
C2A0.0310 (8)0.0300 (8)0.0375 (9)0.0006 (6)0.0050 (7)0.0014 (7)
C3A0.0435 (10)0.0408 (10)0.0323 (9)0.0081 (8)0.0078 (7)0.0026 (7)
C4A0.0464 (10)0.0240 (8)0.0391 (10)0.0024 (7)0.0085 (8)0.0068 (7)
C5A0.0462 (10)0.0276 (9)0.0345 (9)0.0033 (7)0.0084 (7)0.0076 (7)
C6A0.0388 (11)0.0455 (11)0.0582 (13)0.0096 (8)0.0082 (9)0.0002 (9)
Geometric parameters (Å, º) top
O1B—C1B1.251 (2)N1A—C2A1.453 (2)
O2B—N1B1.239 (7)N1A—C5A1.459 (2)
O2BA—N1B1.231 (10)N2A—H2AA0.9700
O3B—N1B1.215 (2)N2A—H2AB0.9700
O4B—N2B1.2260 (19)N2A—C3A1.490 (2)
O5B—N2B1.232 (2)N2A—C4A1.481 (3)
O6B—N3B1.208 (2)C1A—C6A1.490 (3)
O7B—N3B1.212 (2)C2A—H2AC0.9700
N1B—C2B1.455 (2)C2A—H2AD0.9700
N2B—C4B1.447 (2)C2A—C3A1.512 (3)
N3B—C6B1.462 (2)C3A—H3AA0.9700
C1B—C2B1.443 (2)C3A—H3AB0.9700
C1B—C6B1.449 (2)C4A—H4AA0.9700
C2B—C3B1.386 (2)C4A—H4AB0.9700
C3B—H3B0.9300C4A—C5A1.511 (3)
C3B—C4B1.377 (2)C5A—H5AA0.9700
C4B—C5B1.400 (2)C5A—H5AB0.9700
C5B—H5B0.9300C6A—H6AA0.9600
C5B—C6B1.362 (2)C6A—H6AB0.9600
O1A—C1A1.235 (2)C6A—H6AC0.9600
N1A—C1A1.339 (2)
O2B—N1B—C2B117.9 (5)C4A—N2A—H2AB109.2
O2BA—N1B—C2B119.6 (4)C4A—N2A—C3A111.88 (13)
O3B—N1B—O2B121.4 (4)O1A—C1A—N1A121.49 (15)
O3B—N1B—O2BA119.0 (6)O1A—C1A—C6A119.48 (16)
O3B—N1B—C2B118.85 (15)N1A—C1A—C6A119.03 (16)
O4B—N2B—O5B122.81 (14)N1A—C2A—H2AC109.8
O4B—N2B—C4B118.74 (14)N1A—C2A—H2AD109.8
O5B—N2B—C4B118.45 (14)N1A—C2A—C3A109.51 (15)
O6B—N3B—O7B123.95 (16)H2AC—C2A—H2AD108.2
O6B—N3B—C6B117.50 (15)C3A—C2A—H2AC109.8
O7B—N3B—C6B118.50 (14)C3A—C2A—H2AD109.8
O1B—C1B—C2B127.34 (15)N2A—C3A—C2A110.09 (15)
O1B—C1B—C6B121.06 (15)N2A—C3A—H3AA109.6
C2B—C1B—C6B111.57 (14)N2A—C3A—H3AB109.6
C1B—C2B—N1B120.12 (14)C2A—C3A—H3AA109.6
C3B—C2B—N1B116.43 (15)C2A—C3A—H3AB109.6
C3B—C2B—C1B123.44 (14)H3AA—C3A—H3AB108.2
C2B—C3B—H3B120.1N2A—C4A—H4AA109.7
C4B—C3B—C2B119.78 (15)N2A—C4A—H4AB109.7
C4B—C3B—H3B120.1N2A—C4A—C5A109.82 (15)
C3B—C4B—N2B119.11 (14)H4AA—C4A—H4AB108.2
C3B—C4B—C5B121.50 (14)C5A—C4A—H4AA109.7
C5B—C4B—N2B119.36 (14)C5A—C4A—H4AB109.7
C4B—C5B—H5B121.3N1A—C5A—C4A110.13 (14)
C6B—C5B—C4B117.37 (14)N1A—C5A—H5AA109.6
C6B—C5B—H5B121.3N1A—C5A—H5AB109.6
C1B—C6B—N3B115.17 (13)C4A—C5A—H5AA109.6
C5B—C6B—N3B118.50 (14)C4A—C5A—H5AB109.6
C5B—C6B—C1B126.31 (15)H5AA—C5A—H5AB108.1
C1A—N1A—C2A120.82 (14)C1A—C6A—H6AA109.5
C1A—N1A—C5A126.65 (14)C1A—C6A—H6AB109.5
C2A—N1A—C5A112.49 (14)C1A—C6A—H6AC109.5
H2AA—N2A—H2AB107.9H6AA—C6A—H6AB109.5
C3A—N2A—H2AA109.2H6AA—C6A—H6AC109.5
C3A—N2A—H2AB109.2H6AB—C6A—H6AC109.5
C4A—N2A—H2AA109.2
O1B—C1B—C2B—N1B0.0 (3)C2B—C1B—C6B—N3B178.55 (13)
O1B—C1B—C2B—C3B178.68 (15)C2B—C1B—C6B—C5B0.4 (2)
O1B—C1B—C6B—N3B0.5 (2)C2B—C3B—C4B—N2B179.20 (13)
O1B—C1B—C6B—C5B177.66 (15)C2B—C3B—C4B—C5B0.9 (2)
O2B—N1B—C2B—C1B23 (2)C3B—C4B—C5B—C6B1.9 (2)
O2B—N1B—C2B—C3B158 (2)C4B—C5B—C6B—N3B179.80 (13)
O2BA—N1B—C2B—C1B10.6 (19)C4B—C5B—C6B—C1B1.7 (2)
O2BA—N1B—C2B—C3B168.2 (18)C6B—C1B—C2B—N1B177.95 (14)
O3B—N1B—C2B—C1B172.35 (17)C6B—C1B—C2B—C3B0.8 (2)
O3B—N1B—C2B—C3B6.5 (2)N1A—C2A—C3A—N2A56.25 (19)
O4B—N2B—C4B—C3B4.8 (2)N2A—C4A—C5A—N1A55.87 (19)
O4B—N2B—C4B—C5B176.84 (14)C1A—N1A—C2A—C3A123.25 (17)
O5B—N2B—C4B—C3B174.87 (15)C1A—N1A—C5A—C4A123.37 (18)
O5B—N2B—C4B—C5B3.5 (2)C2A—N1A—C1A—O1A1.2 (2)
O6B—N3B—C6B—C1B111.79 (18)C2A—N1A—C1A—C6A178.04 (17)
O6B—N3B—C6B—C5B66.5 (2)C2A—N1A—C5A—C4A59.09 (19)
O7B—N3B—C6B—C1B70.6 (2)C3A—N2A—C4A—C5A55.55 (18)
O7B—N3B—C6B—C5B111.05 (18)C4A—N2A—C3A—C2A56.01 (19)
N1B—C2B—C3B—C4B178.21 (14)C5A—N1A—C1A—O1A178.54 (16)
N2B—C4B—C5B—C6B179.75 (13)C5A—N1A—C1A—C6A0.7 (3)
C1B—C2B—C3B—C4B0.5 (2)C5A—N1A—C2A—C3A59.05 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O1Ai0.971.782.7057 (19)159
N2A—H2AB···O1Bii0.971.822.7401 (19)157
C3A—H3AA···O5Bi0.972.463.333 (2)150
C3A—H3AB···O3Biii0.972.553.469 (3)158
C5A—H5AA···O7Biv0.972.573.365 (2)139
C5B—H5B···O1A0.932.473.307 (2)149
C5A—H5AB···O4Bv0.972.603.266 (2)126
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O1Ai0.971.782.7057 (19)159
N2A—H2AB···O1Bii0.971.822.7401 (19)157
C3A—H3AA···O5Bi0.972.463.333 (2)150
C3A—H3AB···O3Biii0.972.553.469 (3)158
C5A—H5AA···O7Biv0.972.573.365 (2)139
C5B—H5B···O1A0.932.473.307 (2)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities and also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBerkheij, M. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationChoudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed Google Scholar
First citationColquhoun, H. M., Doughty, S. M., Stoddart, J. F., Slawin, A. M. Z. & Williams, D. J. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 253–257.  CSD CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHundal, G., Kumar, S., Hundal, M. S., Singh, H., Sanz-Aparicio, J. & Martinez-Ripoll, M. (1997). Acta Cryst. C53, 799–801.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1671.  CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o208–o209.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationLoughlin, W. A., McCleary, M. A. & Healy, P. C. (2003). Acta Cryst. E59, o1807–o1809.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.  CSD CrossRef IUCr Journals Google Scholar
First citationSzumna, A., Jurczak, J. & Urbanczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationUpadhayaya, P. S., Sinha, N. & Jain, S. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Z.-L. & Jia, L.-H. (2008). Acta Cryst. E64, o665–o666.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o717-o718
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds