organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-4-methyl-6-oxo-3,6-di­hydro­pyrimidin-1-ium) sulfate monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, bCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Bd des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France, and cLaboratoire de Chimie des Matériaux, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 26 May 2014; accepted 29 May 2014; online 4 June 2014)

In the title hydrated mol­ecular salt, 2C5H8N3O+·SO42−·H2O, the components are linked by N—H⋯Os and Ow—H⋯Os (s = sulphate, w = water) hydrogen bonds, generating a layer by a+b+c and 2ab translations. The cations are arranged nearly in parallel and show displaced ππ stacking centroid–centroid distance = 4.661 (2) Å between adjacent layers.

Related literature

For the applications of oxoanion compounds, see: Vollano et al. (1984[Vollano, J. F., Day, R. O., Rau, D. N., Chadrasekhar, V. & Holmes, R. R. (1984). Inorg. Chem. 23, 3152-3155.]); Molloy (1988[Molloy, K. C. (1988). Inorg. Chem. Acta, 141, 151-333.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the quinonic and phenolic form in polar solvents, see: Fragoso et al. (2010[Fragoso, P. T., Carneiro, J. W. M. & Vargas, M. D. (2010). J. Mol. Model. 16, 825-829.]). For C—N single bond lengths, see: Yang et al. (1995[Yang, R. N., Wang, D. M., Hou, Y. M., Xue, B. Y., Jin, D. M., chen, L. R. & Luo, B. S. (1995). Acta Chem. Scand. 49, 771-773.]); Grobelny et al. (1995[Grobelny, R., Glowiak, T., Mrozinski, J., Baran, W. & Tomasik, P. (1995). Pol. J. Chem. 69, 559-565.]). For the geometrical characteristics of the sulfate anion, see: Das et al. (2009[Das, B. K., Bora, S. J., Bhattacharyya, M. K. & Barman, R. K. (2009). Acta Cryst. B65, 467-473.]); Norquist et al. (2005[Norquist, A. J., Doran, M. B. & O'Hare, D. (2005). Acta Cryst. E61, m807-m810.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H8N3O+·SO42−·H2O

  • Mr = 366.36

  • Triclinic, [P \overline 1]

  • a = 6.797 (5) Å

  • b = 10.339 (6) Å

  • c = 12.110 (7) Å

  • α = 113.480 (5)°

  • β = 91.009 (7)°

  • γ = 98.906 (5)°

  • V = 768.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.27 × 0.19 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.92, Tmax = 0.97

  • 5784 measured reflections

  • 5784 independent reflections

  • 5347 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.131

  • S = 1.35

  • 5784 reflections

  • 289 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.87 (3) 2.02 (3) 2.856 (3) 161 (3)
N1—H1B⋯O4ii 0.83 (3) 2.01 (3) 2.847 (4) 178 (2)
N2—H2⋯O6iii 0.91 (3) 1.88 (2) 2.749 (4) 161 (2)
N7—H7⋯O7ii 0.83 (3) 1.91 (3) 2.730 (4) 170 (3)
N11—H11A⋯O5iii 0.87 (3) 1.91 (3) 2.782 (6) 178 (3)
N11—H11B⋯O5iv 0.89 (3) 2.07 (3) 2.767 (3) 134 (2)
N12—H12⋯O8iv 0.92 (3) 1.87 (3) 2.771 (4) 170 (3)
N17—H17⋯O4iii 0.82 (3) 1.92 (3) 2.746 (6) 177 (3)
O8—H8A⋯O13v 0.86 (3) 1.94 (3) 2.750 (5) 158 (3)
O8—H8B⋯O7 0.83 (3) 2.02 (3) 2.839 (4) 173 (3)
C4—H4⋯O3vi 0.97 (2) 2.54 (2) 3.485 (3) 165 (2)
C6—H6C⋯O13ii 0.97 2.51 3.440 (3) 162 (2)
C16—H16A⋯O3vii 0.95 2.58 3.499 (5) 163 (2)
Symmetry codes: (i) x-1, y-1, z; (ii) x, y-1, z; (iii) -x, -y+1, -z; (iv) x-1, y, z; (v) -x+1, -y+2, -z+1; (vi) -x, -y+1, -z+1; (vii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chemists and physicists of the solid state have shown an increasing interest in the study of oxoanion compounds containing organic cations in recent years owing to their applications in various fields (Vollano et al., 1984; Molloy, 1988). Here, we report the synthesis and the crystal structure of the title compound 2(C5H8N3O), O4S, H2O. The asymmetric unit of this salt contains two molecules of 2-amino-6-methylpyrimidin-4-(1H)-one, one sulfate anion and one water molecule (Fig. 1). The two independent aromatic cycles of the asymmetric unit are nearly parallel as they form an angle of 5.8°. The shortest distance between non-H atoms of two cations in parallel displaced π- staking is d(O3···N17) = 3.375 (2) Å. When the two cation molecules are viewed along the two centroids, the 6 atom positions of the two cycles appear superposed after a rotation of 60° (Fig. 1). The crystal structure of the title material consists of a network of the different constituents connected by a set of hydrogen bonds (Table 1). Furthermore, in the crystal packing, the two cations are arranged in layers (Fig. 2). The sulfate anion forms the strongest interactions between two parallel layers, as each sulfate moiety interacts with the five cations via seven N—H···O hydrogen bonds. The hydrogen bond network in the cations layer is shown in Fig. 3. The water molecule is acceptor in one N—H···O hydrogen bond and donor in two O—H···O interactions with the sulfate anion and carbonyl group. In the atomic arrangement of the title compound, the sulfate anions are located close to the z=0 plane. Along the a diretion, they are interconnected via a same NH2 group. In the crystal structure, various graph set motifs (Bernstein et al., 1995) are apparent including R24 (8) and R36 (8) loops (Fig. 4). An examination of Table 2 data shows that the distance values of C3—O3 (1.229 (2) Å) and C13—O13 (1.226 (2) Å) can be attributed as having clear double bond character indicating that the title compound is present as the keto tautomer of the 2-amino-6-methyl-4-pyrimidinol(sheme. 2). This observation agrees with the literature data which show that in polar solvents, the quinonic form is more stable than the phenolic one (Fragoso et al., 2010). The C—N bond distances of the NH2 groups are C1—N1 (1.315 (2) Å), and C11—N11 (1.318 (2) Å) which are short for C—N single bonds, but still not quite as contracted as one would expect for a fully established C=N double bond. These bond length features are consistent with an imino resonance form as it is commonly found for a C—N single bond involving sp2 hybridized C and N atoms, (Yang et al., 1995; Grobelny et al., 1995). The S—O bond lengths and the O—S—O bond angles in the sulfate anion are not perfectly equivalent (Das et al., 2009; Norquist et al., 2005), but vary with the environment around the O atoms. In the title compound, the S—O distances are spread between 1.4759 (14) and 1.4949 (16) Å. The O—S—O bond angles range from 108,97 (8) to 110.24 (9)°. All these geometrical parameters indicate relatively little distortion from a regular tetrahedron.

Related literature top

For the applications of oxoanion compounds, see: Vollano et al. (1984); Molloy (1988). For graph-set motifs, see: Bernstein et al. (1995). For the stability of the quinonic and phenolic form in polar solvent, see: Fragoso et al. (2010). For C—N single bond lengths, see: Yang et al. (1995); Grobelny et al. (1995). For the geometrical characteristics of the sulfate anion, see: Das et al. (2009); Norquist et al. (2005).

Experimental top

Commercial 2-amino-4-hydroxy-6-methylpyrimidine (50 mg, 0.4 mmol) dissolved in ethanol (10 ml) was slowly added under stirring to 0.05 mol of sulfuric acid in 20 ml of water. The obtained solution was left to stand at room temperature. The slow evaporation of solvent leads to the formation of colourless single crystals of (I), stable in air and suitable for X-ray diffraction analysis.

Refinement top

The structure was refined with SHELXL97 (Sheldrick, 2008). The coordinates of the H atoms were refined with Uiso(H) = 1.2Ueq(X) except for the methyl groups for which Uiso(H) was set to 1.5Ueq(X), where X is the parent atom. The C—H distances in the two methyl groups were restraint to be similar (sigma=0.01).

Structure description top

Chemists and physicists of the solid state have shown an increasing interest in the study of oxoanion compounds containing organic cations in recent years owing to their applications in various fields (Vollano et al., 1984; Molloy, 1988). Here, we report the synthesis and the crystal structure of the title compound 2(C5H8N3O), O4S, H2O. The asymmetric unit of this salt contains two molecules of 2-amino-6-methylpyrimidin-4-(1H)-one, one sulfate anion and one water molecule (Fig. 1). The two independent aromatic cycles of the asymmetric unit are nearly parallel as they form an angle of 5.8°. The shortest distance between non-H atoms of two cations in parallel displaced π- staking is d(O3···N17) = 3.375 (2) Å. When the two cation molecules are viewed along the two centroids, the 6 atom positions of the two cycles appear superposed after a rotation of 60° (Fig. 1). The crystal structure of the title material consists of a network of the different constituents connected by a set of hydrogen bonds (Table 1). Furthermore, in the crystal packing, the two cations are arranged in layers (Fig. 2). The sulfate anion forms the strongest interactions between two parallel layers, as each sulfate moiety interacts with the five cations via seven N—H···O hydrogen bonds. The hydrogen bond network in the cations layer is shown in Fig. 3. The water molecule is acceptor in one N—H···O hydrogen bond and donor in two O—H···O interactions with the sulfate anion and carbonyl group. In the atomic arrangement of the title compound, the sulfate anions are located close to the z=0 plane. Along the a diretion, they are interconnected via a same NH2 group. In the crystal structure, various graph set motifs (Bernstein et al., 1995) are apparent including R24 (8) and R36 (8) loops (Fig. 4). An examination of Table 2 data shows that the distance values of C3—O3 (1.229 (2) Å) and C13—O13 (1.226 (2) Å) can be attributed as having clear double bond character indicating that the title compound is present as the keto tautomer of the 2-amino-6-methyl-4-pyrimidinol(sheme. 2). This observation agrees with the literature data which show that in polar solvents, the quinonic form is more stable than the phenolic one (Fragoso et al., 2010). The C—N bond distances of the NH2 groups are C1—N1 (1.315 (2) Å), and C11—N11 (1.318 (2) Å) which are short for C—N single bonds, but still not quite as contracted as one would expect for a fully established C=N double bond. These bond length features are consistent with an imino resonance form as it is commonly found for a C—N single bond involving sp2 hybridized C and N atoms, (Yang et al., 1995; Grobelny et al., 1995). The S—O bond lengths and the O—S—O bond angles in the sulfate anion are not perfectly equivalent (Das et al., 2009; Norquist et al., 2005), but vary with the environment around the O atoms. In the title compound, the S—O distances are spread between 1.4759 (14) and 1.4949 (16) Å. The O—S—O bond angles range from 108,97 (8) to 110.24 (9)°. All these geometrical parameters indicate relatively little distortion from a regular tetrahedron.

For the applications of oxoanion compounds, see: Vollano et al. (1984); Molloy (1988). For graph-set motifs, see: Bernstein et al. (1995). For the stability of the quinonic and phenolic form in polar solvent, see: Fragoso et al. (2010). For C—N single bond lengths, see: Yang et al. (1995); Grobelny et al. (1995). For the geometrical characteristics of the sulfate anion, see: Das et al. (2009); Norquist et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound, showing 50% probability thermal displacement ellipsoids and spheres for the H atoms.
[Figure 2] Fig. 2. View showing the planes formed by the two independant cations molecules. The sulfate anions form the strongest interactions between two parallel layers.
[Figure 3] Fig. 3. View perpendicular to Fig. 2 showing hydrogen bonds stabilizing the structure of the title material in the layer containing the cations.
[Figure 4] Fig. 4. View along the c-axis showing O—H···O and N—H···O hydrogen bonds forming two kinds of 8-membered rings.
Bis(2-amino-4-methyl-6-oxo-3,6-dihydropyrimidin-1-ium) sulfate monohydrate top
Crystal data top
2C5H8N3O+·SO42·H2OV = 768.2 (8) Å3
Mr = 366.36Z = 2
Triclinic, P1F(000) = 384
Hall symbol: -P 1Dx = 1.584 Mg m3
a = 6.797 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.339 (6) Åθ = 2.2–33.4°
c = 12.110 (7) ŵ = 0.26 mm1
α = 113.480 (5)°T = 100 K
β = 91.009 (7)°Prism, colourless
γ = 98.906 (5)°0.27 × 0.19 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
5784 independent reflections
Radiation source: fine-focus sealed tube5347 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.000
ω scansθmax = 33.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 010
Tmin = 0.92, Tmax = 0.97k = 1515
5784 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.35 w = 1/[σ2(Fo2) + (0.044P)2 + 0.4148P]
where P = (Fo2 + 2Fc2)/3
5784 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.64 e Å3
15 restraintsΔρmin = 0.38 e Å3
Crystal data top
2C5H8N3O+·SO42·H2Oγ = 98.906 (5)°
Mr = 366.36V = 768.2 (8) Å3
Triclinic, P1Z = 2
a = 6.797 (5) ÅMo Kα radiation
b = 10.339 (6) ŵ = 0.26 mm1
c = 12.110 (7) ÅT = 100 K
α = 113.480 (5)°0.27 × 0.19 × 0.12 mm
β = 91.009 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
5784 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
5347 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.97Rint = 0.000
5784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08115 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.35Δρmax = 0.64 e Å3
5784 reflectionsΔρmin = 0.38 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32594 (6)0.79761 (4)0.06036 (4)0.00888 (9)
O40.10950 (17)0.75634 (13)0.01545 (11)0.0129 (2)
O50.39545 (18)0.67318 (13)0.06868 (11)0.0136 (2)
O60.44256 (18)0.84309 (13)0.02448 (11)0.0137 (2)
O70.34949 (19)0.91648 (13)0.18190 (11)0.0161 (3)
C10.1015 (2)0.07187 (17)0.18509 (14)0.0097 (3)
N10.1580 (2)0.04398 (16)0.08537 (13)0.0125 (3)
N20.2110 (2)0.17792 (15)0.22132 (13)0.0113 (3)
C30.1599 (2)0.30560 (18)0.32540 (15)0.0121 (3)
O30.2627 (2)0.39938 (14)0.34694 (12)0.0188 (3)
C40.0171 (3)0.31382 (18)0.39715 (15)0.0128 (3)
C50.1275 (2)0.20844 (17)0.35890 (15)0.0109 (3)
C60.3178 (3)0.2130 (2)0.42459 (17)0.0171 (3)
N70.0687 (2)0.08908 (15)0.25224 (13)0.0108 (3)
C110.0959 (2)0.61151 (17)0.19155 (15)0.0113 (3)
N110.2643 (2)0.58800 (17)0.12550 (14)0.0145 (3)
N120.0358 (2)0.73732 (16)0.28733 (13)0.0138 (3)
C130.1415 (3)0.76947 (19)0.36118 (16)0.0151 (3)
O130.1845 (2)0.88853 (14)0.44418 (12)0.0226 (3)
C140.2552 (3)0.65558 (19)0.33060 (16)0.0153 (3)
C150.1953 (2)0.53064 (18)0.23358 (15)0.0119 (3)
C160.3067 (3)0.4085 (2)0.18954 (17)0.0149 (3)
N170.0195 (2)0.51065 (15)0.16497 (13)0.0111 (3)
O80.6783 (2)0.91155 (15)0.32711 (12)0.0190 (3)
H1A0.274 (4)0.063 (3)0.046 (2)0.020 (6)*
H1B0.082 (4)0.104 (3)0.064 (2)0.019 (6)*
H20.310 (4)0.173 (3)0.168 (2)0.028 (7)*
H40.060 (4)0.398 (2)0.472 (2)0.019 (6)*
H6A0.344 (3)0.302 (3)0.4979 (18)0.032 (7)*
H6B0.425 (2)0.212 (3)0.379 (2)0.031 (7)*
H6C0.306 (4)0.130 (3)0.444 (2)0.038 (8)*
H70.143 (4)0.028 (3)0.230 (2)0.029 (7)*
H11A0.303 (4)0.505 (3)0.065 (3)0.029 (7)*
H11B0.337 (4)0.657 (3)0.143 (2)0.026 (6)*
H120.118 (4)0.804 (3)0.305 (2)0.027 (6)*
H140.374 (4)0.672 (3)0.378 (2)0.023 (6)*
H16A0.417 (3)0.424 (3)0.245 (2)0.031 (7)*
H16B0.351 (3)0.397 (2)0.1108 (18)0.024 (6)*
H16C0.220 (4)0.3214 (14)0.178 (2)0.021 (6)*
H170.020 (4)0.432 (3)0.109 (3)0.030 (7)*
H8A0.694 (5)0.983 (3)0.396 (3)0.041 (8)*
H8B0.577 (4)0.914 (3)0.290 (3)0.030 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00752 (16)0.00803 (17)0.00983 (17)0.00195 (12)0.00157 (12)0.00220 (13)
O40.0068 (5)0.0115 (5)0.0166 (6)0.0011 (4)0.0022 (4)0.0021 (4)
O50.0146 (6)0.0110 (5)0.0163 (6)0.0039 (4)0.0024 (5)0.0062 (5)
O60.0106 (5)0.0167 (6)0.0154 (6)0.0004 (4)0.0017 (4)0.0090 (5)
O70.0152 (6)0.0146 (6)0.0124 (6)0.0066 (5)0.0038 (5)0.0022 (4)
C10.0081 (6)0.0115 (7)0.0100 (7)0.0016 (5)0.0006 (5)0.0048 (6)
N10.0091 (6)0.0125 (6)0.0126 (6)0.0027 (5)0.0017 (5)0.0015 (5)
N20.0098 (6)0.0124 (6)0.0113 (6)0.0043 (5)0.0009 (5)0.0034 (5)
C30.0113 (7)0.0123 (7)0.0119 (7)0.0020 (6)0.0001 (6)0.0041 (6)
O30.0181 (6)0.0157 (6)0.0202 (6)0.0088 (5)0.0010 (5)0.0028 (5)
C40.0133 (7)0.0115 (7)0.0116 (7)0.0019 (6)0.0020 (6)0.0026 (6)
C50.0099 (7)0.0110 (7)0.0111 (7)0.0000 (5)0.0015 (5)0.0044 (6)
C60.0141 (8)0.0163 (8)0.0184 (8)0.0029 (6)0.0066 (6)0.0048 (7)
N70.0088 (6)0.0101 (6)0.0117 (6)0.0030 (5)0.0013 (5)0.0022 (5)
C110.0107 (7)0.0110 (7)0.0121 (7)0.0009 (6)0.0004 (6)0.0051 (6)
N110.0112 (6)0.0115 (6)0.0186 (7)0.0032 (5)0.0040 (5)0.0037 (6)
N120.0143 (7)0.0109 (6)0.0132 (6)0.0026 (5)0.0013 (5)0.0019 (5)
C130.0162 (8)0.0151 (8)0.0122 (7)0.0002 (6)0.0014 (6)0.0048 (6)
O130.0290 (7)0.0153 (6)0.0152 (6)0.0003 (5)0.0051 (5)0.0007 (5)
C140.0135 (8)0.0181 (8)0.0128 (7)0.0004 (6)0.0038 (6)0.0056 (6)
C150.0092 (7)0.0156 (7)0.0129 (7)0.0018 (6)0.0003 (6)0.0081 (6)
C160.0111 (7)0.0178 (8)0.0173 (8)0.0052 (6)0.0008 (6)0.0077 (7)
N170.0093 (6)0.0100 (6)0.0116 (6)0.0015 (5)0.0019 (5)0.0021 (5)
O80.0199 (7)0.0198 (7)0.0130 (6)0.0092 (5)0.0041 (5)0.0004 (5)
Geometric parameters (Å, º) top
S1—O51.4759 (14)N7—H70.83 (3)
S1—O71.4805 (14)C11—N111.318 (2)
S1—O61.4843 (14)C11—N171.342 (2)
S1—O41.4949 (16)C11—N121.349 (2)
C1—N11.315 (2)N11—H11A0.87 (3)
C1—N71.349 (2)N11—H11B0.89 (3)
C1—N21.353 (2)N12—C131.402 (2)
N1—H1A0.87 (3)N12—H120.91 (3)
N1—H1B0.83 (3)C13—O131.226 (2)
N2—C31.403 (2)C13—C141.437 (3)
N2—H20.91 (3)C14—C151.351 (2)
C3—O31.229 (2)C14—H140.94 (3)
C3—C41.443 (2)C15—N171.383 (2)
C4—C51.352 (2)C15—C161.492 (3)
C4—H40.97 (2)C16—H16A0.95 (2)
C5—N71.382 (2)C16—H16B0.972 (19)
C5—C61.491 (2)C16—H16C0.953 (19)
C6—H6A0.98 (2)N17—H170.83 (3)
C6—H6B0.92 (2)O8—H8A0.86 (3)
C6—H6C0.97 (2)O8—H8B0.82 (3)
O5—S1—O7109.31 (8)C1—N7—H7120.5 (19)
O5—S1—O6109.99 (8)C5—N7—H7117.9 (19)
O7—S1—O6110.24 (9)N11—C11—N17120.64 (15)
O5—S1—O4108.97 (8)N11—C11—N12120.77 (16)
O7—S1—O4108.81 (7)N17—C11—N12118.59 (15)
O6—S1—O4109.49 (8)C11—N11—H11A119.9 (18)
N1—C1—N7120.88 (15)C11—N11—H11B119.6 (17)
N1—C1—N2120.63 (15)H11A—N11—H11B120 (2)
N7—C1—N2118.48 (15)C11—N12—C13123.73 (15)
C1—N1—H1A122.7 (16)C11—N12—H12117.5 (17)
C1—N1—H1B117.4 (17)C13—N12—H12118.8 (17)
H1A—N1—H1B120 (2)O13—C13—N12118.40 (17)
C1—N2—C3124.22 (14)O13—C13—C14126.54 (17)
C1—N2—H2116.8 (17)N12—C13—C14115.06 (15)
C3—N2—H2118.0 (17)C15—C14—C13120.77 (16)
O3—C3—N2119.39 (15)C15—C14—H14121.2 (15)
O3—C3—C4125.98 (16)C13—C14—H14118.0 (15)
N2—C3—C4114.61 (14)C14—C15—N17119.59 (16)
C5—C4—C3120.56 (15)C14—C15—C16125.40 (16)
C5—C4—H4120.1 (14)N17—C15—C16115.00 (15)
C3—C4—H4119.2 (14)C15—C16—H16A110.6 (13)
C4—C5—N7120.36 (15)C15—C16—H16B109.0 (12)
C4—C5—C6123.67 (15)H16A—C16—H16B111 (2)
N7—C5—C6115.96 (15)C15—C16—H16C110.2 (12)
C5—C6—H6A108.6 (13)H16A—C16—H16C110 (2)
C5—C6—H6B112.1 (14)H16B—C16—H16C106 (2)
H6A—C6—H6B108 (2)C11—N17—C15122.20 (15)
C5—C6—H6C109.4 (14)C11—N17—H17119.0 (19)
H6A—C6—H6C111 (2)C15—N17—H17118.7 (19)
H6B—C6—H6C108 (2)H8A—O8—H8B108 (3)
C1—N7—C5121.60 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.87 (3)2.02 (3)2.856 (3)161 (3)
N1—H1B···O4ii0.83 (3)2.01 (3)2.847 (4)178 (2)
N2—H2···O6iii0.91 (3)1.88 (2)2.749 (4)161 (2)
N7—H7···O7ii0.83 (3)1.91 (3)2.730 (4)170 (3)
N11—H11A···O5iii0.87 (3)1.91 (3)2.782 (6)178 (3)
N11—H11B···O5iv0.89 (3)2.07 (3)2.767 (3)134 (2)
N12—H12···O8iv0.92 (3)1.87 (3)2.771 (4)170 (3)
N17—H17···O4iii0.82 (3)1.92 (3)2.746 (6)177 (3)
O8—H8A···O13v0.86 (3)1.94 (3)2.750 (5)158 (3)
O8—H8B···O70.83 (3)2.02 (3)2.839 (4)173 (3)
C4—H4···O3vi0.97 (2)2.54 (2)3.485 (3)165 (2)
C6—H6C···O13ii0.972.513.440 (3)162 (2)
C16—H16A···O3vii0.952.583.499 (5)163 (2)
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x, y+1, z+1; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.87 (3)2.02 (3)2.856 (3)161 (3)
N1—H1B···O4ii0.83 (3)2.01 (3)2.847 (4)178 (2)
N2—H2···O6iii0.91 (3)1.88 (2)2.749 (4)161 (2)
N7—H7···O7ii0.83 (3)1.91 (3)2.730 (4)170 (3)
N11—H11A···O5iii0.87 (3)1.91 (3)2.782 (6)178 (3)
N11—H11B···O5iv0.89 (3)2.07 (3)2.767 (3)134 (2)
N12—H12···O8iv0.92 (3)1.87 (3)2.771 (4)170 (3)
N17—H17···O4iii0.82 (3)1.92 (3)2.746 (6)177 (3)
O8—H8A···O13v0.86 (3)1.94 (3)2.750 (5)158 (3)
O8—H8B···O70.83 (3)2.02 (3)2.839 (4)173 (3)
C4—H4···O3vi0.97 (2)2.54 (2)3.485 (3)165 (2)
C6—H6C···O13ii0.9682.513.440 (3)162 (2)
C16—H16A···O3vii0.9462.5833.499 (5)163 (2)
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x, y+1, z+1; (vii) x+1, y, z.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, B. K., Bora, S. J., Bhattacharyya, M. K. & Barman, R. K. (2009). Acta Cryst. B65, 467–473.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFragoso, P. T., Carneiro, J. W. M. & Vargas, M. D. (2010). J. Mol. Model. 16, 825–829.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrobelny, R., Glowiak, T., Mrozinski, J., Baran, W. & Tomasik, P. (1995). Pol. J. Chem. 69, 559–565.  CAS Google Scholar
First citationMolloy, K. C. (1988). Inorg. Chem. Acta, 141, 151–333.  CrossRef CAS Web of Science Google Scholar
First citationNorquist, A. J., Doran, M. B. & O'Hare, D. (2005). Acta Cryst. E61, m807–m810.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVollano, J. F., Day, R. O., Rau, D. N., Chadrasekhar, V. & Holmes, R. R. (1984). Inorg. Chem. 23, 3152–3155.  CSD CrossRef Web of Science Google Scholar
First citationYang, R. N., Wang, D. M., Hou, Y. M., Xue, B. Y., Jin, D. M., chen, L. R. & Luo, B. S. (1995). Acta Chem. Scand. 49, 771–773.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds