metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-amino­pyridinium) dichromate(VI)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France, and cLaboratoire des Matériaux Utiles, Institut National de Recherche et d'Analyse Physico-chimique, Pole Technologique de Sidi-Thabet, 2020 Tunis, Tunisia
*Correspondence e-mail: dhaouadihassouna@yahoo.fr

(Received 29 May 2014; accepted 11 June 2014; online 14 June 2014)

The asymmetric unit of the title salt, (C5H7N2)2[Cr2O7], contains four independent cations and two independent dichromate anions. The crystal structure consists of discrete dichromate anions with an eclipsed conformation stacked in layers parallel to (010) at y = 1/4 and y = 3/4. These layers are linked via 4-amino­pyridinium cations by N—H⋯O and weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network. In addition, ππ inter­actions are present in this structure; the shortest distance separating mean planes through 4-amino­pyridinium cations is 3.679 (6) Å.

Related literature

For properties of pyridine-based compounds, see: Patani & LaVoie (1996[Patani, G. A. & LaVoie, E. J. (1996). Chem. Rev. 96, 3147-3176.]); Ma & Huang (2003[Ma, J. A. & Huang, R. Q. (2003). Chem. J. Chin. Univ. 24, 654-656.]). For related structures, see: Trabelsi et al. (2012[Trabelsi, S., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, m1056.]); Lennartson & Håkansson (2009[Lennartson, A. & Håkansson, M. (2009). Acta Cryst. C65, m182-m184.]); Fun et al. (2009[Fun, H.-K., John, J., Jebas, S. R. & Balasubramanian, T. (2009). Acta Cryst. E65, o748-o749.]); Ramesh et al. (2010[Ramesh, P., Akalya, R., Chandramohan, A. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1000.]). For aromatic ππ stacking inter­actions, see: Janiak (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)2[Cr2O7]

  • Mr = 406.25

  • Monoclinic, P 21 /c

  • a = 13.8505 (4) Å

  • b = 16.2486 (4) Å

  • c = 15.2586 (4) Å

  • β = 118.923 (2)°

  • V = 3005.65 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 150 K

  • 0.58 × 0.5 × 0.4 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.469, Tmax = 0.552

  • 23461 measured reflections

  • 6868 independent reflections

  • 5506 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.07

  • 6868 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O10i 0.86 2.13 2.842 (3) 140
N2—H2A⋯O9ii 0.86 2.19 3.022 (3) 162
N2—H2B⋯O11iii 0.86 2.13 2.978 (3) 167
N3—HN3⋯O5iv 0.86 2.14 2.871 (3) 142
N4—H4A⋯O13iii 0.86 2.32 3.067 (3) 145
N4—H4B⋯O14ii 0.86 2.14 2.965 (3) 160
N5—HN5⋯O5ii 0.86 2.11 2.890 (3) 151
N6—H6A⋯O2iv 0.86 2.45 2.998 (3) 122
N6—H6B⋯O14iv 0.86 2.10 2.923 (3) 160
N7—HN7⋯O4v 0.86 2.22 2.927 (2) 139
N8—H8A⋯O8iv 0.86 2.31 3.121 (3) 156
N8—H8B⋯O11 0.86 2.17 3.033 (3) 176
C1—H1⋯O7vi 0.93 2.43 3.305 (3) 156
C5—H5⋯O6iv 0.93 2.28 3.192 (3) 165
C6—H6⋯O1vi 0.93 2.31 3.204 (3) 161
C9—H9⋯O12ii 0.93 2.47 3.359 (3) 161
C10—H10⋯O2iv 0.93 2.40 3.209 (3) 145
C11—H11⋯O1ii 0.93 2.41 3.205 (3) 144
C14—H14⋯O12 0.93 2.46 3.248 (3) 143
C15—H15⋯O2v 0.93 2.32 3.244 (3) 171
C16—H16⋯O7ii 0.93 2.37 3.197 (3) 148
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

Usually, pyridine can serve as an efficient bioisostere of benzene in drug design, and considerable interest has been shown in pyridine derivatives in the field of modern agrochemistry and medicinal chemistry, because substitution of the benzene by pyridine may result in good biological activity and low toxicity of molecules containing the pyridyl moiety (Patani & LaVoie, 1996; Ma & Huang, 2003). In this work, we report the preparation and the structural investigation of a new organic dichromate, (C5H7N2)2·Cr2O7, (I).

The asymmetric unit of (I) is composed of two independent dichromate anions and four independent 4-aminopyridinium cations (Fig. 1). The structure of the compound consists of discrete dichromate ions with an eclipsed conformation stacked in layers parallel to the (010) plane at y = 0.25 and 0.75. These layers are linked via the 4-aminopidridinium cations by N—H···O and C—H···O hydrogen bonds, forming a three-dimensional supramolecular network as shown in figure 2.

Interatomic bond lengths and angles of the dichromate anions spread respectively within the ranges [1.6038 (17)–1.8059 (17) Å] and [105.42 (8)–112.22 (10)°] for O—Cr—O angles and [120.12 (9)–125.63 (9)°] for Cr—O—Cr angles. These geometrical features have also been noticed in other related crystal structure (Trabelsi et al., 2012; Lennartson & Håkansson, 2009).

In this atomic arrangement four independent 4-aminopyridinium cations are present. Examination of the organic cations shows that the bond distances and angles show no significant difference from those obtained in oxalate and picrate salts involving the same organic group (Fun et al., 2009; Ramesh et al., 2010). Each 4-aminopyridinium cations is planar, with a maximum deviation of 0.0024 (2) Å. The shortest inter-planar distance between nearby pyridine rings is 3.679 (6) Å, which is much shorter than 3.80 Å, indicating the formation of ππ interactions (Fig. 3, Janiak, 2000).

The established H-bonds of types N—H···O and C—H···O involve O atoms of the dichromate anions as acceptors, and the protonated N atoms and carbon atoms of 4-aminopyridinium as donors.

Related literature top

For properties of pyridine-based compounds, see: Patani & LaVoie (1996); Ma & Huang (2003). For related structures, see: Trabelsi et al. (2012); Lennartson & Håkansson (2009); Fun et al. (2009); Ramesh et al. (2010). For aromatic ππ stacking interactions, see: Janiak (2000).

Experimental top

Single crystals of the title compound were prepared at room temperature by dissolving CrO3 (0.10 g, 1 mmol) and 4-aminopyridine (Fampridine, 0.09 g, 1 mmol) in distilled water (20 ml). The resulting solution was stirred during 1 h, filtered and then evaporated slowly at room temperature until the formation of orange prismatic single crystals.

Refinement top

All H atoms were located in a difference map. Nevertheless, they were geometrically placed and refined using a riding model, with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(carrier C or N).

Structure description top

Usually, pyridine can serve as an efficient bioisostere of benzene in drug design, and considerable interest has been shown in pyridine derivatives in the field of modern agrochemistry and medicinal chemistry, because substitution of the benzene by pyridine may result in good biological activity and low toxicity of molecules containing the pyridyl moiety (Patani & LaVoie, 1996; Ma & Huang, 2003). In this work, we report the preparation and the structural investigation of a new organic dichromate, (C5H7N2)2·Cr2O7, (I).

The asymmetric unit of (I) is composed of two independent dichromate anions and four independent 4-aminopyridinium cations (Fig. 1). The structure of the compound consists of discrete dichromate ions with an eclipsed conformation stacked in layers parallel to the (010) plane at y = 0.25 and 0.75. These layers are linked via the 4-aminopidridinium cations by N—H···O and C—H···O hydrogen bonds, forming a three-dimensional supramolecular network as shown in figure 2.

Interatomic bond lengths and angles of the dichromate anions spread respectively within the ranges [1.6038 (17)–1.8059 (17) Å] and [105.42 (8)–112.22 (10)°] for O—Cr—O angles and [120.12 (9)–125.63 (9)°] for Cr—O—Cr angles. These geometrical features have also been noticed in other related crystal structure (Trabelsi et al., 2012; Lennartson & Håkansson, 2009).

In this atomic arrangement four independent 4-aminopyridinium cations are present. Examination of the organic cations shows that the bond distances and angles show no significant difference from those obtained in oxalate and picrate salts involving the same organic group (Fun et al., 2009; Ramesh et al., 2010). Each 4-aminopyridinium cations is planar, with a maximum deviation of 0.0024 (2) Å. The shortest inter-planar distance between nearby pyridine rings is 3.679 (6) Å, which is much shorter than 3.80 Å, indicating the formation of ππ interactions (Fig. 3, Janiak, 2000).

The established H-bonds of types N—H···O and C—H···O involve O atoms of the dichromate anions as acceptors, and the protonated N atoms and carbon atoms of 4-aminopyridinium as donors.

For properties of pyridine-based compounds, see: Patani & LaVoie (1996); Ma & Huang (2003). For related structures, see: Trabelsi et al. (2012); Lennartson & Håkansson (2009); Fun et al. (2009); Ramesh et al. (2010). For aromatic ππ stacking interactions, see: Janiak (2000).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Projection of (I) along the a axis. The H-atoms not involved in H-bonding are omitted.
[Figure 3] Fig. 3. Perspective view showing the ππ interactions between adjacent 4-aminopyridinium groups. Dichromate anions have been omitted for clarity.
Bis(4-aminopyridinium) dichromate(VI) top
Crystal data top
(C5H7N2)2[Cr2O7]F(000) = 1648
Mr = 406.25Dx = 1.796 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5472 reflections
a = 13.8505 (4) Åθ = 2.7–27.3°
b = 16.2486 (4) ŵ = 1.49 mm1
c = 15.2586 (4) ÅT = 150 K
β = 118.923 (2)°Prism, orange
V = 3005.65 (14) Å30.58 × 0.5 × 0.4 mm
Z = 8
Data collection top
Bruker APEXII
diffractometer
5506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1717
Tmin = 0.469, Tmax = 0.552k = 1621
23461 measured reflectionsl = 1719
6868 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0409P)2 + 1.1738P]
where P = (Fo2 + 2Fc2)/3
6868 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.58 e Å3
0 constraints
Crystal data top
(C5H7N2)2[Cr2O7]V = 3005.65 (14) Å3
Mr = 406.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.8505 (4) ŵ = 1.49 mm1
b = 16.2486 (4) ÅT = 150 K
c = 15.2586 (4) Å0.58 × 0.5 × 0.4 mm
β = 118.923 (2)°
Data collection top
Bruker APEXII
diffractometer
6868 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
5506 reflections with I > 2σ(I)
Tmin = 0.469, Tmax = 0.552Rint = 0.042
23461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.07Δρmax = 0.41 e Å3
6868 reflectionsΔρmin = 0.58 e Å3
415 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.30978 (3)0.25913 (2)0.87600 (3)0.01226 (10)
Cr20.14056 (3)0.25667 (2)0.64724 (3)0.01334 (10)
O10.36183 (14)0.34529 (10)0.86547 (12)0.0217 (4)
O20.37986 (14)0.18108 (11)0.87204 (13)0.0251 (4)
O30.30456 (14)0.25734 (9)0.97973 (12)0.0175 (4)
O40.16957 (13)0.25140 (9)0.77567 (12)0.0141 (3)
O50.25558 (15)0.24640 (9)0.64455 (13)0.0206 (4)
O60.05649 (17)0.18307 (12)0.58819 (13)0.0335 (5)
O70.08641 (15)0.34537 (11)0.60243 (13)0.0257 (4)
Cr30.86884 (3)0.24904 (2)0.83351 (3)0.01316 (10)
Cr40.63121 (3)0.25479 (2)0.63638 (3)0.01368 (10)
O80.85329 (15)0.17165 (11)0.89157 (13)0.0285 (4)
O90.84062 (15)0.33450 (11)0.87063 (13)0.0256 (4)
O100.99257 (14)0.25074 (9)0.84773 (13)0.0187 (4)
O110.77849 (14)0.23816 (9)0.70058 (12)0.0179 (4)
O120.60940 (16)0.35133 (11)0.61015 (15)0.0314 (5)
O130.58360 (15)0.20101 (13)0.53587 (14)0.0334 (5)
O140.57985 (15)0.22726 (11)0.70728 (13)0.0261 (4)
N10.10279 (16)0.40072 (12)0.14295 (15)0.0211 (5)
HN10.08880.34980.15970.025*
C10.1345 (2)0.45034 (15)0.19490 (19)0.0210 (5)
H10.13990.42920.24900.025*
C20.1588 (2)0.53063 (14)0.16971 (18)0.0179 (5)
H20.18040.56420.20650.021*
C30.15119 (19)0.56323 (14)0.08699 (17)0.0156 (5)
C40.11508 (19)0.50918 (14)0.03606 (18)0.0181 (5)
H40.10680.52840.01740.022*
C50.0925 (2)0.42948 (15)0.06501 (19)0.0211 (5)
H50.06960.39420.03070.025*
N20.17652 (18)0.64076 (12)0.05892 (16)0.0237 (5)
H2A0.17120.65940.00870.028*
H2B0.19830.67260.09090.028*
N30.36147 (17)0.39842 (12)0.12358 (15)0.0212 (5)
HN30.34600.34680.11530.025*
C60.3965 (2)0.43597 (15)0.06512 (19)0.0217 (5)
H60.40390.40590.01680.026*
C70.4210 (2)0.51765 (14)0.07674 (18)0.0188 (5)
H70.44460.54330.03600.023*
C80.41064 (18)0.56376 (14)0.15032 (17)0.0154 (5)
C90.37277 (19)0.52161 (15)0.20893 (17)0.0176 (5)
H90.36330.54970.25730.021*
C100.3502 (2)0.43966 (15)0.19426 (18)0.0213 (5)
H100.32670.41190.23380.026*
N40.43612 (18)0.64317 (12)0.16345 (16)0.0229 (5)
H4A0.45930.66730.12690.027*
H4B0.42950.67050.20850.027*
N50.66256 (17)0.60129 (12)0.39258 (16)0.0238 (5)
HN50.67580.65310.39400.029*
C110.6760 (2)0.55244 (16)0.32819 (19)0.0244 (6)
H110.69910.57530.28560.029*
C120.6565 (2)0.47016 (15)0.32428 (18)0.0190 (5)
H120.66680.43720.27970.023*
C130.62036 (19)0.43485 (14)0.38822 (18)0.0165 (5)
C140.6076 (2)0.48867 (14)0.45475 (18)0.0186 (5)
H140.58470.46800.49860.022*
C150.6286 (2)0.57029 (15)0.45493 (18)0.0208 (5)
H150.61940.60520.49860.025*
N60.59854 (18)0.35547 (12)0.38491 (17)0.0243 (5)
H6A0.57590.33520.42390.029*
H6B0.60690.32400.34380.029*
N70.89889 (16)0.60146 (12)0.66303 (15)0.0190 (4)
HN70.90670.65320.67680.023*
C160.9173 (2)0.57268 (15)0.58964 (18)0.0193 (5)
H160.93880.60880.55490.023*
C170.9048 (2)0.49117 (14)0.56583 (18)0.0176 (5)
H170.91790.47190.51520.021*
C180.87181 (18)0.43586 (14)0.61778 (17)0.0147 (5)
C190.8537 (2)0.46897 (14)0.69469 (17)0.0173 (5)
H190.83170.43480.73070.021*
C200.8684 (2)0.55068 (14)0.71542 (18)0.0193 (5)
H200.85740.57200.76640.023*
N80.85990 (17)0.35635 (12)0.59675 (16)0.0224 (5)
H8A0.87230.33730.55050.027*
H8B0.83980.32370.62930.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01379 (19)0.01437 (19)0.00998 (19)0.00100 (14)0.00682 (15)0.00061 (13)
Cr20.0164 (2)0.0147 (2)0.01068 (19)0.00082 (14)0.00786 (16)0.00082 (13)
O10.0222 (9)0.0246 (9)0.0173 (9)0.0072 (7)0.0087 (8)0.0028 (7)
O20.0254 (10)0.0302 (10)0.0190 (9)0.0122 (8)0.0101 (8)0.0010 (7)
O30.0242 (9)0.0174 (9)0.0133 (8)0.0004 (7)0.0110 (7)0.0004 (6)
O40.0140 (8)0.0178 (9)0.0118 (8)0.0018 (6)0.0074 (7)0.0005 (6)
O50.0264 (10)0.0203 (9)0.0237 (10)0.0048 (7)0.0189 (8)0.0033 (7)
O60.0422 (12)0.0414 (12)0.0202 (10)0.0249 (10)0.0176 (9)0.0157 (8)
O70.0315 (11)0.0282 (10)0.0198 (9)0.0136 (8)0.0143 (8)0.0090 (7)
Cr30.0135 (2)0.0144 (2)0.01207 (19)0.00019 (14)0.00655 (16)0.00043 (14)
Cr40.0156 (2)0.0147 (2)0.01179 (19)0.00095 (14)0.00741 (16)0.00091 (13)
O80.0246 (10)0.0328 (11)0.0250 (10)0.0072 (8)0.0095 (8)0.0110 (8)
O90.0253 (10)0.0289 (10)0.0210 (9)0.0056 (8)0.0101 (8)0.0072 (8)
O100.0162 (9)0.0168 (9)0.0233 (9)0.0012 (6)0.0097 (8)0.0010 (7)
O110.0169 (9)0.0228 (9)0.0128 (8)0.0018 (7)0.0063 (7)0.0024 (7)
O120.0348 (12)0.0212 (10)0.0418 (12)0.0093 (8)0.0213 (10)0.0123 (8)
O130.0224 (10)0.0478 (13)0.0247 (10)0.0023 (9)0.0072 (8)0.0187 (9)
O140.0280 (10)0.0314 (10)0.0237 (10)0.0016 (8)0.0164 (9)0.0043 (8)
N10.0185 (11)0.0118 (10)0.0255 (12)0.0007 (8)0.0046 (9)0.0024 (8)
C10.0188 (13)0.0218 (13)0.0200 (13)0.0039 (10)0.0074 (11)0.0039 (10)
C20.0185 (13)0.0184 (12)0.0194 (13)0.0039 (10)0.0113 (11)0.0036 (10)
C30.0121 (11)0.0141 (11)0.0191 (12)0.0003 (9)0.0065 (10)0.0010 (9)
C40.0164 (12)0.0219 (13)0.0159 (12)0.0011 (10)0.0078 (10)0.0021 (9)
C50.0187 (13)0.0189 (12)0.0223 (13)0.0001 (10)0.0072 (11)0.0071 (10)
N20.0328 (13)0.0157 (10)0.0320 (13)0.0039 (9)0.0233 (11)0.0041 (9)
N30.0219 (11)0.0107 (10)0.0277 (12)0.0011 (8)0.0094 (10)0.0004 (8)
C60.0221 (13)0.0216 (13)0.0225 (13)0.0008 (10)0.0117 (11)0.0039 (10)
C70.0244 (14)0.0179 (12)0.0187 (13)0.0006 (10)0.0140 (11)0.0008 (10)
C80.0120 (11)0.0162 (12)0.0153 (12)0.0013 (9)0.0046 (10)0.0000 (9)
C90.0173 (12)0.0219 (12)0.0147 (12)0.0024 (10)0.0085 (10)0.0020 (9)
C100.0174 (13)0.0237 (13)0.0215 (13)0.0008 (10)0.0085 (11)0.0074 (10)
N40.0346 (13)0.0152 (10)0.0272 (12)0.0019 (9)0.0216 (11)0.0025 (9)
N50.0226 (12)0.0129 (10)0.0287 (12)0.0010 (9)0.0066 (10)0.0048 (9)
C110.0215 (14)0.0286 (14)0.0228 (14)0.0014 (11)0.0105 (11)0.0095 (11)
C120.0176 (13)0.0256 (13)0.0163 (12)0.0012 (10)0.0101 (11)0.0011 (10)
C130.0137 (12)0.0165 (12)0.0178 (12)0.0004 (9)0.0064 (10)0.0001 (9)
C140.0194 (13)0.0211 (13)0.0171 (12)0.0007 (10)0.0102 (11)0.0007 (10)
C150.0194 (13)0.0176 (12)0.0189 (13)0.0025 (10)0.0042 (11)0.0030 (10)
N60.0342 (13)0.0172 (11)0.0322 (12)0.0065 (9)0.0246 (11)0.0050 (9)
N70.0203 (11)0.0118 (10)0.0214 (11)0.0017 (8)0.0072 (9)0.0006 (8)
C160.0175 (13)0.0201 (13)0.0187 (13)0.0008 (10)0.0076 (10)0.0074 (10)
C170.0169 (12)0.0209 (13)0.0173 (12)0.0001 (10)0.0102 (10)0.0009 (9)
C180.0114 (11)0.0152 (11)0.0173 (12)0.0004 (9)0.0067 (10)0.0010 (9)
C190.0192 (13)0.0187 (12)0.0165 (12)0.0018 (10)0.0106 (10)0.0028 (9)
C200.0212 (13)0.0206 (12)0.0169 (12)0.0048 (10)0.0100 (11)0.0010 (10)
N80.0312 (13)0.0165 (10)0.0284 (12)0.0045 (9)0.0215 (11)0.0037 (9)
Geometric parameters (Å, º) top
Cr1—O21.6158 (17)C7—H70.9300
Cr1—O11.6178 (17)C8—N41.327 (3)
Cr1—O31.6193 (16)C8—C91.413 (3)
Cr1—O41.8041 (17)C9—C101.361 (3)
Cr2—O61.6072 (18)C9—H90.9300
Cr2—O71.6160 (17)C10—H100.9300
Cr2—O51.6219 (18)N4—H4A0.8600
Cr2—O41.8020 (16)N4—H4B0.8600
Cr3—O81.6115 (17)N5—C111.344 (3)
Cr3—O91.6175 (17)N5—C151.347 (3)
Cr3—O101.6202 (17)N5—HN50.8600
Cr3—O111.8044 (17)C11—C121.360 (3)
Cr4—O131.6038 (17)C11—H110.9300
Cr4—O121.6109 (18)C12—C131.415 (3)
Cr4—O141.6188 (17)C12—H120.9300
Cr4—O111.8059 (17)C13—N61.320 (3)
N1—C11.345 (3)C13—C141.414 (3)
N1—C51.348 (3)C14—C151.357 (3)
N1—HN10.8600C14—H140.9300
C1—C21.356 (3)C15—H150.9300
C1—H10.9300N6—H6A0.8600
C2—C31.419 (3)N6—H6B0.8600
C2—H20.9300N7—C161.347 (3)
C3—N21.322 (3)N7—C201.351 (3)
C3—C41.415 (3)N7—HN70.8600
C4—C51.355 (3)C16—C171.362 (3)
C4—H40.9300C16—H160.9300
C5—H50.9300C17—C181.412 (3)
N2—H2A0.8600C17—H170.9300
N2—H2B0.8600C18—N81.322 (3)
N3—C101.341 (3)C18—C191.419 (3)
N3—C61.350 (3)C19—C201.357 (3)
N3—HN30.8600C19—H190.9300
C6—C71.360 (3)C20—H200.9300
C6—H60.9300N8—H8A0.8600
C7—C81.413 (3)N8—H8B0.8600
O2—Cr1—O1111.77 (10)C8—C7—H7119.8
O2—Cr1—O3109.52 (8)N4—C8—C7120.9 (2)
O1—Cr1—O3110.20 (8)N4—C8—C9121.9 (2)
O2—Cr1—O4109.46 (8)C7—C8—C9117.2 (2)
O1—Cr1—O4108.93 (8)C10—C9—C8119.7 (2)
O3—Cr1—O4106.84 (8)C10—C9—H9120.1
O6—Cr2—O7111.36 (10)C8—C9—H9120.1
O6—Cr2—O5111.31 (9)N3—C10—C9121.0 (2)
O7—Cr2—O5109.97 (9)N3—C10—H10119.5
O6—Cr2—O4107.12 (8)C9—C10—H10119.5
O7—Cr2—O4108.44 (8)C8—N4—H4A120.0
O5—Cr2—O4108.51 (8)C8—N4—H4B120.0
O8—Cr3—O9110.98 (11)H4A—N4—H4B120.0
O8—Cr3—O10110.71 (9)C11—N5—C15121.0 (2)
O9—Cr3—O10110.95 (9)C11—N5—HN5119.5
O8—Cr3—O11109.70 (9)C15—N5—HN5119.5
O9—Cr3—O11108.91 (8)N5—C11—C12121.2 (2)
O10—Cr3—O11105.42 (8)N5—C11—H11119.4
O13—Cr4—O12110.61 (10)C12—C11—H11119.4
O13—Cr4—O14112.22 (10)C11—C12—C13119.8 (2)
O12—Cr4—O14110.18 (9)C11—C12—H12120.1
O13—Cr4—O11105.75 (8)C13—C12—H12120.1
O12—Cr4—O11107.90 (9)N6—C13—C14121.7 (2)
O14—Cr4—O11110.01 (9)N6—C13—C12121.3 (2)
Cr2—O4—Cr1120.12 (9)C14—C13—C12116.9 (2)
Cr3—O11—Cr4125.63 (9)C15—C14—C13120.3 (2)
C1—N1—C5121.1 (2)C15—C14—H14119.8
C1—N1—HN1119.5C13—C14—H14119.8
C5—N1—HN1119.5N5—C15—C14120.8 (2)
N1—C1—C2121.1 (2)N5—C15—H15119.6
N1—C1—H1119.4C14—C15—H15119.6
C2—C1—H1119.4C13—N6—H6A120.0
C1—C2—C3119.8 (2)C13—N6—H6B120.0
C1—C2—H2120.1H6A—N6—H6B120.0
C3—C2—H2120.1C16—N7—C20121.3 (2)
N2—C3—C4121.5 (2)C16—N7—HN7119.4
N2—C3—C2121.4 (2)C20—N7—HN7119.4
C4—C3—C2117.1 (2)N7—C16—C17120.5 (2)
C5—C4—C3120.1 (2)N7—C16—H16119.7
C5—C4—H4120.0C17—C16—H16119.7
C3—C4—H4120.0C16—C17—C18120.2 (2)
N1—C5—C4120.9 (2)C16—C17—H17119.9
N1—C5—H5119.6C18—C17—H17119.9
C4—C5—H5119.6N8—C18—C17121.5 (2)
C3—N2—H2A120.0N8—C18—C19121.3 (2)
C3—N2—H2B120.0C17—C18—C19117.2 (2)
H2A—N2—H2B120.0C20—C19—C18119.8 (2)
C10—N3—C6121.6 (2)C20—C19—H19120.1
C10—N3—HN3119.2C18—C19—H19120.1
C6—N3—HN3119.2N7—C20—C19121.0 (2)
N3—C6—C7120.1 (2)N7—C20—H20119.5
N3—C6—H6119.9C19—C20—H20119.5
C7—C6—H6119.9C18—N8—H8A120.0
C6—C7—C8120.4 (2)C18—N8—H8B120.0
C6—C7—H7119.8H8A—N8—H8B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O10i0.862.132.842 (3)140
N1—HN1···O4ii0.862.423.065 (2)133
N2—H2A···O9iii0.862.193.022 (3)162
N2—H2B···O11iv0.862.132.978 (3)167
N3—HN3···O5v0.862.142.871 (3)142
N3—HN3···O3ii0.862.363.003 (3)132
N4—H4A···O13iv0.862.323.067 (3)145
N4—H4A···O1iii0.862.433.042 (3)128
N4—H4B···O14iii0.862.142.965 (3)160
N5—HN5···O5iii0.862.112.890 (3)151
N5—HN5···O3vi0.862.483.094 (3)129
N6—H6A···O2v0.862.452.998 (3)122
N6—H6B···O14v0.862.102.923 (3)160
N7—HN7···O10vii0.862.262.900 (3)131
N7—HN7···O4vi0.862.222.927 (2)139
N8—H8A···O8v0.862.313.121 (3)156
N8—H8B···O110.862.173.033 (3)176
C1—H1···O7ii0.932.433.305 (3)156
C5—H5···O6v0.932.283.192 (3)165
C6—H6···O1ii0.932.313.204 (3)161
C9—H9···O12iii0.932.473.359 (3)161
C10—H10···O2v0.932.403.209 (3)145
C11—H11···O1iii0.932.413.205 (3)144
C14—H14···O120.932.463.248 (3)143
C15—H15···O2vi0.932.323.244 (3)171
C16—H16···O7iii0.932.373.197 (3)148
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z1/2; (vi) x+1, y+1/2, z+3/2; (vii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O10i0.862.132.842 (3)140.2
N2—H2A···O9ii0.862.193.022 (3)162.0
N2—H2B···O11iii0.862.132.978 (3)166.5
N3—HN3···O5iv0.862.142.871 (3)141.9
N4—H4A···O13iii0.862.323.067 (3)144.9
N4—H4B···O14ii0.862.142.965 (3)160.3
N5—HN5···O5ii0.862.112.890 (3)150.5
N6—H6A···O2iv0.862.452.998 (3)122.4
N6—H6B···O14iv0.862.102.923 (3)159.5
N7—HN7···O4v0.862.222.927 (2)139.3
N8—H8A···O8iv0.862.313.121 (3)156.2
N8—H8B···O110.862.173.033 (3)175.6
C1—H1···O7vi0.932.433.305 (3)156.2
C5—H5···O6iv0.932.283.192 (3)165.1
C6—H6···O1vi0.932.313.204 (3)160.8
C9—H9···O12ii0.932.473.359 (3)161.3
C10—H10···O2iv0.932.403.209 (3)145.1
C11—H11···O1ii0.932.413.205 (3)143.5
C14—H14···O120.932.463.248 (3)142.6
C15—H15···O2v0.932.323.244 (3)170.8
C16—H16···O7ii0.932.373.197 (3)147.5
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+3/2; (vi) x, y, z1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., John, J., Jebas, S. R. & Balasubramanian, T. (2009). Acta Cryst. E65, o748–o749.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationLennartson, A. & Håkansson, M. (2009). Acta Cryst. C65, m182–m184.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, J. A. & Huang, R. Q. (2003). Chem. J. Chin. Univ. 24, 654–656.  Google Scholar
First citationPatani, G. A. & LaVoie, E. J. (1996). Chem. Rev. 96, 3147–3176.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRamesh, P., Akalya, R., Chandramohan, A. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1000.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrabelsi, S., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, m1056.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds