organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(1-Benzoyl­piperidin-4-yl)meth­yl]benzamide

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bPG and Research Department of Chemistry, Presidency College, Chennai-5, Tamil Nadu, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 13 March 2014; accepted 2 June 2014; online 14 June 2014)

In the title compound, C20H22N2O2, the piperidine ring adopts a chair conformation. The phenyl rings are inclined to one another by 80.1 (1)° and make dihedral angles of 46.1 (1) and 40.2 (1)° with the mean plane of the piperidine ring. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers. C—H⋯O inter­actions further link the mol­ecules, forming a three-dimensional supramolecular network.

Related literature

For the synthesis of the title compound, see: Prathebha et al. (2013[Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.]); Venkatraj et al. (2008[Venkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411-426.]). For the biological activity of piperdine derivatives, see: Ramalingan et al. (2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]); Sergeant & May (1970[Sergeant, L. J. & May, E. L. (1970). J. Med. Chem. 13, 1061-1063.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Al-abbasi et al. (2010[Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.]); Ávila et al. (2010[Ávila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O2

  • Mr = 322.40

  • Triclinic, [P \overline 1]

  • a = 9.8039 (2) Å

  • b = 10.4453 (2) Å

  • c = 10.6765 (2) Å

  • α = 62.208 (1)°

  • β = 66.009 (1)°

  • γ = 68.150 (1)°

  • V = 860.80 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.984

  • 12912 measured reflections

  • 3562 independent reflections

  • 2929 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.04

  • 3531 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.97 2.60 3.5548 (18) 169
C3—H3⋯O2ii 0.93 2.47 3.3803 (17) 167
N2—H2A⋯O2ii 0.86 2.11 2.9401 (15) 162
C8—H8⋯O1iii 0.93 2.52 3.4506 (19) 176
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Biologically active alkaloids of substituted piperidines have been targeted for their total or partial synthesis (Ramalingan et al., 2004). Piperidines are known to have CNS depressant action at low dosage levels and stimulant activity with increased doses. In addition, the nucleus also possesses analgesic, anglionic blocking and anesthetic properties as well (Sergeant & May, 1970). We report in this communication, the synthesis and crystal structure of a new piperidine derivative.

The phenyl rings form dihedral angles of 46.1 (1)° and 40.2 (1)°, respectively, with the best plane through the piperidine ring atoms. The C—N distances [1.337 (2)- 1.468 (2) Å] are in the normal range and are in good agreement with values of a similar reported structure (Ávila et al., 2010). The piperdine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of q2 = 0.0351 (1) Å, phi2 = -50.61 (3)° q3 = 0.5633 (1) Å, QT = 0.5644 (2) Å and θ2 = 3.67 (2)°.

The crystal packing shows N-H···O hydrogen bonds linking the molecules to centrosymmetric dimers (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Prathebha et al. (2013); Venkatraj et al. (2008). For the biological activity of piperdine derivatives, see: Ramalingan et al. (2004); Sergeant & May (1970). For bond-length data, see: Allen et al. (1987). For related structures, see: Al-abbasi et al. (2010); Ávila et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The procedure (Prathebha et al., 2013, Venkatraj et al., 2008) adopted in the synthesis of the typical diamide is as follows: In a 250 mL round-bottomed flask 4-methyl piperidine (0.01 mol) was taken in, to which 100 mL of ethyl methyl ketone was added and stirred at room temperature. After 5 minutes, triethylamine (0.02 mol) was added and the mixture was stirred for 15 minutes. Then, benzoyl chloride (0.02 mol) was added and the reaction mixture was stirred at room temperature for about 2 h. A white precipitate of triethyl ammonium chloride was formed. It was filtered and the filterate was evaporated to get the crude product. The crude product was recrystallized twice from ethyl methyl ketone. Melting Point: 127 °C, yield: 85%.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms with C—H = 0.93 - 0.97 Å and N—H. 87 with Uiso(H) = 1.5Ueq (C-methyl) and = 1.2U eq(N,C) for other H atoms.

Structure description top

Biologically active alkaloids of substituted piperidines have been targeted for their total or partial synthesis (Ramalingan et al., 2004). Piperidines are known to have CNS depressant action at low dosage levels and stimulant activity with increased doses. In addition, the nucleus also possesses analgesic, anglionic blocking and anesthetic properties as well (Sergeant & May, 1970). We report in this communication, the synthesis and crystal structure of a new piperidine derivative.

The phenyl rings form dihedral angles of 46.1 (1)° and 40.2 (1)°, respectively, with the best plane through the piperidine ring atoms. The C—N distances [1.337 (2)- 1.468 (2) Å] are in the normal range and are in good agreement with values of a similar reported structure (Ávila et al., 2010). The piperdine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of q2 = 0.0351 (1) Å, phi2 = -50.61 (3)° q3 = 0.5633 (1) Å, QT = 0.5644 (2) Å and θ2 = 3.67 (2)°.

The crystal packing shows N-H···O hydrogen bonds linking the molecules to centrosymmetric dimers (Fig. 2).

For the synthesis of the title compound, see: Prathebha et al. (2013); Venkatraj et al. (2008). For the biological activity of piperdine derivatives, see: Ramalingan et al. (2004); Sergeant & May (1970). For bond-length data, see: Allen et al. (1987). For related structures, see: Al-abbasi et al. (2010); Ávila et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.
[Figure 3] Fig. 3. Experimental procedure
N-[(1-Benzoylpiperidin-4-yl)methyl]benzamide top
Crystal data top
C20H22N2O2Z = 2
Mr = 322.40F(000) = 344
Triclinic, P1Dx = 1.244 Mg m3
Dm = 1.188 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8039 (2) ÅCell parameters from 3562 reflections
b = 10.4453 (2) Åθ = 2.3–26.5°
c = 10.6765 (2) ŵ = 0.08 mm1
α = 62.208 (1)°T = 293 K
β = 66.009 (1)°Block, colourless
γ = 68.150 (1)°0.22 × 0.20 × 0.20 mm
V = 860.80 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3562 independent reflections
Radiation source: fine-focus sealed tube2929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scanθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.982, Tmax = 0.984k = 1313
12912 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.1352P]
where P = (Fo2 + 2Fc2)/3
3531 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H22N2O2γ = 68.150 (1)°
Mr = 322.40V = 860.80 (3) Å3
Triclinic, P1Z = 2
a = 9.8039 (2) ÅMo Kα radiation
b = 10.4453 (2) ŵ = 0.08 mm1
c = 10.6765 (2) ÅT = 293 K
α = 62.208 (1)°0.22 × 0.20 × 0.20 mm
β = 66.009 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3562 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2929 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.028
12912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.56 e Å3
3531 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8259 (2)0.13083 (19)0.42562 (19)0.0716 (5)
H10.84640.04510.44280.086*
C20.9233 (2)0.14731 (18)0.37349 (19)0.0687 (4)
H21.00970.07250.35540.082*
C30.89322 (16)0.27493 (16)0.34793 (16)0.0557 (3)
H30.96050.28650.31470.067*
C40.76373 (14)0.38484 (14)0.37167 (13)0.0462 (3)
C50.6671 (2)0.3663 (2)0.4234 (2)0.0706 (4)
H50.57910.43960.43910.085*
C60.6987 (2)0.2410 (2)0.4522 (2)0.0805 (5)
H60.63380.23130.48950.097*
C70.75109 (14)0.87255 (14)0.19275 (14)0.0459 (3)
C80.68184 (17)0.89913 (16)0.32258 (16)0.0555 (3)
H80.65210.82270.41150.067*
C90.65695 (19)1.03945 (18)0.32005 (18)0.0655 (4)
H90.60911.05710.40750.079*
C100.7016 (2)1.15236 (17)0.1911 (2)0.0705 (4)
H100.68421.24650.19040.085*
C110.7722 (2)1.12603 (19)0.0627 (2)0.0797 (5)
H110.80441.20230.02540.096*
C120.7961 (2)0.98681 (18)0.06295 (17)0.0687 (4)
H120.84280.97040.02510.082*
C130.74162 (16)0.54026 (13)0.13846 (15)0.0491 (3)
H13A0.64930.50260.18240.059*
H13B0.81420.47170.19420.059*
C140.80986 (15)0.55186 (13)0.02091 (15)0.0489 (3)
H14A0.82930.45530.02440.059*
H14B0.90720.58010.06080.059*
C150.70474 (15)0.66528 (13)0.11683 (15)0.0485 (3)
H150.61240.62890.08390.058*
C160.65720 (17)0.81395 (14)0.09792 (16)0.0545 (3)
H16A0.74530.85810.14350.065*
H16B0.57980.88100.14830.065*
C170.59429 (16)0.79586 (15)0.06342 (16)0.0535 (3)
H17A0.57260.89080.07120.064*
H17B0.49920.76290.10670.064*
C180.78445 (14)0.71670 (14)0.20002 (14)0.0455 (3)
C190.78213 (19)0.68686 (15)0.27908 (16)0.0573 (3)
H19A0.71540.76580.33690.069*
H19B0.87620.71840.31090.069*
C200.71745 (15)0.52476 (14)0.34233 (14)0.0483 (3)
N10.70509 (12)0.68746 (11)0.14379 (12)0.0470 (3)
N20.81811 (14)0.55385 (12)0.30954 (13)0.0534 (3)
H2A0.90560.49290.30640.064*
O10.59104 (12)0.60806 (12)0.34789 (13)0.0697 (3)
O20.88170 (13)0.62016 (11)0.25938 (13)0.0689 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0865 (11)0.0708 (10)0.0764 (10)0.0293 (9)0.0096 (9)0.0448 (9)
C20.0719 (10)0.0632 (9)0.0812 (11)0.0047 (7)0.0229 (8)0.0417 (8)
C30.0563 (8)0.0607 (8)0.0644 (8)0.0080 (6)0.0217 (6)0.0346 (7)
C40.0523 (7)0.0514 (7)0.0393 (6)0.0144 (5)0.0127 (5)0.0186 (5)
C50.0704 (10)0.0781 (11)0.0874 (11)0.0067 (8)0.0393 (9)0.0430 (9)
C60.0848 (12)0.0992 (13)0.0971 (13)0.0290 (10)0.0304 (10)0.0573 (11)
C70.0473 (7)0.0477 (7)0.0529 (7)0.0087 (5)0.0160 (5)0.0267 (6)
C80.0653 (8)0.0561 (8)0.0526 (7)0.0163 (6)0.0129 (6)0.0274 (6)
C90.0734 (10)0.0675 (9)0.0698 (9)0.0176 (7)0.0082 (8)0.0455 (8)
C100.0833 (11)0.0542 (8)0.0871 (11)0.0199 (8)0.0168 (9)0.0393 (8)
C110.1130 (14)0.0594 (9)0.0692 (10)0.0401 (9)0.0106 (10)0.0232 (8)
C120.0919 (11)0.0662 (9)0.0542 (8)0.0308 (8)0.0042 (8)0.0314 (7)
C130.0590 (7)0.0381 (6)0.0579 (8)0.0068 (5)0.0231 (6)0.0217 (5)
C140.0568 (7)0.0382 (6)0.0582 (8)0.0033 (5)0.0214 (6)0.0244 (5)
C150.0561 (7)0.0432 (7)0.0580 (8)0.0076 (5)0.0229 (6)0.0251 (6)
C160.0682 (8)0.0403 (7)0.0666 (8)0.0011 (6)0.0362 (7)0.0249 (6)
C170.0558 (7)0.0474 (7)0.0720 (9)0.0045 (6)0.0318 (7)0.0344 (6)
C180.0471 (6)0.0467 (7)0.0497 (7)0.0062 (5)0.0158 (5)0.0249 (5)
C190.0773 (9)0.0465 (7)0.0576 (8)0.0108 (6)0.0268 (7)0.0228 (6)
C200.0530 (7)0.0493 (7)0.0442 (6)0.0080 (6)0.0163 (5)0.0190 (5)
N10.0534 (6)0.0408 (5)0.0580 (6)0.0019 (4)0.0242 (5)0.0265 (5)
N20.0609 (7)0.0520 (6)0.0609 (7)0.0032 (5)0.0262 (5)0.0314 (5)
O10.0602 (6)0.0635 (6)0.0921 (8)0.0024 (5)0.0320 (6)0.0379 (6)
O20.0756 (7)0.0571 (6)0.0973 (8)0.0054 (5)0.0534 (6)0.0382 (6)
Geometric parameters (Å, º) top
C1—C61.369 (3)C13—N11.4665 (14)
C1—C21.377 (2)C13—C141.5166 (18)
C1—H10.9300C13—H13A0.9700
C2—C31.3854 (19)C13—H13B0.9700
C2—H20.9300C14—C151.5272 (18)
C3—C41.3782 (19)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.3788 (19)C15—C191.5236 (19)
C4—C201.5026 (17)C15—C161.5319 (16)
C5—C61.378 (2)C15—H150.9800
C5—H50.9300C16—C171.517 (2)
C6—H60.9300C16—H16A0.9700
C7—C121.376 (2)C16—H16B0.9700
C7—C81.3830 (18)C17—N11.4610 (16)
C7—C181.5065 (16)C17—H17A0.9700
C8—C91.3823 (19)C17—H17B0.9700
C8—H80.9300C18—O21.2277 (15)
C9—C101.363 (2)C18—N11.3367 (16)
C9—H90.9300C19—N21.4573 (16)
C10—C111.369 (2)C19—H19A0.9700
C10—H100.9300C19—H19B0.9700
C11—C121.383 (2)C20—O11.2270 (16)
C11—H110.9300C20—N21.3387 (17)
C12—H120.9300N2—H2A0.8600
C6—C1—C2119.84 (14)C13—C14—C15112.38 (10)
C6—C1—H1120.1C13—C14—H14A109.1
C2—C1—H1120.1C15—C14—H14A109.1
C1—C2—C3120.26 (15)C13—C14—H14B109.1
C1—C2—H2119.9C15—C14—H14B109.1
C3—C2—H2119.9H14A—C14—H14B107.9
C4—C3—C2120.12 (13)C19—C15—C14111.50 (11)
C4—C3—H3119.9C19—C15—C16109.95 (11)
C2—C3—H3119.9C14—C15—C16109.78 (10)
C3—C4—C5118.85 (13)C19—C15—H15108.5
C3—C4—C20124.40 (11)C14—C15—H15108.5
C5—C4—C20116.74 (12)C16—C15—H15108.5
C6—C5—C4121.14 (15)C17—C16—C15111.99 (11)
C6—C5—H5119.4C17—C16—H16A109.2
C4—C5—H5119.4C15—C16—H16A109.2
C1—C6—C5119.76 (14)C17—C16—H16B109.2
C1—C6—H6120.1C15—C16—H16B109.2
C5—C6—H6120.1H16A—C16—H16B107.9
C12—C7—C8118.99 (12)N1—C17—C16110.21 (10)
C12—C7—C18122.18 (12)N1—C17—H17A109.6
C8—C7—C18118.70 (12)C16—C17—H17A109.6
C9—C8—C7119.91 (13)N1—C17—H17B109.6
C9—C8—H8120.0C16—C17—H17B109.6
C7—C8—H8120.0H17A—C17—H17B108.1
C10—C9—C8120.86 (14)O2—C18—N1122.09 (11)
C10—C9—H9119.6O2—C18—C7119.08 (11)
C8—C9—H9119.6N1—C18—C7118.82 (11)
C9—C10—C11119.43 (14)N2—C19—C15113.75 (11)
C9—C10—H10120.3N2—C19—H19A108.8
C11—C10—H10120.3C15—C19—H19A108.8
C10—C11—C12120.43 (15)N2—C19—H19B108.8
C10—C11—H11119.8C15—C19—H19B108.8
C12—C11—H11119.8H19A—C19—H19B107.7
C7—C12—C11120.36 (14)O1—C20—N2121.84 (12)
C7—C12—H12119.8O1—C20—C4120.44 (12)
C11—C12—H12119.8N2—C20—C4117.72 (11)
N1—C13—C14109.34 (10)C18—N1—C17126.14 (10)
N1—C13—H13A109.8C18—N1—C13120.63 (10)
C14—C13—H13A109.8C17—N1—C13112.60 (9)
N1—C13—H13B109.8C20—N2—C19121.23 (11)
C14—C13—H13B109.8C20—N2—H2A119.4
H13A—C13—H13B108.3C19—N2—H2A119.4
C6—C1—C2—C30.1 (3)C12—C7—C18—O2107.97 (17)
C1—C2—C3—C41.3 (2)C8—C7—C18—O267.72 (17)
C2—C3—C4—C51.1 (2)C12—C7—C18—N173.19 (18)
C2—C3—C4—C20177.72 (13)C8—C7—C18—N1111.12 (14)
C3—C4—C5—C60.4 (2)C14—C15—C19—N263.59 (15)
C20—C4—C5—C6179.32 (15)C16—C15—C19—N2174.42 (11)
C2—C1—C6—C51.4 (3)C3—C4—C20—O1170.49 (13)
C4—C5—C6—C11.7 (3)C5—C4—C20—O18.4 (2)
C12—C7—C8—C90.9 (2)C3—C4—C20—N29.15 (19)
C18—C7—C8—C9176.74 (12)C5—C4—C20—N2172.00 (13)
C7—C8—C9—C100.8 (2)O2—C18—N1—C17176.01 (13)
C8—C9—C10—C110.1 (3)C7—C18—N1—C175.18 (19)
C9—C10—C11—C121.0 (3)O2—C18—N1—C135.8 (2)
C8—C7—C12—C110.0 (2)C7—C18—N1—C13175.39 (11)
C18—C7—C12—C11175.70 (15)C16—C17—N1—C18110.77 (14)
C10—C11—C12—C71.0 (3)C16—C17—N1—C1360.11 (14)
N1—C13—C14—C1556.11 (14)C14—C13—N1—C18111.16 (13)
C13—C14—C15—C19174.11 (10)C14—C13—N1—C1760.29 (14)
C13—C14—C15—C1652.02 (15)O1—C20—N2—C190.2 (2)
C19—C15—C16—C17174.15 (11)C4—C20—N2—C19179.78 (11)
C14—C15—C16—C1751.14 (15)C15—C19—N2—C2089.66 (15)
C15—C16—C17—N155.05 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.972.603.5548 (18)169
C3—H3···O2ii0.932.473.3803 (17)167
N2—H2A···O2ii0.862.112.9401 (15)162
C8—H8···O1iii0.932.523.4506 (19)176
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.972.603.5548 (18)169.0
C3—H3···O2ii0.932.473.3803 (17)166.5
N2—H2A···O2ii0.862.112.9401 (15)161.6
C8—H8···O1iii0.932.523.4506 (19)175.9
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x, y, z+1.
 

Acknowledgements

The authors thank Professor Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

References

First citationAl-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationÁvila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.  CSD CrossRef IUCr Journals Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSergeant, L. J. & May, E. L. (1970). J. Med. Chem. 13, 1061–1063.  CrossRef PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411–426.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds