organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Oxo-N′,2-di­phenyl-2,3-di­hydro-1H-pyrazole-4-carbohydrazide

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 61519 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 27 May 2014; accepted 28 May 2014; online 25 June 2014)

In the title compound, C16H14N4O2, the pyrazole ring makes a dihedral angle of 10.49 (8)° with its N-bound phenyl group, while it is nearly perpendicular to the other phenyl ring [dihedral angle = 88.47 (5)°]. The mol­ecular conformation is stabilized by intra­molecular C—H⋯O and N—H⋯O hydrogen bonds. In the crystal, the packing involves sheets of mol­ecules parallel to (100) linked by N—H⋯O hydrogen bonds. A C—H⋯O interaction is also observed.

Related literature

For the diverse biological activities of pyrazolone compounds, see: Guckian et al. (2010[Guckian, K., Carter, M. B., Lin, E. Y., Choi, M., Sun, L., Boriack-Sjodin, P. A., Chuaqui, C., Lane, B., Cheung, K., Ling, L. & Lee, W. C. (2010). Bioorg. Med. Chem. Lett. 20, 326-329.]); Fan et al. (2006[Fan, X., Zhang, X., Zhou, L., Keith, K. A., Kernb, E. R. & Torrencea, P. F. (2006). Bioorg. Med. Chem. Lett. 16, 3224-3228.]); Castagnolo et al. (2008[Castagnolo, D., Logu, A. D., Radi, M., Bechi, B., Manetti, F., Magnani, M., Supino, S., Meleddu, R., Chisu, L. & Botta, M. (2008). Bioorg. Med. Chem. Lett. 16, 8587-8591.]); Idrees et al. (2009[Idrees, G. A., Aly, O. M., El-Din, G., Abuo-Rahma, A. A. & Radwan, M. F. (2009). Eur. J. Med. Chem. 44, 3973-3980.]); Abdel-Aziz et al. (2009[Abdel-Aziz, M., El-Din, G., Abuo-Rahma, A. & Hassan, A. A. (2009). Eur. J. Med. Chem. 44, 3480-3487.]); Manojkumar et al. (2009[Manojkumar, P., Ravi and, T. K. & Gopalakrishnan, S. (2009). Eur. J. Med. Chem. 44, 4690-4694.]); Shete et al. (2011[Shete, R. B., Antre, R. V., Oswal, R. J., Kshirsagar, S. S., Jangam, S. S. & Nimje, H. M. (2011). Int. J. Drug Des. Discov. 2, 648-660.]); Sujatha et al. (2009[Sujatha, K., Shanthi, G., Selvam, N. P., Manoharan, S., Perumal, P. T. & Rajendran, M. (2009). Bioorg. Med. Chem. Lett. 19, 4501-4503.]); El-Hawash et al. (2006[El-Hawash, S. A. M., Badawey, E. A. M. & El-Ashmawey, I. M. (2006). Eur. J. Med. Chem. 41, 155-165.]); Kawai et al. (1997[Kawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmacol. Exp. Ther. 281, 921-927.]); Wu et al. (2002[Wu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci. 71, 2249-2252.]6). For industrial applications of pyrazolo­nes, see: Basaif et al. (2007[Basaif, S. A., Hassan, M. A. & Gobouri, A. A. (2007). Dyes Pigm. 72, 387-391.]); Ho (2005[Ho, Y. W. (2005). Dyes Pigm. 64, 223-230.]); Kirschke et al. (1984[Kirschke, K., Luize, G. & Schmitz, E. (1984). J. Prakt. Chem. 326, 367-373.]); Chande et al. (1993[Chande, M. S., Bhandari, J. D., Joshi, V. R. & Joshi, V. R. (1993). Indian J. Chem. Sect. B, 32, 1218-1228.]); El-Saraf & El-Sayed (2003[El-Saraf, G. A. & El-Sayed, A. M. (2003). Heteroat. Chem. 14, 211-217.]). For graph-set motif notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4O2

  • Mr = 294.31

  • Monoclinic, P 21 /c

  • a = 8.4488 (12) Å

  • b = 11.5605 (17) Å

  • c = 14.642 (2) Å

  • β = 91.565 (2)°

  • V = 1429.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.26 × 0.20 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.99

  • 25571 measured reflections

  • 3674 independent reflections

  • 2895 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.112

  • S = 1.03

  • 3674 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.91 2.06 2.9244 (14) 158
N2—H2A⋯O2 0.91 2.14 2.8597 (14) 136
N3—H3A⋯O1ii 0.91 1.75 2.6527 (15) 169
C12—H12⋯O2 0.95 2.28 2.9133 (18) 124
C16—H16⋯O1ii 0.95 2.51 3.2745 (18) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds containing a pyrazole core and related analogs have received signicant attention due to their chemical, medicinal, and pharmaceutical applications. Several reports showed the pyrazolone moiety to be one of most active pharmacophores and possesses anti-cancer (Guckian et al., 2010), anti-viral (Fan et al., 2006), anti-tubercular (Castagnolo et al., 2008), anti-hyperlipedaemic (Idrees et al., 2009), anti-depressant, anti-convulsant (Abdel-Aziz et al., 2009), anti-oxidant, anti-bacterial (Manojkumar et al., 2009; Shete et al., 2011), anti-HIV (Sujatha et al., 2009), anti-inflammatory, analgesic and anti-pyretic (El-Hawash et al., 2006) activities. The pyrazolone-like edaravone has been developed as a drug for brain ischemia (Kawai et al., 1997) and has also been reported to be effective for myocardial ischemia (Wu et al., 2002). Additionally, pyrazolones have been reported to be the key starting materials for the synthesis of commercial aryl/heteroaropyrazolone dyes (Basaif et al., 2007; Ho, 2005). Halogenated pyrazolones are also useful synthetic intermediates for synthesis of diazo-dyes (Kirschke et al., 1984), fused (Chande et al., 1993) and spiro-heterocyclic compounds (El-Saraf & El-Sayed 2003). In this context we report the synthesis and crystal structure of the title compound.

The phenyl ring C1–C6 is nearly perpendicular to the 5-membered ring (dihedral angle = 88.47 (5)°) while the latter makes a dihedral angle of 10.49 (8)° with the phenyl ring C11–C16. The rotational orientation of the latter phenyl ring as well as that of the N2—H2a unit are determined by the intramolecular C16—H16···O2 and N2—H2a···O2 hydrogen bonds (Table 1, Fig. 1) forming S(6) ring motifs (Bernstein et al., 1995). The packing involves sheets of molecules parallel to the (100) plane formed by N3—H3a···O1 and pairwise N1—H1a···O2 intermolecular hydrogen bonds (Table 1, Figs. 2 and 3).

Related literature top

For the diverse biological activities of pyrazolone compounds, see: Guckian et al. (2010); Fan et al. (2006); Castagnolo et al. (2008); Idrees et al. (2009); Abdel-Aziz et al. (2009); Manojkumar et al. (2009); Shete et al. (2011); Sujatha et al. (2009); El-Hawash et al. (2006); Kawai et al. (1997); Wu et al. (20026). For industrial applications of pyrazolones, see: Basaif et al. (2007); Ho (2005); Kirschke et al. (1984); Chande et al. (1993); El-Saraf & El-Sayed (2003). For graph-set motif notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 10 mmol (2.31 g) of 4-[(dimethylamino)methylene]-1-phenylpyrazolidine-3,5-dione and 10 mmol (1.08 g) of phenyl hydrazine in 15 ml dioxane was refluxed for 6 h. After cooling, the resulting solid was collected by filtration and recrystallized from ethanol. Colourless crystals, 84%, m.p. = 483 K.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and initially refined to check their identity following which their coordinates adjusted to give N—H = 0.91 Å. All were then included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Structure description top

Compounds containing a pyrazole core and related analogs have received signicant attention due to their chemical, medicinal, and pharmaceutical applications. Several reports showed the pyrazolone moiety to be one of most active pharmacophores and possesses anti-cancer (Guckian et al., 2010), anti-viral (Fan et al., 2006), anti-tubercular (Castagnolo et al., 2008), anti-hyperlipedaemic (Idrees et al., 2009), anti-depressant, anti-convulsant (Abdel-Aziz et al., 2009), anti-oxidant, anti-bacterial (Manojkumar et al., 2009; Shete et al., 2011), anti-HIV (Sujatha et al., 2009), anti-inflammatory, analgesic and anti-pyretic (El-Hawash et al., 2006) activities. The pyrazolone-like edaravone has been developed as a drug for brain ischemia (Kawai et al., 1997) and has also been reported to be effective for myocardial ischemia (Wu et al., 2002). Additionally, pyrazolones have been reported to be the key starting materials for the synthesis of commercial aryl/heteroaropyrazolone dyes (Basaif et al., 2007; Ho, 2005). Halogenated pyrazolones are also useful synthetic intermediates for synthesis of diazo-dyes (Kirschke et al., 1984), fused (Chande et al., 1993) and spiro-heterocyclic compounds (El-Saraf & El-Sayed 2003). In this context we report the synthesis and crystal structure of the title compound.

The phenyl ring C1–C6 is nearly perpendicular to the 5-membered ring (dihedral angle = 88.47 (5)°) while the latter makes a dihedral angle of 10.49 (8)° with the phenyl ring C11–C16. The rotational orientation of the latter phenyl ring as well as that of the N2—H2a unit are determined by the intramolecular C16—H16···O2 and N2—H2a···O2 hydrogen bonds (Table 1, Fig. 1) forming S(6) ring motifs (Bernstein et al., 1995). The packing involves sheets of molecules parallel to the (100) plane formed by N3—H3a···O1 and pairwise N1—H1a···O2 intermolecular hydrogen bonds (Table 1, Figs. 2 and 3).

For the diverse biological activities of pyrazolone compounds, see: Guckian et al. (2010); Fan et al. (2006); Castagnolo et al. (2008); Idrees et al. (2009); Abdel-Aziz et al. (2009); Manojkumar et al. (2009); Shete et al. (2011); Sujatha et al. (2009); El-Hawash et al. (2006); Kawai et al. (1997); Wu et al. (20026). For industrial applications of pyrazolones, see: Basaif et al. (2007); Ho (2005); Kirschke et al. (1984); Chande et al. (1993); El-Saraf & El-Sayed (2003). For graph-set motif notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing intramolecular hydrogen bonds as dotted lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing viewed down the a axis with intermolecular hydrogen bonds shown as dotted lines.
[Figure 3] Fig. 3. Packing viewed down the c axis with intermolecular hydrogen bonds shown as dotted lines.
3-Oxo-N',2-diphenyl-2,3-dihydro-1H-pyrazole-4-carbohydrazide top
Crystal data top
C16H14N4O2F(000) = 616
Mr = 294.31Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9891 reflections
a = 8.4488 (12) Åθ = 2.2–28.6°
b = 11.5605 (17) ŵ = 0.09 mm1
c = 14.642 (2) ÅT = 150 K
β = 91.565 (2)°Plate, colourless
V = 1429.6 (4) Å30.26 × 0.20 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3674 independent reflections
Radiation source: fine-focus sealed tube2895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.3660 pixels mm-1θmax = 28.7°, θmin = 2.2°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1515
Tmin = 0.85, Tmax = 0.99l = 1919
25571 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.5339P]
where P = (Fo2 + 2Fc2)/3
3674 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H14N4O2V = 1429.6 (4) Å3
Mr = 294.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4488 (12) ŵ = 0.09 mm1
b = 11.5605 (17) ÅT = 150 K
c = 14.642 (2) Å0.26 × 0.20 × 0.07 mm
β = 91.565 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3674 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2895 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.99Rint = 0.049
25571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
3674 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63625 (12)0.59121 (8)0.76051 (6)0.0326 (3)
O20.48112 (11)0.70165 (8)0.48802 (6)0.0318 (3)
N10.72819 (12)0.44304 (9)0.62602 (7)0.0271 (3)
N20.64406 (12)0.54510 (9)0.60905 (7)0.0271 (3)
N30.38524 (14)0.88161 (10)0.66714 (7)0.0304 (3)
N40.38879 (13)0.85733 (9)0.57481 (7)0.0280 (3)
C10.89573 (15)0.45011 (12)0.62204 (8)0.0284 (3)
C20.98148 (18)0.34748 (14)0.62651 (10)0.0394 (4)
C31.14618 (19)0.35060 (17)0.62340 (11)0.0501 (5)
C41.22455 (18)0.45435 (18)0.61602 (10)0.0506 (6)
C51.13945 (18)0.55579 (17)0.61308 (10)0.0468 (5)
C60.97471 (16)0.55477 (13)0.61649 (9)0.0357 (4)
C70.60259 (15)0.61338 (10)0.67917 (8)0.0259 (3)
C80.51543 (15)0.71675 (11)0.65311 (8)0.0263 (3)
C90.46389 (16)0.79948 (11)0.71259 (8)0.0285 (4)
C100.46608 (15)0.75198 (11)0.56291 (8)0.0264 (3)
C110.31419 (16)0.93191 (11)0.50934 (8)0.0294 (3)
C120.3405 (2)0.91486 (13)0.41745 (9)0.0401 (5)
C130.2658 (2)0.98677 (15)0.35349 (10)0.0470 (5)
C140.1706 (2)1.07633 (15)0.37982 (11)0.0456 (5)
C150.1489 (2)1.09488 (16)0.47180 (11)0.0507 (6)
C160.21914 (19)1.02231 (14)0.53697 (10)0.0429 (5)
H1A0.685700.384800.591500.0320*
H20.928000.275600.631700.0470*
H2A0.624700.570500.551000.0320*
H31.204800.280500.626400.0600*
H3A0.367600.954900.687100.0360*
H41.336700.455900.613000.0610*
H51.193600.627500.608700.0560*
H60.917100.625300.615000.0430*
H90.481900.798200.776900.0340*
H120.408800.854800.398300.0480*
H130.280900.973600.290300.0560*
H140.120401.124900.335400.0550*
H150.085301.157800.490800.0610*
H160.202001.034700.600100.0520*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0487 (6)0.0260 (5)0.0230 (4)0.0009 (4)0.0018 (4)0.0005 (3)
O20.0371 (5)0.0345 (5)0.0239 (4)0.0022 (4)0.0012 (4)0.0072 (4)
N10.0270 (5)0.0257 (5)0.0286 (5)0.0012 (4)0.0029 (4)0.0043 (4)
N20.0299 (5)0.0286 (5)0.0229 (5)0.0003 (4)0.0018 (4)0.0019 (4)
N30.0432 (6)0.0268 (5)0.0212 (5)0.0004 (5)0.0013 (4)0.0033 (4)
N40.0355 (6)0.0275 (5)0.0209 (5)0.0029 (4)0.0012 (4)0.0026 (4)
C10.0268 (6)0.0398 (7)0.0186 (5)0.0005 (5)0.0015 (4)0.0041 (5)
C20.0369 (7)0.0458 (8)0.0354 (7)0.0058 (6)0.0009 (6)0.0100 (6)
C30.0378 (8)0.0735 (12)0.0386 (8)0.0187 (8)0.0043 (6)0.0178 (8)
C40.0271 (7)0.0945 (14)0.0300 (7)0.0009 (8)0.0005 (6)0.0155 (8)
C50.0343 (8)0.0735 (12)0.0326 (7)0.0175 (8)0.0005 (6)0.0012 (7)
C60.0314 (7)0.0462 (8)0.0294 (6)0.0083 (6)0.0002 (5)0.0010 (6)
C70.0286 (6)0.0248 (6)0.0243 (6)0.0078 (5)0.0027 (5)0.0024 (5)
C80.0301 (6)0.0249 (6)0.0239 (6)0.0053 (5)0.0027 (5)0.0020 (4)
C90.0371 (7)0.0258 (6)0.0227 (6)0.0027 (5)0.0013 (5)0.0007 (5)
C100.0278 (6)0.0269 (6)0.0246 (6)0.0065 (5)0.0028 (5)0.0034 (5)
C110.0323 (6)0.0303 (6)0.0254 (6)0.0079 (5)0.0029 (5)0.0012 (5)
C120.0551 (9)0.0380 (8)0.0274 (7)0.0010 (7)0.0031 (6)0.0003 (6)
C130.0633 (10)0.0502 (9)0.0272 (7)0.0051 (8)0.0014 (7)0.0052 (6)
C140.0510 (9)0.0471 (9)0.0378 (8)0.0043 (7)0.0130 (7)0.0098 (7)
C150.0572 (10)0.0515 (10)0.0427 (9)0.0147 (8)0.0115 (7)0.0006 (7)
C160.0503 (9)0.0473 (9)0.0307 (7)0.0106 (7)0.0064 (6)0.0034 (6)
Geometric parameters (Å, º) top
O1—C71.2436 (15)C8—C91.3724 (18)
O2—C101.2509 (15)C8—C101.4332 (17)
N1—N21.3962 (15)C11—C161.385 (2)
N1—C11.4207 (16)C11—C121.3838 (18)
N2—C71.3489 (16)C12—C131.391 (2)
N3—N41.3819 (15)C13—C141.373 (2)
N3—C91.3273 (17)C14—C151.381 (2)
N4—C101.3951 (17)C15—C161.391 (2)
N4—C111.4236 (16)C2—H20.9500
N1—H1A0.9100C3—H30.9500
N2—H2A0.9100C4—H40.9500
N3—H3A0.9100C5—H50.9500
C1—C61.385 (2)C6—H60.9500
C1—C21.391 (2)C9—H90.9500
C2—C31.394 (2)C12—H120.9500
C3—C41.376 (3)C13—H130.9500
C4—C51.376 (3)C14—H140.9500
C5—C61.394 (2)C15—H150.9500
C7—C81.4493 (17)C16—H160.9500
N2—N1—C1116.56 (10)N4—C11—C12119.25 (12)
N1—N2—C7120.04 (10)N4—C11—C16120.65 (11)
N4—N3—C9108.74 (10)C12—C11—C16120.09 (13)
N3—N4—C10108.80 (10)C11—C12—C13119.18 (14)
N3—N4—C11120.98 (10)C12—C13—C14121.35 (14)
C10—N4—C11130.15 (10)C13—C14—C15119.04 (15)
N2—N1—H1A110.00C14—C15—C16120.65 (16)
C1—N1—H1A113.00C11—C16—C15119.64 (14)
C7—N2—H2A119.00C1—C2—H2120.00
N1—N2—H2A121.00C3—C2—H2120.00
N4—N3—H3A121.00C2—C3—H3120.00
C9—N3—H3A126.00C4—C3—H3120.00
C2—C1—C6119.79 (12)C3—C4—H4120.00
N1—C1—C2117.86 (12)C5—C4—H4120.00
N1—C1—C6122.33 (12)C4—C5—H5120.00
C1—C2—C3119.71 (15)C6—C5—H5120.00
C2—C3—C4120.54 (17)C1—C6—H6120.00
C3—C4—C5119.57 (15)C5—C6—H6120.00
C4—C5—C6120.87 (16)N3—C9—H9125.00
C1—C6—C5119.50 (14)C8—C9—H9125.00
N2—C7—C8115.01 (10)C11—C12—H12120.00
O1—C7—N2123.43 (11)C13—C12—H12120.00
O1—C7—C8121.56 (11)C12—C13—H13119.00
C7—C8—C10127.58 (11)C14—C13—H13119.00
C9—C8—C10107.30 (11)C13—C14—H14120.00
C7—C8—C9125.12 (11)C15—C14—H14120.00
N3—C9—C8110.09 (11)C14—C15—H15120.00
N4—C10—C8104.97 (10)C16—C15—H15120.00
O2—C10—C8129.92 (12)C11—C16—H16120.00
O2—C10—N4125.08 (11)C15—C16—H16120.00
C1—N1—N2—C793.97 (13)C2—C3—C4—C51.0 (2)
N2—N1—C1—C2171.62 (11)C3—C4—C5—C60.7 (2)
N2—N1—C1—C610.19 (17)C4—C5—C6—C10.6 (2)
N1—N2—C7—O10.51 (18)O1—C7—C8—C90.9 (2)
N1—N2—C7—C8179.89 (10)O1—C7—C8—C10178.68 (13)
C9—N3—N4—C103.27 (14)N2—C7—C8—C9178.74 (12)
C9—N3—N4—C11179.56 (11)N2—C7—C8—C101.71 (19)
N4—N3—C9—C82.57 (15)C7—C8—C9—N3178.73 (12)
N3—N4—C10—O2175.50 (12)C10—C8—C9—N30.90 (15)
N3—N4—C10—C82.61 (13)C7—C8—C10—O22.7 (2)
C11—N4—C10—O21.3 (2)C7—C8—C10—N4179.30 (12)
C11—N4—C10—C8179.44 (12)C9—C8—C10—O2176.90 (13)
N3—N4—C11—C12170.15 (13)C9—C8—C10—N41.08 (14)
N3—N4—C11—C168.37 (19)N4—C11—C12—C13179.11 (14)
C10—N4—C11—C1213.3 (2)C16—C11—C12—C132.4 (2)
C10—N4—C11—C16168.14 (13)N4—C11—C16—C15179.27 (14)
N1—C1—C2—C3179.61 (13)C12—C11—C16—C150.8 (2)
C6—C1—C2—C31.4 (2)C11—C12—C13—C142.0 (2)
N1—C1—C6—C5179.80 (12)C12—C13—C14—C150.1 (3)
C2—C1—C6—C51.64 (19)C13—C14—C15—C161.6 (3)
C1—C2—C3—C40.1 (2)C14—C15—C16—C111.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.912.062.9244 (14)158
N2—H2A···O20.912.142.8597 (14)136
N3—H3A···O1ii0.911.752.6527 (15)169
C12—H12···O20.952.282.9133 (18)124
C16—H16···O1ii0.952.513.2745 (18)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.912.062.9244 (14)158
N2—H2A···O20.912.142.8597 (14)136
N3—H3A···O1ii0.911.752.6527 (15)169
C12—H12···O20.952.282.9133 (18)124
C16—H16···O1ii0.952.513.2745 (18)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbdel-Aziz, M., El-Din, G., Abuo-Rahma, A. & Hassan, A. A. (2009). Eur. J. Med. Chem. 44, 3480–3487.  Web of Science PubMed CAS Google Scholar
First citationBasaif, S. A., Hassan, M. A. & Gobouri, A. A. (2007). Dyes Pigm. 72, 387–391.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastagnolo, D., Logu, A. D., Radi, M., Bechi, B., Manetti, F., Magnani, M., Supino, S., Meleddu, R., Chisu, L. & Botta, M. (2008). Bioorg. Med. Chem. Lett. 16, 8587–8591.  Web of Science CrossRef CAS Google Scholar
First citationChande, M. S., Bhandari, J. D., Joshi, V. R. & Joshi, V. R. (1993). Indian J. Chem. Sect. B, 32, 1218–1228.  Google Scholar
First citationEl-Hawash, S. A. M., Badawey, E. A. M. & El-Ashmawey, I. M. (2006). Eur. J. Med. Chem. 41, 155–165.  Web of Science PubMed CAS Google Scholar
First citationEl-Saraf, G. A. & El-Sayed, A. M. (2003). Heteroat. Chem. 14, 211–217.  CAS Google Scholar
First citationFan, X., Zhang, X., Zhou, L., Keith, K. A., Kernb, E. R. & Torrencea, P. F. (2006). Bioorg. Med. Chem. Lett. 16, 3224–3228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuckian, K., Carter, M. B., Lin, E. Y., Choi, M., Sun, L., Boriack-Sjodin, P. A., Chuaqui, C., Lane, B., Cheung, K., Ling, L. & Lee, W. C. (2010). Bioorg. Med. Chem. Lett. 20, 326–329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHo, Y. W. (2005). Dyes Pigm. 64, 223–230.  Web of Science CrossRef CAS Google Scholar
First citationIdrees, G. A., Aly, O. M., El-Din, G., Abuo-Rahma, A. A. & Radwan, M. F. (2009). Eur. J. Med. Chem. 44, 3973–3980.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmacol. Exp. Ther. 281, 921–927.  CAS PubMed Web of Science Google Scholar
First citationKirschke, K., Luize, G. & Schmitz, E. (1984). J. Prakt. Chem. 326, 367–373.  CrossRef CAS Web of Science Google Scholar
First citationManojkumar, P., Ravi and, T. K. & Gopalakrishnan, S. (2009). Eur. J. Med. Chem. 44, 4690–4694.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShete, R. B., Antre, R. V., Oswal, R. J., Kshirsagar, S. S., Jangam, S. S. & Nimje, H. M. (2011). Int. J. Drug Des. Discov. 2, 648–660.  CAS Google Scholar
First citationSujatha, K., Shanthi, G., Selvam, N. P., Manoharan, S., Perumal, P. T. & Rajendran, M. (2009). Bioorg. Med. Chem. Lett. 19, 4501–4503.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci. 71, 2249–2252.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds