organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl-2-(1-methyl-3-phenyl­prop-2-en-1-yl­­idene)hydrazinecarbo­thio­amide

aInstituto de Química, Universidade Estadual Paulista, Rua Francisco Degni s/n, 14801-970 Araraquara-SP, Brazil, bInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

(Received 30 May 2014; accepted 13 June 2014; online 21 June 2014)

In the title compound, C12H15N3S, the mol­ecule deviates slightly from planarity, with a maximum deviation from the mean plane of the non-H atoms of 0.2756 (6) Å for the S atom and a torsion angle for the N—N—C—N fragment of −7.04 (16)°. In the crystal, mol­ecules are linked by N—H⋯S hydrogen-bond inter­actions, forming centrosymmetric dimers. Additionally, one weak intra­molecular N—H⋯N hydrogen-bond inter­action is observed. The crystal packing shows a herringbone arrangement viewed along the c axis.

Keywords: crystal structure.

Related literature

For one of the first reports of the synthesis of thio­semicarbazone derivatives, see: Freund & Schander (1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]). For a report of the anti­fungal activity of the title compound, see: Nishimura et al. (1979[Nishimura, T., Toku, H., Matsumoto, K., Iwata, M. & Watanabe, T. (1979). Jpn Patent No. 54119029 A.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3S

  • Mr = 233.33

  • Orthorhombic, P b c a

  • a = 10.5832 (2) Å

  • b = 7.9509 (2) Å

  • c = 28.9259 (5) Å

  • V = 2434.00 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 123 K

  • 0.44 × 0.31 × 0.27 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.904, Tmax = 0.955

  • 26770 measured reflections

  • 2783 independent reflections

  • 2414 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.05

  • 2783 reflections

  • 205 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—HN3⋯N1 0.879 (17) 2.143 (16) 2.5877 (15) 110.7 (13)
N2—HN2⋯S1i 0.862 (18) 2.663 (18) 3.4296 (12) 148.7 (15)
Symmetry code: (i) -x+1, -y, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press, United States.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press, United States.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazone derivatives have a wide range of biological properties. For example, some thiosemicarbazones similar to the title compound show antifungal activity (Nishimura et al., 1979). As part of our study on synthesis and structural chemistry of thiosemicarbazone derivatives from natural products, we report herein the crystal structure of a derivative of the essential oil of cinnamon bark (benzylideneacetone, a methyl derivative of the cinnamaldehyde).

In the crystal structure of the title compound the central N–N–C–N unit is not planar with an torsion angle along N1–N2–C10–N3 of -7.04 (16)° and the maximum deviation from the mean plane of the non-H atoms amounting to 0.2756 (6) Å for S1. The molecule, shows a trans conformation at the C7—C8 and N1—N2 bonds (Fig. 1).

In the crystal the molecules are linked by N—H···S hydrogen bonds interactions forming centrosymmetric dimers. Additionally, one weak N—H···N intramolecular H-interaction is observed.The crystal packing shows a herringbone arrangement viewed along the c-axis.(Fig. 3).

Related literature top

For one of the first reports of the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902). For a report of the antifungal activity of the title compound, see: Nishimura et al. (1979).

Experimental top

Starting materials were commercially available and were used without further purification. The title compound synthesis was adapted to a procedure reported previously (Freund & Schander, 1902). The hydrochloric acid catalyzed reaction, a mixture of benzylideneacetone (10 mmol) and 4-methyl-3-thiosemicarbazide (10 mmol) in ethanol (80 ml) was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction were obtained in ethanol by the slow evaporation of solvent.

Refinement top

All hydrogen atoms were localized in a difference density Fourier map. Their positions and isotropic displacement parameters were refined.

Structure description top

Thiosemicarbazone derivatives have a wide range of biological properties. For example, some thiosemicarbazones similar to the title compound show antifungal activity (Nishimura et al., 1979). As part of our study on synthesis and structural chemistry of thiosemicarbazone derivatives from natural products, we report herein the crystal structure of a derivative of the essential oil of cinnamon bark (benzylideneacetone, a methyl derivative of the cinnamaldehyde).

In the crystal structure of the title compound the central N–N–C–N unit is not planar with an torsion angle along N1–N2–C10–N3 of -7.04 (16)° and the maximum deviation from the mean plane of the non-H atoms amounting to 0.2756 (6) Å for S1. The molecule, shows a trans conformation at the C7—C8 and N1—N2 bonds (Fig. 1).

In the crystal the molecules are linked by N—H···S hydrogen bonds interactions forming centrosymmetric dimers. Additionally, one weak N—H···N intramolecular H-interaction is observed.The crystal packing shows a herringbone arrangement viewed along the c-axis.(Fig. 3).

For one of the first reports of the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902). For a report of the antifungal activity of the title compound, see: Nishimura et al. (1979).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Part of the crystal structure of the title compound showing the inter- and intramolecular hydrogen bonding as dashed lines. Symmetry code: (i) -x + 1, -y, -z.
[Figure 3] Fig. 3. : Crystal structure of the title compound viewed along the c-axis. The herringbone pattern of the crystal packing along the a-axis is observed.
N-Methyl-2-(1-methyl-3-phenylprop-2-en-1-ylidene)hydrazinecarbothioamide top
Crystal data top
C12H15N3SF(000) = 992
Mr = 233.33Dx = 1.273 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 31577 reflections
a = 10.5832 (2) Åθ = 2.9–27.5°
b = 7.9509 (2) ŵ = 0.24 mm1
c = 28.9259 (5) ÅT = 123 K
V = 2434.00 (9) Å3Fragment, yellow
Z = 80.44 × 0.31 × 0.27 mm
Data collection top
Nonius KappaCCD
diffractometer
2783 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD2414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD rotation images, thick slices scansh = 1313
Absorption correction: multi-scan
(Blessing, 1995)
k = 1010
Tmin = 0.904, Tmax = 0.955l = 3737
26770 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0349P)2 + 1.1303P]
where P = (Fo2 + 2Fc2)/3
2783 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H15N3SV = 2434.00 (9) Å3
Mr = 233.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.5832 (2) ŵ = 0.24 mm1
b = 7.9509 (2) ÅT = 123 K
c = 28.9259 (5) Å0.44 × 0.31 × 0.27 mm
Data collection top
Nonius KappaCCD
diffractometer
2783 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2414 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.955Rint = 0.046
26770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080All H-atom parameters refined
S = 1.05Δρmax = 0.27 e Å3
2783 reflectionsΔρmin = 0.20 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55474 (3)0.22917 (4)0.026590 (10)0.02121 (10)
N10.46643 (10)0.21163 (13)0.10454 (3)0.0194 (2)
N20.46052 (10)0.18678 (14)0.05748 (4)0.0197 (2)
N30.62048 (10)0.37903 (13)0.05248 (4)0.0209 (2)
C10.35320 (12)0.12835 (15)0.26361 (4)0.0198 (3)
C20.46266 (13)0.20581 (18)0.28079 (5)0.0238 (3)
C30.47782 (14)0.23114 (18)0.32807 (5)0.0265 (3)
C40.38429 (14)0.18207 (18)0.35891 (5)0.0283 (3)
C50.27620 (14)0.10384 (19)0.34236 (5)0.0292 (3)
C60.26153 (13)0.07566 (18)0.29525 (4)0.0248 (3)
C70.33153 (12)0.10103 (16)0.21392 (4)0.0203 (3)
C80.39960 (12)0.16857 (16)0.17955 (4)0.0203 (3)
C90.38228 (11)0.13760 (15)0.13014 (4)0.0183 (2)
C100.54759 (11)0.26906 (15)0.03065 (4)0.0174 (2)
C110.71582 (13)0.48111 (18)0.02979 (5)0.0252 (3)
C120.27638 (12)0.03234 (18)0.11160 (4)0.0213 (3)
HN20.4267 (16)0.097 (2)0.0461 (6)0.035 (5)*
HN30.6058 (15)0.390 (2)0.0823 (6)0.031 (4)*
H20.5277 (16)0.240 (2)0.2603 (6)0.034 (4)*
H30.5538 (15)0.286 (2)0.3389 (6)0.033 (4)*
H40.3962 (15)0.201 (2)0.3915 (6)0.032 (4)*
H50.2119 (16)0.071 (2)0.3634 (6)0.040 (5)*
H60.1862 (15)0.020 (2)0.2843 (5)0.034 (4)*
H70.2640 (15)0.026 (2)0.2072 (5)0.026 (4)*
H80.4663 (14)0.245 (2)0.1856 (6)0.026 (4)*
H11A0.6826 (18)0.530 (3)0.0021 (7)0.059 (6)*
H11B0.7862 (19)0.419 (3)0.0221 (7)0.052 (6)*
H11C0.738 (2)0.572 (3)0.0489 (7)0.061 (6)*
H12A0.2344 (17)0.088 (2)0.0863 (6)0.038 (5)*
H12B0.3056 (16)0.073 (2)0.0991 (6)0.036 (5)*
H12C0.2155 (15)0.005 (2)0.1358 (6)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02483 (17)0.02489 (17)0.01390 (16)0.00102 (12)0.00080 (11)0.00161 (11)
N10.0220 (5)0.0225 (5)0.0138 (5)0.0007 (4)0.0006 (4)0.0000 (4)
N20.0226 (5)0.0224 (5)0.0140 (5)0.0047 (4)0.0002 (4)0.0002 (4)
N30.0236 (5)0.0208 (5)0.0183 (5)0.0042 (4)0.0058 (4)0.0026 (4)
C10.0228 (6)0.0204 (6)0.0163 (6)0.0009 (5)0.0004 (5)0.0005 (5)
C20.0241 (6)0.0282 (7)0.0191 (6)0.0035 (5)0.0001 (5)0.0012 (5)
C30.0304 (7)0.0275 (7)0.0217 (7)0.0049 (6)0.0065 (5)0.0002 (5)
C40.0407 (8)0.0288 (7)0.0154 (6)0.0017 (6)0.0031 (5)0.0007 (5)
C50.0336 (8)0.0356 (8)0.0185 (6)0.0045 (6)0.0046 (5)0.0030 (6)
C60.0253 (6)0.0292 (7)0.0201 (6)0.0052 (5)0.0005 (5)0.0011 (5)
C70.0214 (6)0.0216 (6)0.0179 (6)0.0013 (5)0.0012 (5)0.0014 (5)
C80.0217 (6)0.0212 (6)0.0180 (6)0.0009 (5)0.0009 (5)0.0013 (5)
C90.0197 (6)0.0183 (6)0.0170 (6)0.0019 (5)0.0002 (4)0.0010 (5)
C100.0168 (5)0.0176 (5)0.0177 (6)0.0035 (4)0.0001 (4)0.0019 (4)
C110.0245 (6)0.0258 (7)0.0252 (7)0.0062 (5)0.0086 (5)0.0030 (6)
C120.0212 (6)0.0267 (7)0.0161 (6)0.0029 (5)0.0004 (5)0.0000 (5)
Geometric parameters (Å, º) top
S1—C101.6875 (12)C4—H40.964 (17)
N1—C91.2994 (16)C5—C61.3896 (19)
N1—N21.3769 (14)C5—H50.950 (18)
N2—C101.3708 (15)C6—H60.967 (17)
N2—HN20.862 (18)C7—C81.3402 (18)
N3—C101.3261 (16)C7—H70.950 (16)
N3—C111.4518 (16)C8—C91.4616 (16)
N3—HN30.879 (17)C8—H80.948 (16)
C1—C61.3980 (18)C9—C121.4981 (17)
C1—C21.4029 (18)C11—H11A0.96 (2)
C1—C71.4716 (17)C11—H11B0.92 (2)
C2—C31.3917 (18)C11—H11C0.94 (2)
C2—H20.949 (18)C12—H12A0.965 (18)
C3—C41.388 (2)C12—H12B0.964 (18)
C3—H30.965 (17)C12—H12C0.977 (17)
C4—C51.387 (2)
C9—N1—N2117.87 (10)C8—C7—C1125.58 (12)
C10—N2—N1117.43 (10)C8—C7—H7120.2 (9)
C10—N2—HN2117.2 (11)C1—C7—H7114.3 (9)
N1—N2—HN2121.0 (11)C7—C8—C9126.19 (12)
C10—N3—C11123.89 (11)C7—C8—H8121.4 (10)
C10—N3—HN3115.2 (11)C9—C8—H8112.4 (10)
C11—N3—HN3120.8 (11)N1—C9—C8113.27 (11)
C6—C1—C2118.21 (12)N1—C9—C12124.17 (11)
C6—C1—C7119.15 (11)C8—C9—C12122.55 (11)
C2—C1—C7122.64 (11)N3—C10—N2115.86 (11)
C3—C2—C1120.46 (12)N3—C10—S1124.41 (9)
C3—C2—H2119.3 (10)N2—C10—S1119.73 (9)
C1—C2—H2120.3 (10)N3—C11—H11A110.6 (12)
C4—C3—C2120.56 (13)N3—C11—H11B111.8 (13)
C4—C3—H3120.8 (10)H11A—C11—H11B108.3 (17)
C2—C3—H3118.7 (10)N3—C11—H11C109.8 (13)
C5—C4—C3119.49 (12)H11A—C11—H11C105.7 (18)
C5—C4—H4121.0 (10)H11B—C11—H11C110.4 (18)
C3—C4—H4119.5 (10)C9—C12—H12A111.0 (10)
C4—C5—C6120.18 (13)C9—C12—H12B112.4 (10)
C4—C5—H5119.6 (11)H12A—C12—H12B105.3 (14)
C6—C5—H5120.2 (11)C9—C12—H12C111.2 (10)
C5—C6—C1121.07 (13)H12A—C12—H12C110.1 (14)
C5—C6—H6119.2 (10)H12B—C12—H12C106.6 (14)
C1—C6—H6119.7 (10)
N1—N1—N2—C100.00 (9)N2—N1—C9—N10 (100)
C9—N1—N2—C10178.27 (11)N1—N1—C9—C80.00 (7)
C9—N1—N2—N10 (100)N2—N1—C9—C8178.31 (10)
C6—C1—C2—C30.9 (2)N1—N1—C9—C120.000 (19)
C7—C1—C2—C3178.99 (13)N2—N1—C9—C122.44 (18)
C1—C2—C3—C40.8 (2)C7—C8—C9—N1176.06 (12)
C2—C3—C4—C51.4 (2)C7—C8—C9—N1176.06 (12)
C3—C4—C5—C60.3 (2)C7—C8—C9—C124.7 (2)
C4—C5—C6—C11.4 (2)C11—N3—C10—N2178.42 (12)
C2—C1—C6—C52.0 (2)C11—N3—C10—S10.53 (18)
C7—C1—C6—C5177.89 (13)N1—N2—C10—N37.04 (16)
C6—C1—C7—C8168.26 (13)N1—N2—C10—N37.04 (16)
C2—C1—C7—C811.7 (2)N1—N2—C10—S1173.96 (9)
C1—C7—C8—C9177.50 (12)N1—N2—C10—S1173.96 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—HN3···N10.879 (17)2.143 (16)2.5877 (15)110.7 (13)
N2—HN2···S1i0.862 (18)2.663 (18)3.4296 (12)148.7 (15)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—HN3···N10.879 (17)2.143 (16)2.5877 (15)110.7 (13)
N2—HN2···S1i0.862 (18)2.663 (18)3.4296 (12)148.7 (15)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support by the German Research Foundation (DFG) through the Collaborative Research Center SFB 813, Chemistry at Spin Centers and by FAPITEC/SE/FUNTEC/CNPq through the PPP Program 04/ 2011. FVR acknowledges FAPESP for the Post-Doctoral scholarship, Proc. No. 2013/20156–5.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationNishimura, T., Toku, H., Matsumoto, K., Iwata, M. & Watanabe, T. (1979). Jpn Patent No. 54119029 A.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press, United States.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds