organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Chloro-N′-(2-fluoro­benzyl­­idene)thio­phene-2-carbohydrazide

aFaculty of Pharmacy, University Teknologi Mara (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia, bAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia, cFaculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D.E., Malaysia, and dSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
*Correspondence e-mail: miiza73@yahoo.com

(Received 23 April 2014; accepted 19 May 2014; online 4 June 2014)

The title compound, C12H8ClFN2OS, is a hydrazide derivative adopting an E conformation with an azomethine N=C double bond length of 1.272 (2) Å. The mol­ecular skeleton is approximately planar; the terminal five- and six-membered rings form a dihedral angle of 5.47 (9)°. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into zigzag chains propagating in [100].

Related literature

For the applications and biological activity of hydrazones, see: Taha et al. (2013[Taha, M., Baharudin, M. S., Ismail, N. H., Khan, K. M., Jaafar, F. M., Samreen, Siddiqui, S. & Choudhary, M. I. (2013). Bioorg. Med. Chem. Lett. 23, 3463-3466.]); Musharraf et al. (2012[Musharraf, S. G., Bibi, A., Shahid, N., Najam-ul-Haq, M., Khan, M., Taha, M., Mughal, U. R. & Khan, K. M. (2012). Am. J. Anal. Chem. 3, 779-789.]); Melnyk et al. (2006[Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.]); Terzioglu & Gursoy (2003[Terzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]). For the crystal structures of related compounds, see: Alanazi et al. (2012a[Alanazi, A. M., Lahsasni, S., El-Emam, A. A. & Ng, S. W. (2012a). Acta Cryst. E68, o314.],b[Alanazi, A. M., Kadi, A. A., El-Emam, A. A. & Ng, S. W. (2012b). Acta Cryst. E68, o315.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8ClFN2OS

  • Mr = 282.71

  • Orthorhombic, P 21 21 21

  • a = 5.6833 (3) Å

  • b = 13.0817 (6) Å

  • c = 16.4001 (8) Å

  • V = 1219.30 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 302 K

  • 0.55 × 0.46 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.776, Tmax = 0.985

  • 47474 measured reflections

  • 2255 independent reflections

  • 2210 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.065

  • S = 1.09

  • 2255 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 916 Friedel pairs

  • Absolute structure parameter: 0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.12 2.9552 (18) 163
C7—H7A⋯O1i 0.93 2.41 3.2268 (19) 147
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazone derivatives are known as good ligands for complexation reactions. They have also displayed a wide spectrum of biological activities including antileishamanial (Taha et al., 2013), antimalarial (Melnyk et al., 2006) and anti-cancer (Terzioglu et al., 2003) properties. Recently the hydrazones are reported to be used as UV-LDI Matrices for measuring the mass of macromolecules (Musharraf et al., 2012) .

The title compound, (I) (Fig. 1), is similar to that of previously reported N'-[(1E)-(2,6-difluorophenyl)methylidene]thiophene-2-carbohydrazide (Alanazi et al., 2012a) and N'-[(1E)-(4-fluorophenyl)methylidene]- thiophene-2-carbohydrazide (Alanazi et al., 2012b) except the thiophene ring is substituted with fluorine atom. The whole molecule is appearently planar with maximum deviation of 0.181 (1)Å for F1 atom from the least square plane. The chlorothiophenecarbonyl O1/C8/S1/(C9-C12)/Cl fragment is trans to the fluorobenzyl, F1/(C1-C7), group across the N1-N2 bond. The bond lengths and angles in (I) are normal and comparable to those in the analogs (Alanazi et al., 2012a,b). The crystal is stablized by N—H···O and C—H···O intermolecular hydrogen bonds (Table 1) to form zigzag chains of molecules extended along the a axis (Fig. 2).

Related literature top

For the applications and biological activity of hydrazones, see: Taha et al. (2013); Musharraf et al. (2012); Melnyk et al. (2006); Terzioglu & Gursoy (2003). For the crystal structures of related compounds, see: Alanazi et al. (2012a,b).

Experimental top

The title compound (I) was synthesized by refluxing in methanol a mixture (0.352 g, 2 mmol) of 3-chlorothiophene- 2-carbohydrazide and (0.248 g, 2 mmol) of 2 florobenzaldehyde along with a catalytical amount of acetic acid for 3 h. The progress of reaction was monitored by TLC. After completion of reaction, the solvent was evaporated by vacuum to afford crude material which was purified by repeated recrystallized in methanol to obtain needle like crytals (0.495 g, ° yielded 88). All chemicals (methyl 3-chlorothiophene-2-carboxylate 99%,2-florobenzaldehyde 98%) were purchased from sigma Aldrich.

Refinement top

All H atoms except H12A were positioned geometrically (C—H = 0.93 Å and N—H 0.86 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C, N). Atom H12A attached to C12 was located on a Fourier map and isotropically refined.

Structure description top

Hydrazone derivatives are known as good ligands for complexation reactions. They have also displayed a wide spectrum of biological activities including antileishamanial (Taha et al., 2013), antimalarial (Melnyk et al., 2006) and anti-cancer (Terzioglu et al., 2003) properties. Recently the hydrazones are reported to be used as UV-LDI Matrices for measuring the mass of macromolecules (Musharraf et al., 2012) .

The title compound, (I) (Fig. 1), is similar to that of previously reported N'-[(1E)-(2,6-difluorophenyl)methylidene]thiophene-2-carbohydrazide (Alanazi et al., 2012a) and N'-[(1E)-(4-fluorophenyl)methylidene]- thiophene-2-carbohydrazide (Alanazi et al., 2012b) except the thiophene ring is substituted with fluorine atom. The whole molecule is appearently planar with maximum deviation of 0.181 (1)Å for F1 atom from the least square plane. The chlorothiophenecarbonyl O1/C8/S1/(C9-C12)/Cl fragment is trans to the fluorobenzyl, F1/(C1-C7), group across the N1-N2 bond. The bond lengths and angles in (I) are normal and comparable to those in the analogs (Alanazi et al., 2012a,b). The crystal is stablized by N—H···O and C—H···O intermolecular hydrogen bonds (Table 1) to form zigzag chains of molecules extended along the a axis (Fig. 2).

For the applications and biological activity of hydrazones, see: Taha et al. (2013); Musharraf et al. (2012); Melnyk et al. (2006); Terzioglu & Gursoy (2003). For the crystal structures of related compounds, see: Alanazi et al. (2012a,b).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the a axis. Dashed lines denote hydrogen bonds.
(E)-3-Chloro-N'-(2-fluorobenzylidene)thiophene-2-carbohydrazide top
Crystal data top
C12H8ClFN2OSF(000) = 576
Mr = 282.71Dx = 1.540 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9699 reflections
a = 5.6833 (3) Åθ = 3.1–25.5°
b = 13.0817 (6) ŵ = 0.48 mm1
c = 16.4001 (8) ÅT = 302 K
V = 1219.30 (10) Å3Slab, colourless
Z = 40.55 × 0.46 × 0.03 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2255 independent reflections
Radiation source: fine-focus sealed tube2210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 3.1°
ω scanh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1515
Tmin = 0.776, Tmax = 0.985l = 1919
47474 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.1642P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.15 e Å3
2255 reflectionsΔρmin = 0.12 e Å3
168 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.021 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 916 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (5)
Crystal data top
C12H8ClFN2OSV = 1219.30 (10) Å3
Mr = 282.71Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6833 (3) ŵ = 0.48 mm1
b = 13.0817 (6) ÅT = 302 K
c = 16.4001 (8) Å0.55 × 0.46 × 0.03 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2255 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2210 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.985Rint = 0.028
47474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065Δρmax = 0.15 e Å3
S = 1.09Δρmin = 0.12 e Å3
2255 reflectionsAbsolute structure: Flack (1983), 916 Friedel pairs
168 parametersAbsolute structure parameter: 0.02 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17368 (8)0.52165 (3)0.22226 (3)0.05051 (13)
Cl10.35177 (8)0.75148 (4)0.21939 (3)0.06171 (15)
F10.9968 (2)0.52634 (9)0.05506 (7)0.0641 (3)
O10.0135 (3)0.75985 (10)0.08685 (8)0.0592 (3)
N10.2895 (2)0.65589 (9)0.06578 (7)0.0424 (3)
H1A0.32690.69120.02350.051*
N20.4234 (2)0.57273 (10)0.08483 (8)0.0402 (3)
C10.7057 (3)0.39194 (12)0.10909 (10)0.0498 (4)
H1B0.57280.39670.14200.060*
C20.8577 (4)0.31121 (13)0.11894 (13)0.0602 (5)
H2B0.82730.26200.15840.072*
C31.0558 (4)0.30280 (15)0.07046 (15)0.0652 (5)
H3A1.15770.24790.07760.078*
C41.1029 (3)0.37504 (14)0.01183 (13)0.0618 (5)
H4A1.23570.36980.02100.074*
C50.9492 (3)0.45490 (13)0.00305 (10)0.0484 (4)
C60.7486 (3)0.46727 (12)0.04998 (9)0.0428 (3)
C70.5958 (3)0.55497 (12)0.03748 (9)0.0430 (4)
H7A0.62470.59890.00590.052*
C80.1010 (3)0.68555 (11)0.11008 (9)0.0396 (3)
C90.0325 (3)0.62923 (11)0.18418 (9)0.0392 (3)
C100.1608 (3)0.65037 (12)0.23145 (10)0.0459 (3)
C110.1957 (4)0.58121 (15)0.29608 (10)0.0599 (5)
H11A0.31970.58520.33300.072*
C120.0282 (4)0.50870 (17)0.29804 (12)0.0654 (5)
H12A0.005 (5)0.4586 (17)0.3352 (16)0.086 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0573 (2)0.0498 (2)0.0445 (2)0.00003 (18)0.00151 (19)0.01644 (17)
Cl10.0550 (2)0.0632 (3)0.0670 (3)0.0061 (2)0.0052 (2)0.0115 (2)
F10.0649 (6)0.0732 (7)0.0542 (6)0.0086 (6)0.0104 (5)0.0038 (5)
O10.0655 (8)0.0571 (7)0.0551 (7)0.0185 (6)0.0050 (6)0.0202 (6)
N10.0472 (7)0.0429 (6)0.0370 (6)0.0018 (6)0.0005 (6)0.0104 (5)
N20.0439 (7)0.0378 (6)0.0389 (6)0.0010 (5)0.0040 (5)0.0050 (5)
C10.0503 (9)0.0459 (8)0.0533 (9)0.0002 (7)0.0053 (8)0.0012 (7)
C20.0631 (11)0.0470 (9)0.0706 (11)0.0036 (8)0.0161 (10)0.0002 (8)
C30.0560 (11)0.0507 (10)0.0889 (15)0.0117 (8)0.0153 (11)0.0148 (10)
C40.0455 (10)0.0655 (11)0.0746 (12)0.0037 (8)0.0020 (9)0.0256 (10)
C50.0493 (9)0.0503 (9)0.0457 (8)0.0072 (7)0.0041 (7)0.0125 (7)
C60.0420 (8)0.0443 (8)0.0421 (7)0.0034 (6)0.0059 (6)0.0059 (6)
C70.0474 (8)0.0436 (8)0.0380 (7)0.0045 (6)0.0026 (6)0.0026 (6)
C80.0437 (8)0.0395 (7)0.0355 (7)0.0019 (6)0.0057 (6)0.0051 (6)
C90.0430 (8)0.0401 (7)0.0345 (7)0.0050 (6)0.0064 (6)0.0026 (6)
C100.0476 (8)0.0497 (8)0.0406 (8)0.0089 (7)0.0018 (7)0.0049 (6)
C110.0673 (11)0.0673 (11)0.0452 (9)0.0139 (10)0.0113 (8)0.0027 (8)
C120.0806 (14)0.0708 (12)0.0447 (9)0.0108 (11)0.0056 (9)0.0191 (9)
Geometric parameters (Å, º) top
S1—C121.700 (2)C3—C41.375 (3)
S1—C91.7362 (15)C3—H3A0.9300
Cl1—C101.7224 (18)C4—C51.369 (3)
F1—C51.362 (2)C4—H4A0.9300
O1—C81.2304 (19)C5—C61.385 (2)
N1—C81.351 (2)C6—C71.453 (2)
N1—N21.3639 (17)C7—H7A0.9300
N1—H1A0.8600C8—C91.474 (2)
N2—C71.272 (2)C9—C101.373 (2)
C1—C21.374 (2)C10—C111.408 (2)
C1—C61.404 (2)C11—C121.344 (3)
C1—H1B0.9300C11—H11A0.9300
C2—C31.382 (3)C12—H12A0.90 (2)
C2—H2B0.9300
C12—S1—C991.82 (10)C5—C6—C7120.37 (15)
C8—N1—N2123.24 (12)C1—C6—C7123.21 (15)
C8—N1—H1A118.4N2—C7—C6121.23 (14)
N2—N1—H1A118.4N2—C7—H7A119.4
C7—N2—N1115.83 (13)C6—C7—H7A119.4
C2—C1—C6120.76 (17)O1—C8—N1118.68 (14)
C2—C1—H1B119.6O1—C8—C9120.69 (14)
C6—C1—H1B119.6N1—C8—C9120.63 (13)
C1—C2—C3120.37 (18)C10—C9—C8125.21 (14)
C1—C2—H2B119.8C10—C9—S1109.27 (11)
C3—C2—H2B119.8C8—C9—S1125.43 (12)
C4—C3—C2120.41 (18)C9—C10—C11114.11 (16)
C4—C3—H3A119.8C9—C10—Cl1126.46 (13)
C2—C3—H3A119.8C11—C10—Cl1119.42 (14)
C5—C4—C3118.29 (18)C12—C11—C10111.83 (17)
C5—C4—H4A120.9C12—C11—H11A124.1
C3—C4—H4A120.9C10—C11—H11A124.1
F1—C5—C4118.06 (17)C11—C12—S1112.96 (14)
F1—C5—C6118.18 (16)C11—C12—H12A129.0 (18)
C4—C5—C6123.76 (18)S1—C12—H12A117.9 (18)
C5—C6—C1116.41 (16)
C8—N1—N2—C7179.62 (14)N2—N1—C8—C91.4 (2)
C6—C1—C2—C30.2 (3)O1—C8—C9—C102.1 (2)
C1—C2—C3—C40.0 (3)N1—C8—C9—C10177.17 (14)
C2—C3—C4—C50.1 (3)O1—C8—C9—S1178.35 (13)
C3—C4—C5—F1179.92 (17)N1—C8—C9—S10.9 (2)
C3—C4—C5—C60.1 (3)C12—S1—C9—C100.39 (13)
F1—C5—C6—C1179.91 (14)C12—S1—C9—C8176.37 (14)
C4—C5—C6—C10.2 (2)C8—C9—C10—C11176.15 (14)
F1—C5—C6—C70.6 (2)S1—C9—C10—C110.62 (18)
C4—C5—C6—C7179.24 (15)C8—C9—C10—Cl15.0 (2)
C2—C1—C6—C50.3 (2)S1—C9—C10—Cl1178.22 (10)
C2—C1—C6—C7179.19 (15)C9—C10—C11—C120.6 (2)
N1—N2—C7—C6178.51 (13)Cl1—C10—C11—C12178.35 (14)
C5—C6—C7—N2173.37 (14)C10—C11—C12—S10.3 (2)
C1—C6—C7—N26.1 (2)C9—S1—C12—C110.07 (17)
N2—N1—C8—O1177.85 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.122.9552 (18)163
C7—H7A···O1i0.932.413.2268 (19)147
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.122.9552 (18)163
C7—H7A···O1i0.932.413.2268 (19)147
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

SS acknowledges the Principal Investigator Support Initiative Grant Scheme ERGS Phase 600-RMI/DANA 5/3/PSI (236/2013) UiTM and Dana Kecemerlangan 5/3 RIF (39/2012) (UiTM, Malaysia) for financial support.

References

First citationAlanazi, A. M., Lahsasni, S., El-Emam, A. A. & Ng, S. W. (2012a). Acta Cryst. E68, o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlanazi, A. M., Kadi, A. A., El-Emam, A. A. & Ng, S. W. (2012b). Acta Cryst. E68, o315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMelnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusharraf, S. G., Bibi, A., Shahid, N., Najam-ul-Haq, M., Khan, M., Taha, M., Mughal, U. R. & Khan, K. M. (2012). Am. J. Anal. Chem. 3, 779–789.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Baharudin, M. S., Ismail, N. H., Khan, K. M., Jaafar, F. M., Samreen, Siddiqui, S. & Choudhary, M. I. (2013). Bioorg. Med. Chem. Lett. 23, 3463–3466.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTerzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds