metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5-n-Butyl-10,20-diiso­butyl­porphyrin­ato)nickel(II)

aSFI Tetrapyrrole Laboratory, School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: sengem@tcd.ie

(Received 22 May 2014; accepted 3 June 2014; online 7 June 2014)

The asymmetric unit of the title compound, [Ni(C32H36N4)], contains two independent mol­ecules exhibiting an overall ruffled conformation of the porphyrin macrocycle and differing mainly in the positions of the methyl groups. The average Ni—N bond lengths are 1.912 (2) and 1.910 (2) Å in the two mol­ecules. The mol­ecules form a closely spaced lattice structure in which neighbouring porphyrins are oriented in a nearly perpendicular fashion to each other. The compound was prepared via nucleophilic substitution of (5,15-diiso­butyl­porphyrinato)nickel(II) with n-butyl­lithium.

Related literature

For the conformations of porphyrins, see: Scheidt & Lee (1987[Scheidt, W. R. & Lee, Y. J. (1987). Struct. Bond. (Berlin), 64, 1-73.]); Jentzen et al. (1997[Jentzen, W., Song, X.-Z. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684-1699.]); Senge (2006[Senge, M. O. (2006). Chem. Commun. pp. 243-256.]). For the synthesis of related compounds, see: Senge (2005[Senge, M. O. (2005). Acc. Chem. Res. 38, 733-743.]); Wiehe et al. (2005[Wiehe, A., Shaker, Y. M., Brandt, J. C., Mebs, S. & Senge, M. O. (2005). Tetrahedron, 61, 5535-5564.]). For the handling of crystals, see: Hope (1994[Hope, H. (1994). Prog. Inorg. Chem. 41, 1-19.]). For related structures, see: Senge et al. (1999[Senge, M. O., Bischoff, I., Nelson, N. Y. & Smith, K. M. (1999). J. Porphyrins Phthalocyanines 3, 99-116.]); Senge (2012[Senge, M. O. (2012). Acta Cryst. E68, m1191-m1192.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C32H36N4)]

  • Mr = 535.34

  • Triclinic, [P \overline 1]

  • a = 10.2557 (14) Å

  • b = 11.3234 (15) Å

  • c = 23.220 (3) Å

  • α = 87.474 (2)°

  • β = 81.501 (2)°

  • γ = 89.955 (2)°

  • V = 2664.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 90 K

  • 0.40 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.752, Tmax = 0.816

  • 34414 measured reflections

  • 12344 independent reflections

  • 9370 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.04

  • 12344 reflections

  • 677 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Reaction of (5,15-diisobutylporphyrinato)nickel(II), (I), with n-butyllithium yielded the title compound, (II) (Fig. 1). The synthesis followed the general strategy outlined earlier (Senge, 2005). Similarly, the respective free base (IV) could be prepared via reaction of (III) with n-butyllithium. Crystals suitable for single-crystal X-ray crystallography were grown by liquid diffusion of methanol into a solution of (II) in methylene chloride.

The compound crystallized with two crystallographically independent molecules in the unit cell. A top view of the molecular structure is shown in Fig. 2. All three alkyl side chains point towards the same face of the molecules. The compound is characterized by an overall ruffled conformation (Fig. 3), as indicated by mean displacements of the Cm atoms by about 0.6 Å (Table 1).

The molecules form a closely spaced lattice structure in which neighbouring porphyrin are oriented in a perpendicular fashion to each other. The edge of one molecule points with a β-H atoms towards the NiII centre of the next molecule. The H···Ni separations are small, with H22A···Ni1 = 2.593 Å, H12A···Ni2i = 2.667 Å, H32A···Ni1ii = 2.757 Å and H2A···Ni2iii = 2.635 Å [symmetry codes: (i) x, y+1, z; (ii) x-1, y-1, z; (iii) x+1, y, z]. Thus, the two faces of each macrocycle core are blocked by a neighbouring macrocycle in edge-on fashion (Fig. 4).

A conformational analys was performed using the NSD (normal structural decomposition method) developed by Shelnutt and co-workers (Jentzen et al., 1997). Both molecules exhibit the same conformation with only minor differences in conformational parameters and bond lengths and angles. The conformation is characterized by a significant degree of ruf distortion which is in line with expectations for a sterically unhindered Ni(II) meso-alkylporphyrin. The degree of displacement of the Cm atoms, which is characteristic for a ruffled conformation, is similar to that found for symmetric (5,10,15,20-tetraalkylporphyrinato)nickel(II) systems (Senge et al., 1999). Only negligible differences are found in displacements for substituted versus unsubstituted meso carbon atoms. One of the molecules exhibits a small degree of sad distortion and both show a contribution from bre in-plane distortion. Note, that compound (I), i.e. the meso disubstituted precursor compound, exhibits a planar macrocycle (Senge, 2012).

Related literature top

For the conformations of porphyrins, see: Scheidt & Lee (1987); Jentzen et al. (1997); Senge (2006). For the synthesis of related compounds, see: Senge (2005); Wiehe et al. (2005). For the handling of crystals, see: Hope (1994). For related structures, see: Senge et al. (1999); Senge (2012).

Experimental top

The title compound, (II), was prepared via reaction of compound (I) with n-butyllithium. A similar reaction of the free base porphyrin (III) yielded 5-n-butyl-10,15-diisobutylporphyrin, (IV).

Synthesis of (5-n-butyl-10,20-diisobutylporphyrinato)nickel(II), (II):

(5,15-Diisobutylporphyrinato)nickel(II), (I) (Wiehe et al., 2005), (1 eq.) was placed in a Schlenk flask and dissolved in dry THF under argon. The solution was cooled down to -78 °C. Then n-butyllithium (20 eq., 2.5 M solution in n-hexane) and N,N,N',N'-tetramethylethylendiamine (3.3 eq.) were added dropwise. The mixture was allowed to warm up to room temperature and was stirred for 30 additional minutes. The reaction was quenched with 3 ml water and stirred for another 15 min. DDQ (5.5 eq.) was added. Stirring was continued for 15 min followed by filtration of the reaction mixture through 200 ml silica gel and washing with dichloromethane. The eluted porphyrin fractions were evaporated to dryness. The residue was dissolved in dichloromethane and purified via column chromatography on silica gel with dichloromethane: n-hexane (1:3, v/v, h = 48 cm, ø = 3 cm). The product was obtained as purple crystals after recrystallization from dichloromethane/methanol 27.2 mg (0.05 mmol, 28%): Mp > 310 °C, Rf=0.7 (CH2Cl2: n-hexane, 1:3, v/v); 1H NMR (300 MHz, CDCl3): δ = 0.88 (d, 12H, 3J = 6.6 Hz, CH(CH3)2), 1.05 (t, 3H, 3J = 7.3 Hz, CH2CH3), 1.60 (m, 2H, CH2CH3), 2.30 (m, 4H, CH(CH3)2 + CH2CH2CH2), 4.56 (m, 6H, CH2CH2CH2 + CH2CH), 9.05 (d, 2H, 3J = 4.9 Hz, Hβ), 9.34 (d, 2H, 3J = 4.9 Hz, Hβ), 9.36 (s, 4H, Hβ), 9.49 p.p.m. (s, 1H, Hmeso); 13C NMR (63 MHz, CDCl3): δ = 14.0, 23.0, 23.5, 34.0, 34.5, 39.6, 42.3, 102.6, 115.8, 117.9, 129.6, 130.2, 130.5, 132.0, 140.7, 141.6, 142.2, 142.3 p.p.m.; UV/vis (CH2Cl2): λmax (lg ε) = 411 (5.55), 528 nm (4.29); MS (EI, 70 eV): m/z (%) = 534 (89) [M+], 491 (100) [M+—C3H7], 448 (18) [M+—C6H14], 267 (2) [M2+]; HRMS (ES+): [C32H36N4Ni]: calcd. 534.2293, found 534.2300.

Synthesis of 5-n-butyl-10,20-diisobutylporphyrin, (IV):

5,15-Diisobutylporphyrin, (III) (Wiehe et al., 2005) (1 eq.), was placed in a Schlenk flask and dissolved in dry THF under argon. The solution was cooled down to -78 °C. Then n-butyllithium (20 eq., 2.5 M solution in n-hexane) and N,N,N',N'-tetramethylethylendiamine (3.3 eq.) were added dropwise. The mixture was allowed to warm up to room temperature and was stirred for 30 additional minutes. The reaction was quenched with 3 ml water and stirred for another 15 min. DDQ (5.5 eq.) was added. Stirring was continued for 15 min followed by filtration of the reaction mixture through 200 ml silica gel and washing with dichloromethane. The eluted porphyrin fractions were evaporated to dryness. The residue was dissolved in dichloromethane and purified via column chromatography on silica gel with dichloromethane: n-hexane (1:1, v/v, h = 45 cm, ø = 3 cm). The product was obtained as purple crystals after recrystallization from dichloromethane/methanol (14.2 mg, 0.03 mmol, 15%): Mp 195 °C, Rf = 0.5 (CH2Cl2: n-hexane, 1:1, v/v); 1H NMR (300 MHz, CDCl3): δ = -2.83 (s, 2H, NH), 0.97 (t, 3H, 3J = 7.3 Hz, CH2CH3), 1.21 (d, 12H, 3J = 6.6 Hz, CH(CH3)2), 1. 87 (m, 2H, CH2CH3), 2.58 (m, 2H, CH2CH2CH2), 2.79 (m, 2H, CH(CH3)2), 4.84 (d, 4H, 3J = 7.3 Hz, CH2CH), 5.08 (t, 2H, 3J = 8.0 Hz, CH2CH2CH2), 9.29 (d, 2H, 3J = 4.7 Hz, 13,17-Hβ), 9.51 (dd, 4H, 3J = 4.9 Hz, 3J = 4.7 Hz, 2,8,12,18-Hβ), 9.61 (d, 2H, 3J = 4.9 Hz, 3,7-Hβ), 9.96 p.p.m. (s, 1H, Hmeso); 13C NMR (75 MHz, CDCl3): δ = 14.2, 23.4, 23.8, 36.0, 36.7, 41.2, 43.4, 53.4, 103.1, 117.4, 119.9, 128.5, 128.7, 131.1 p.p.m.; UV/vis (CH2Cl2): λmax (lg ε) = 413 (4.22), 512 (3.95), 542 (3.63), 588 (3.32), 645 nm (3.16); MS (EI, 70 eV): m/z (%)= 478 (52) [M+], 435 (100) [M+—C3H7], 392 (12) [M+—C6H14], 239 (3) [M2+]; HRMS (ES+): [C32H38N4+H]: calcd. 479.3175, found 479.3142.

Structure description top

Reaction of (5,15-diisobutylporphyrinato)nickel(II), (I), with n-butyllithium yielded the title compound, (II) (Fig. 1). The synthesis followed the general strategy outlined earlier (Senge, 2005). Similarly, the respective free base (IV) could be prepared via reaction of (III) with n-butyllithium. Crystals suitable for single-crystal X-ray crystallography were grown by liquid diffusion of methanol into a solution of (II) in methylene chloride.

The compound crystallized with two crystallographically independent molecules in the unit cell. A top view of the molecular structure is shown in Fig. 2. All three alkyl side chains point towards the same face of the molecules. The compound is characterized by an overall ruffled conformation (Fig. 3), as indicated by mean displacements of the Cm atoms by about 0.6 Å (Table 1).

The molecules form a closely spaced lattice structure in which neighbouring porphyrin are oriented in a perpendicular fashion to each other. The edge of one molecule points with a β-H atoms towards the NiII centre of the next molecule. The H···Ni separations are small, with H22A···Ni1 = 2.593 Å, H12A···Ni2i = 2.667 Å, H32A···Ni1ii = 2.757 Å and H2A···Ni2iii = 2.635 Å [symmetry codes: (i) x, y+1, z; (ii) x-1, y-1, z; (iii) x+1, y, z]. Thus, the two faces of each macrocycle core are blocked by a neighbouring macrocycle in edge-on fashion (Fig. 4).

A conformational analys was performed using the NSD (normal structural decomposition method) developed by Shelnutt and co-workers (Jentzen et al., 1997). Both molecules exhibit the same conformation with only minor differences in conformational parameters and bond lengths and angles. The conformation is characterized by a significant degree of ruf distortion which is in line with expectations for a sterically unhindered Ni(II) meso-alkylporphyrin. The degree of displacement of the Cm atoms, which is characteristic for a ruffled conformation, is similar to that found for symmetric (5,10,15,20-tetraalkylporphyrinato)nickel(II) systems (Senge et al., 1999). Only negligible differences are found in displacements for substituted versus unsubstituted meso carbon atoms. One of the molecules exhibits a small degree of sad distortion and both show a contribution from bre in-plane distortion. Note, that compound (I), i.e. the meso disubstituted precursor compound, exhibits a planar macrocycle (Senge, 2012).

For the conformations of porphyrins, see: Scheidt & Lee (1987); Jentzen et al. (1997); Senge (2006). For the synthesis of related compounds, see: Senge (2005); Wiehe et al. (2005). For the handling of crystals, see: Hope (1994). For related structures, see: Senge et al. (1999); Senge (2012).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. A content of the asymmetric unit of (II), showing the atomic labels for Ni and N atoms. Displacement ellipsoids are drawn at the 50% probabilty level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. An overlay of the two independent molecules showing the differences in their conformations. Prepared with Mercury (Macrae et al., 2006).
[Figure 4] Fig. 4. View of the molecular arrangement of (II) in the crystal. Dashed lines indicate short Ni···H separations.
(5-n-Butyl-10,20-diisobutylporphyrinato)nickel(II) top
Crystal data top
[Ni(C32H36N4)]Z = 4
Mr = 535.34F(000) = 1136
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2557 (14) ÅCell parameters from 5659 reflections
b = 11.3234 (15) Åθ = 5.3–55.1°
c = 23.220 (3) ŵ = 0.76 mm1
α = 87.474 (2)°T = 90 K
β = 81.501 (2)°Block, red
γ = 89.955 (2)°0.40 × 0.30 × 0.28 mm
V = 2664.2 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
12344 independent reflections
Radiation source: sealed tube9370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 27.7°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.752, Tmax = 0.816k = 1414
34414 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0531P)2 + 1.1259P]
where P = (Fo2 + 2Fc2)/3
12344 reflections(Δ/σ)max = 0.001
677 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C32H36N4)]γ = 89.955 (2)°
Mr = 535.34V = 2664.2 (6) Å3
Triclinic, P1Z = 4
a = 10.2557 (14) ÅMo Kα radiation
b = 11.3234 (15) ŵ = 0.76 mm1
c = 23.220 (3) ÅT = 90 K
α = 87.474 (2)°0.40 × 0.30 × 0.28 mm
β = 81.501 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
12344 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9370 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.816Rint = 0.035
34414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.58 e Å3
12344 reflectionsΔρmin = 0.47 e Å3
677 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The out carbon atom of the butyl chains shows some degree of thermal librational movement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.31532 (2)0.93466 (2)0.278602 (11)0.01394 (7)
N210.20303 (16)1.06325 (15)0.26337 (7)0.0155 (3)
N220.38963 (16)0.93563 (14)0.19812 (7)0.0149 (3)
N230.42627 (17)0.80379 (15)0.29343 (7)0.0171 (4)
N240.24418 (16)0.93538 (15)0.35971 (7)0.0167 (4)
C10.1363 (2)1.13695 (18)0.30319 (9)0.0169 (4)
C20.0596 (2)1.2206 (2)0.27413 (10)0.0222 (5)
H2A0.00711.28220.29170.027*
C30.0760 (2)1.19549 (19)0.21742 (9)0.0213 (5)
H3A0.03401.23350.18790.026*
C40.1687 (2)1.10054 (18)0.20991 (9)0.0173 (4)
C50.2273 (2)1.06158 (18)0.15644 (9)0.0172 (4)
C60.3379 (2)0.98923 (18)0.15189 (9)0.0171 (4)
C70.4241 (2)0.97116 (19)0.09862 (9)0.0213 (4)
H7A0.40950.99630.06050.026*
C80.5299 (2)0.9117 (2)0.11266 (10)0.0230 (5)
H8A0.60550.89040.08640.028*
C90.5077 (2)0.88651 (18)0.17414 (9)0.0184 (4)
C100.5865 (2)0.81180 (18)0.20397 (10)0.0202 (4)
C110.5393 (2)0.76651 (18)0.25950 (10)0.0196 (4)
C120.5926 (2)0.6651 (2)0.28770 (10)0.0252 (5)
H12A0.67180.62490.27410.030*
C130.5091 (2)0.6381 (2)0.33694 (10)0.0252 (5)
H13A0.51550.57280.36350.030*
C140.4087 (2)0.72641 (18)0.34176 (10)0.0203 (4)
C150.3205 (2)0.74236 (19)0.39121 (9)0.0217 (5)
H15A0.30650.67950.42000.026*
C160.2515 (2)0.84554 (19)0.40095 (9)0.0200 (4)
C170.1902 (2)0.8800 (2)0.45693 (10)0.0252 (5)
H17A0.17940.83230.49200.030*
C180.1508 (2)0.9926 (2)0.45073 (9)0.0237 (5)
H18A0.11141.04060.48100.028*
C190.1792 (2)1.02699 (19)0.38957 (9)0.0188 (4)
C200.1331 (2)1.12786 (19)0.36344 (9)0.0183 (4)
C5A0.1812 (2)1.11047 (19)0.10108 (9)0.0201 (4)
H5AA0.08591.12790.10950.024*
H5AB0.19301.04920.07160.024*
C5B0.2548 (2)1.2228 (2)0.07539 (9)0.0245 (5)
H5BA0.23741.28610.10360.029*
H5BB0.35071.20720.06960.029*
C5C0.2146 (3)1.2659 (2)0.01739 (10)0.0291 (5)
H5CA0.22581.20080.00990.035*
H5CB0.12021.28740.02370.035*
C5D0.2952 (3)1.3722 (2)0.00990 (12)0.0445 (7)
H5DA0.26571.39660.04690.067*
H5DB0.38871.35090.01710.067*
H5DC0.28321.43750.01670.067*
C10A0.7199 (2)0.7755 (2)0.17288 (10)0.0238 (5)
H10A0.71070.75480.13270.029*
H10B0.74950.70390.19320.029*
C10B0.8251 (2)0.8721 (2)0.17017 (10)0.0243 (5)
H10C0.79200.94500.15130.029*
C10C0.8518 (3)0.9024 (3)0.23078 (12)0.0387 (6)
H10D0.77100.93280.25310.058*
H10E0.92130.96270.22720.058*
H10F0.88010.83120.25100.058*
C10D0.9512 (2)0.8344 (2)0.13253 (11)0.0321 (6)
H10G1.01860.89620.13140.048*
H10H0.93340.82230.09290.048*
H10I0.98290.76050.14900.048*
C20A0.0701 (2)1.2261 (2)0.40013 (9)0.0223 (5)
H20A0.05731.19800.44160.027*
H20B0.01811.24240.38920.027*
C20B0.1496 (2)1.3423 (2)0.39398 (10)0.0252 (5)
H20C0.14691.37830.35410.030*
C20C0.2933 (2)1.3236 (2)0.40132 (13)0.0377 (6)
H20D0.33801.40040.39960.057*
H20E0.33641.27560.37000.057*
H20F0.29801.28290.43910.057*
C20D0.0830 (3)1.4269 (2)0.43839 (11)0.0325 (6)
H20G0.00981.43610.43350.049*
H20H0.12741.50400.43230.049*
H20I0.08861.39500.47790.049*
Ni20.80710 (2)0.42660 (2)0.286765 (11)0.01391 (7)
N250.69867 (16)0.30199 (15)0.26770 (7)0.0161 (3)
N260.88415 (16)0.44790 (14)0.20710 (7)0.0156 (3)
N270.91480 (17)0.55279 (15)0.30578 (7)0.0170 (4)
N280.72924 (16)0.40601 (15)0.36676 (7)0.0159 (3)
C210.6345 (2)0.21597 (18)0.30528 (9)0.0178 (4)
C220.5631 (2)0.1380 (2)0.27340 (10)0.0230 (5)
H22A0.51350.07010.28900.028*
C230.5797 (2)0.1792 (2)0.21761 (10)0.0233 (5)
H23A0.54040.14830.18690.028*
C240.6680 (2)0.27838 (18)0.21314 (9)0.0178 (4)
C250.7264 (2)0.33368 (18)0.16104 (9)0.0179 (4)
C260.8343 (2)0.40864 (18)0.15906 (9)0.0171 (4)
C270.9212 (2)0.44412 (19)0.10688 (9)0.0215 (4)
H27A0.90750.43180.06800.026*
C281.0262 (2)0.4983 (2)0.12346 (9)0.0231 (5)
H28A1.10210.52740.09840.028*
C291.0023 (2)0.50376 (18)0.18557 (9)0.0179 (4)
C301.0804 (2)0.56742 (18)0.21814 (9)0.0191 (4)
C311.0312 (2)0.59727 (18)0.27420 (9)0.0185 (4)
C321.0819 (2)0.68996 (19)0.30550 (10)0.0231 (5)
H32A1.16200.73260.29410.028*
C330.9949 (2)0.70478 (19)0.35376 (10)0.0232 (5)
H33A0.99970.76250.38180.028*
C340.8936 (2)0.61787 (18)0.35511 (9)0.0195 (4)
C350.7992 (2)0.59113 (19)0.40261 (9)0.0201 (4)
H35A0.78250.64700.43210.024*
C360.7282 (2)0.48733 (19)0.40918 (9)0.0191 (4)
C370.6564 (2)0.4413 (2)0.46314 (9)0.0229 (5)
H37A0.63800.48190.49830.028*
C380.6200 (2)0.3299 (2)0.45469 (9)0.0230 (5)
H38A0.57480.27600.48330.028*
C390.6624 (2)0.30757 (19)0.39415 (9)0.0182 (4)
C400.6267 (2)0.20995 (19)0.36567 (9)0.0191 (4)
C25A0.6851 (2)0.29766 (19)0.10455 (9)0.0215 (5)
H25A0.69940.36500.07560.026*
H25B0.58970.27870.11120.026*
C25B0.7613 (3)0.1905 (2)0.07968 (10)0.0288 (5)
H25C0.85680.20890.07410.035*
H25D0.74510.12290.10830.035*
C25C0.7236 (3)0.1542 (2)0.02160 (10)0.0322 (6)
H25E0.76860.07930.01070.039*
H25F0.62740.13910.02680.039*
C25D0.7587 (3)0.2455 (2)0.02770 (11)0.0361 (6)
H25G0.74130.21310.06430.054*
H25H0.85230.26630.03090.054*
H25I0.70520.31640.01980.054*
C30A1.2157 (2)0.60893 (19)0.18913 (10)0.0229 (5)
H30A1.25020.66690.21390.027*
H30B1.20740.64970.15130.027*
C30B1.3145 (2)0.5075 (2)0.17884 (10)0.0244 (5)
H30C1.27530.44750.15600.029*
C30C1.4416 (2)0.5535 (2)0.14223 (11)0.0319 (6)
H30D1.42160.58970.10550.048*
H30E1.50270.48770.13400.048*
H30F1.48210.61260.16370.048*
C30D1.3408 (3)0.4469 (2)0.23549 (12)0.0364 (6)
H30G1.25890.41130.25600.055*
H30H1.37350.50510.26000.055*
H30I1.40700.38510.22710.055*
C40A0.5723 (2)0.09968 (19)0.40010 (9)0.0216 (5)
H40A0.48140.08600.39220.026*
H40B0.56730.11350.44220.026*
C40B0.6534 (2)0.0122 (2)0.38638 (10)0.0238 (5)
H40C0.63610.03930.34780.029*
C40C0.8014 (2)0.0077 (2)0.38293 (10)0.0270 (5)
H40D0.83140.06630.35140.040*
H40E0.84770.06700.37510.040*
H40F0.82030.03660.42000.040*
C40D0.6058 (2)0.1096 (2)0.43290 (11)0.0295 (5)
H40G0.50970.11700.43690.044*
H40H0.63120.08910.47030.044*
H40I0.64630.18500.42120.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01368 (13)0.01396 (13)0.01492 (13)0.00002 (10)0.00454 (10)0.00064 (10)
N210.0155 (8)0.0169 (8)0.0147 (8)0.0000 (7)0.0038 (7)0.0014 (7)
N220.0138 (8)0.0135 (8)0.0178 (8)0.0006 (6)0.0033 (7)0.0019 (7)
N230.0169 (9)0.0161 (8)0.0196 (9)0.0001 (7)0.0068 (7)0.0005 (7)
N240.0157 (8)0.0185 (9)0.0166 (8)0.0013 (7)0.0053 (7)0.0007 (7)
C10.0152 (10)0.0182 (10)0.0172 (10)0.0003 (8)0.0021 (8)0.0013 (8)
C20.0209 (11)0.0239 (11)0.0222 (11)0.0062 (9)0.0042 (9)0.0026 (9)
C30.0213 (11)0.0240 (11)0.0199 (11)0.0045 (9)0.0078 (9)0.0009 (9)
C40.0158 (10)0.0187 (10)0.0181 (10)0.0003 (8)0.0051 (8)0.0013 (8)
C50.0177 (10)0.0175 (10)0.0171 (10)0.0035 (8)0.0049 (8)0.0001 (8)
C60.0197 (10)0.0164 (10)0.0161 (10)0.0031 (8)0.0047 (8)0.0027 (8)
C70.0233 (11)0.0251 (11)0.0160 (10)0.0005 (9)0.0031 (8)0.0035 (9)
C80.0204 (11)0.0244 (11)0.0234 (11)0.0000 (9)0.0010 (9)0.0054 (9)
C90.0171 (10)0.0167 (10)0.0214 (10)0.0018 (8)0.0018 (8)0.0043 (8)
C100.0170 (10)0.0166 (10)0.0281 (12)0.0002 (8)0.0054 (9)0.0057 (9)
C110.0159 (10)0.0172 (10)0.0273 (11)0.0002 (8)0.0080 (8)0.0039 (9)
C120.0201 (11)0.0225 (11)0.0350 (13)0.0044 (9)0.0107 (10)0.0019 (10)
C130.0285 (12)0.0189 (11)0.0305 (12)0.0014 (9)0.0124 (10)0.0023 (9)
C140.0214 (11)0.0170 (10)0.0249 (11)0.0013 (8)0.0124 (9)0.0015 (9)
C150.0250 (11)0.0203 (11)0.0214 (11)0.0057 (9)0.0103 (9)0.0061 (9)
C160.0200 (11)0.0236 (11)0.0174 (10)0.0051 (9)0.0072 (8)0.0030 (8)
C170.0248 (12)0.0323 (13)0.0185 (11)0.0040 (10)0.0045 (9)0.0042 (9)
C180.0218 (11)0.0318 (13)0.0176 (11)0.0024 (9)0.0026 (9)0.0009 (9)
C190.0167 (10)0.0240 (11)0.0159 (10)0.0047 (8)0.0034 (8)0.0018 (8)
C200.0154 (10)0.0223 (11)0.0172 (10)0.0013 (8)0.0015 (8)0.0026 (8)
C5A0.0227 (11)0.0238 (11)0.0149 (10)0.0013 (9)0.0059 (8)0.0014 (8)
C5B0.0323 (13)0.0225 (11)0.0191 (11)0.0000 (10)0.0054 (9)0.0010 (9)
C5C0.0358 (13)0.0311 (13)0.0195 (11)0.0086 (11)0.0021 (10)0.0028 (10)
C5D0.064 (2)0.0369 (15)0.0287 (14)0.0055 (14)0.0025 (13)0.0106 (12)
C10A0.0184 (11)0.0229 (11)0.0298 (12)0.0037 (9)0.0016 (9)0.0036 (9)
C10B0.0195 (11)0.0220 (11)0.0303 (12)0.0015 (9)0.0011 (9)0.0016 (9)
C10C0.0239 (13)0.0538 (17)0.0392 (15)0.0107 (12)0.0042 (11)0.0125 (13)
C10D0.0231 (12)0.0343 (14)0.0364 (14)0.0018 (10)0.0037 (10)0.0001 (11)
C20A0.0204 (11)0.0286 (12)0.0176 (10)0.0036 (9)0.0006 (8)0.0046 (9)
C20B0.0267 (12)0.0270 (12)0.0223 (11)0.0047 (10)0.0042 (9)0.0054 (9)
C20C0.0276 (13)0.0355 (14)0.0513 (17)0.0021 (11)0.0066 (12)0.0153 (13)
C20D0.0346 (14)0.0338 (14)0.0322 (13)0.0092 (11)0.0117 (11)0.0116 (11)
Ni20.01358 (13)0.01427 (13)0.01468 (13)0.00048 (10)0.00432 (10)0.00196 (10)
N250.0145 (8)0.0184 (9)0.0159 (8)0.0016 (7)0.0032 (7)0.0024 (7)
N260.0162 (8)0.0136 (8)0.0180 (8)0.0005 (7)0.0052 (7)0.0010 (7)
N270.0171 (9)0.0164 (8)0.0186 (9)0.0012 (7)0.0059 (7)0.0022 (7)
N280.0145 (8)0.0177 (8)0.0161 (8)0.0027 (7)0.0043 (7)0.0015 (7)
C210.0160 (10)0.0164 (10)0.0213 (10)0.0012 (8)0.0031 (8)0.0011 (8)
C220.0231 (11)0.0234 (11)0.0235 (11)0.0084 (9)0.0070 (9)0.0002 (9)
C230.0238 (11)0.0244 (11)0.0235 (11)0.0054 (9)0.0088 (9)0.0027 (9)
C240.0170 (10)0.0193 (10)0.0183 (10)0.0003 (8)0.0060 (8)0.0022 (8)
C250.0197 (10)0.0174 (10)0.0177 (10)0.0034 (8)0.0059 (8)0.0015 (8)
C260.0184 (10)0.0169 (10)0.0166 (10)0.0021 (8)0.0051 (8)0.0007 (8)
C270.0235 (11)0.0246 (11)0.0164 (10)0.0005 (9)0.0031 (8)0.0005 (9)
C280.0236 (11)0.0250 (11)0.0198 (11)0.0003 (9)0.0007 (9)0.0006 (9)
C290.0179 (10)0.0154 (10)0.0202 (10)0.0010 (8)0.0028 (8)0.0012 (8)
C300.0180 (10)0.0147 (10)0.0248 (11)0.0001 (8)0.0047 (8)0.0022 (8)
C310.0162 (10)0.0155 (10)0.0249 (11)0.0012 (8)0.0070 (8)0.0008 (8)
C320.0206 (11)0.0205 (11)0.0298 (12)0.0032 (9)0.0090 (9)0.0011 (9)
C330.0251 (12)0.0201 (11)0.0266 (12)0.0006 (9)0.0097 (9)0.0057 (9)
C340.0221 (11)0.0177 (10)0.0213 (11)0.0035 (8)0.0103 (8)0.0039 (8)
C350.0222 (11)0.0209 (11)0.0193 (10)0.0043 (9)0.0085 (8)0.0065 (8)
C360.0184 (10)0.0243 (11)0.0164 (10)0.0047 (8)0.0075 (8)0.0030 (8)
C370.0218 (11)0.0323 (12)0.0154 (10)0.0048 (9)0.0037 (8)0.0048 (9)
C380.0215 (11)0.0298 (12)0.0178 (10)0.0006 (9)0.0036 (8)0.0005 (9)
C390.0157 (10)0.0228 (11)0.0164 (10)0.0017 (8)0.0035 (8)0.0014 (8)
C400.0147 (10)0.0217 (11)0.0206 (10)0.0004 (8)0.0019 (8)0.0010 (8)
C25A0.0273 (12)0.0214 (11)0.0176 (10)0.0017 (9)0.0101 (9)0.0004 (8)
C25B0.0447 (15)0.0232 (12)0.0200 (11)0.0010 (10)0.0091 (10)0.0032 (9)
C25C0.0491 (16)0.0284 (13)0.0191 (11)0.0073 (11)0.0038 (11)0.0048 (10)
C25D0.0497 (17)0.0375 (15)0.0196 (12)0.0100 (12)0.0005 (11)0.0025 (10)
C30A0.0197 (11)0.0218 (11)0.0267 (12)0.0042 (9)0.0021 (9)0.0006 (9)
C30B0.0196 (11)0.0245 (11)0.0284 (12)0.0030 (9)0.0004 (9)0.0040 (9)
C30C0.0226 (12)0.0337 (14)0.0375 (14)0.0016 (10)0.0029 (10)0.0042 (11)
C30D0.0265 (13)0.0418 (15)0.0398 (15)0.0041 (11)0.0038 (11)0.0073 (12)
C40A0.0216 (11)0.0226 (11)0.0193 (10)0.0041 (9)0.0002 (8)0.0024 (9)
C40B0.0268 (12)0.0243 (11)0.0208 (11)0.0028 (9)0.0042 (9)0.0025 (9)
C40C0.0260 (12)0.0279 (12)0.0271 (12)0.0012 (10)0.0043 (9)0.0000 (10)
C40D0.0323 (13)0.0241 (12)0.0318 (13)0.0045 (10)0.0050 (10)0.0040 (10)
Geometric parameters (Å, º) top
Ni1—N211.9089 (17)Ni2—N251.9044 (17)
Ni1—N221.9107 (17)Ni2—N261.9062 (17)
Ni1—N241.9170 (17)Ni2—N271.9128 (17)
Ni1—N231.9176 (17)Ni2—N281.9147 (17)
N21—C11.378 (3)N25—C211.378 (3)
N21—C41.388 (3)N25—C241.387 (3)
N22—C61.383 (3)N26—C291.383 (3)
N22—C91.383 (3)N26—C261.384 (3)
N23—C111.379 (3)N27—C341.379 (3)
N23—C141.383 (3)N27—C311.388 (3)
N24—C161.376 (3)N28—C361.377 (3)
N24—C191.388 (3)N28—C391.388 (3)
C1—C201.394 (3)C21—C401.391 (3)
C1—C21.439 (3)C21—C221.443 (3)
C2—C31.346 (3)C22—C231.344 (3)
C2—H2A0.9500C22—H22A0.9500
C3—C41.434 (3)C23—C241.434 (3)
C3—H3A0.9500C23—H23A0.9500
C4—C51.387 (3)C24—C251.391 (3)
C5—C61.392 (3)C25—C261.389 (3)
C5—C5A1.516 (3)C25—C25A1.510 (3)
C6—C71.433 (3)C26—C271.436 (3)
C7—C81.350 (3)C27—C281.352 (3)
C7—H7A0.9500C27—H27A0.9500
C8—C91.428 (3)C28—C291.431 (3)
C8—H8A0.9500C28—H28A0.9500
C9—C101.400 (3)C29—C301.400 (3)
C10—C111.385 (3)C30—C311.381 (3)
C10—C10A1.515 (3)C30—C30A1.515 (3)
C11—C121.444 (3)C31—C321.442 (3)
C12—C131.347 (3)C32—C331.342 (3)
C12—H12A0.9500C32—H32A0.9500
C13—C141.430 (3)C33—C341.427 (3)
C13—H13A0.9500C33—H33A0.9500
C14—C151.371 (3)C34—C351.379 (3)
C15—C161.376 (3)C35—C361.374 (3)
C15—H15A0.9500C35—H35A0.9500
C16—C171.428 (3)C36—C371.433 (3)
C17—C181.345 (3)C37—C381.347 (3)
C17—H17A0.9500C37—H37A0.9500
C18—C191.443 (3)C38—C391.442 (3)
C18—H18A0.9500C38—H38A0.9500
C19—C201.385 (3)C39—C401.389 (3)
C20—C20A1.516 (3)C40—C40A1.513 (3)
C5A—C5B1.531 (3)C25A—C25B1.531 (3)
C5A—H5AA0.9900C25A—H25A0.9900
C5A—H5AB0.9900C25A—H25B0.9900
C5B—C5C1.525 (3)C25B—C25C1.530 (3)
C5B—H5BA0.9900C25B—H25C0.9900
C5B—H5BB0.9900C25B—H25D0.9900
C5C—C5D1.520 (4)C25C—C25D1.511 (3)
C5C—H5CA0.9900C25C—H25E0.9900
C5C—H5CB0.9900C25C—H25F0.9900
C5D—H5DA0.9800C25D—H25G0.9800
C5D—H5DB0.9800C25D—H25H0.9800
C5D—H5DC0.9800C25D—H25I0.9800
C10A—C10B1.531 (3)C30A—C30B1.535 (3)
C10A—H10A0.9900C30A—H30A0.9900
C10A—H10B0.9900C30A—H30B0.9900
C10B—C10D1.522 (3)C30B—C30D1.516 (3)
C10B—C10C1.526 (3)C30B—C30C1.526 (3)
C10B—H10C1.0000C30B—H30C1.0000
C10C—H10D0.9800C30C—H30D0.9800
C10C—H10E0.9800C30C—H30E0.9800
C10C—H10F0.9800C30C—H30F0.9800
C10D—H10G0.9800C30D—H30G0.9800
C10D—H10H0.9800C30D—H30H0.9800
C10D—H10I0.9800C30D—H30I0.9800
C20A—C20B1.538 (3)C40A—C40B1.535 (3)
C20A—H20A0.9900C40A—H40A0.9900
C20A—H20B0.9900C40A—H40B0.9900
C20B—C20D1.525 (3)C40B—C40C1.525 (3)
C20B—C20C1.522 (3)C40B—C40D1.537 (3)
C20B—H20C1.0000C40B—H40C1.0000
C20C—H20D0.9800C40C—H40D0.9800
C20C—H20E0.9800C40C—H40E0.9800
C20C—H20F0.9800C40C—H40F0.9800
C20D—H20G0.9800C40D—H40G0.9800
C20D—H20H0.9800C40D—H40H0.9800
C20D—H20I0.9800C40D—H40I0.9800
N21—Ni1—N2290.66 (7)N25—Ni2—N2690.61 (7)
N21—Ni1—N2489.63 (7)N25—Ni2—N27179.48 (7)
N22—Ni1—N24178.74 (7)N26—Ni2—N2789.38 (7)
N21—Ni1—N23179.09 (7)N25—Ni2—N2889.50 (7)
N22—Ni1—N2389.17 (7)N26—Ni2—N28179.69 (7)
N24—Ni1—N2390.56 (7)N27—Ni2—N2890.51 (7)
C1—N21—C4105.34 (16)C21—N25—C24105.49 (17)
C1—N21—Ni1127.44 (14)C21—N25—Ni2127.18 (14)
C4—N21—Ni1127.21 (14)C24—N25—Ni2127.32 (14)
C6—N22—C9105.75 (17)C29—N26—C26105.99 (17)
C6—N22—Ni1126.81 (14)C29—N26—Ni2127.06 (14)
C9—N22—Ni1127.41 (14)C26—N26—Ni2126.95 (14)
C11—N23—C14105.22 (17)C34—N27—C31105.14 (17)
C11—N23—Ni1128.42 (14)C34—N27—Ni2126.75 (14)
C14—N23—Ni1126.36 (15)C31—N27—Ni2128.11 (14)
C16—N24—C19105.63 (17)C36—N28—C39105.69 (17)
C16—N24—Ni1126.66 (15)C36—N28—Ni2126.53 (14)
C19—N24—Ni1127.67 (14)C39—N28—Ni2127.79 (14)
N21—C1—C20126.08 (19)N25—C21—C40126.20 (19)
N21—C1—C2110.00 (18)N25—C21—C22109.76 (18)
C20—C1—C2123.73 (19)C40—C21—C22123.74 (19)
C3—C2—C1107.32 (19)C23—C22—C21107.39 (19)
C3—C2—H2A126.3C23—C22—H22A126.3
C1—C2—H2A126.3C21—C22—H22A126.3
C2—C3—C4107.20 (19)C22—C23—C24107.22 (19)
C2—C3—H3A126.4C22—C23—H23A126.4
C4—C3—H3A126.4C24—C23—H23A126.4
C5—C4—N21124.80 (19)N25—C24—C25124.76 (19)
C5—C4—C3124.75 (19)N25—C24—C23110.01 (18)
N21—C4—C3110.02 (18)C25—C24—C23124.82 (19)
C4—C5—C6121.28 (19)C26—C25—C24121.27 (19)
C4—C5—C5A119.47 (19)C26—C25—C25A118.97 (19)
C6—C5—C5A118.81 (19)C24—C25—C25A119.13 (19)
N22—C6—C5125.59 (19)N26—C26—C25125.34 (19)
N22—C6—C7109.69 (18)N26—C26—C27109.56 (18)
C5—C6—C7124.32 (19)C25—C26—C27124.62 (19)
C8—C7—C6107.20 (19)C28—C27—C26107.15 (19)
C8—C7—H7A126.4C28—C27—H27A126.4
C6—C7—H7A126.4C26—C27—H27A126.4
C7—C8—C9107.54 (19)C27—C28—C29107.59 (19)
C7—C8—H8A126.2C27—C28—H28A126.2
C9—C8—H8A126.2C29—C28—H28A126.2
N22—C9—C10125.45 (19)N26—C29—C30125.74 (19)
N22—C9—C8109.73 (18)N26—C29—C28109.59 (18)
C10—C9—C8124.4 (2)C30—C29—C28124.3 (2)
C11—C10—C9120.3 (2)C31—C30—C29120.24 (19)
C11—C10—C10A120.88 (19)C31—C30—C30A121.19 (19)
C9—C10—C10A118.7 (2)C29—C30—C30A118.46 (19)
N23—C11—C10124.79 (19)C30—C31—N27124.45 (19)
N23—C11—C12109.91 (19)C30—C31—C32125.4 (2)
C10—C11—C12125.0 (2)N27—C31—C32109.63 (19)
C13—C12—C11107.1 (2)C33—C32—C31107.2 (2)
C13—C12—H12A126.4C33—C32—H32A126.4
C11—C12—H12A126.4C31—C32—H32A126.4
C12—C13—C14107.1 (2)C32—C33—C34107.4 (2)
C12—C13—H13A126.5C32—C33—H33A126.3
C14—C13—H13A126.5C34—C33—H33A126.3
C15—C14—N23124.62 (19)C35—C34—N27124.3 (2)
C15—C14—C13124.2 (2)C35—C34—C33124.6 (2)
N23—C14—C13110.51 (19)N27—C34—C33110.51 (19)
C14—C15—C16122.8 (2)C36—C35—C34123.0 (2)
C14—C15—H15A118.6C36—C35—H35A118.5
C16—C15—H15A118.6C34—C35—H35A118.5
C15—C16—N24124.9 (2)C35—C36—N28124.67 (19)
C15—C16—C17124.3 (2)C35—C36—C37124.7 (2)
N24—C16—C17110.40 (19)N28—C36—C37110.19 (19)
C18—C17—C16107.3 (2)C38—C37—C36107.3 (2)
C18—C17—H17A126.4C38—C37—H37A126.3
C16—C17—H17A126.4C36—C37—H37A126.3
C17—C18—C19107.4 (2)C37—C38—C39107.28 (19)
C17—C18—H18A126.3C37—C38—H38A126.4
C19—C18—H18A126.3C39—C38—H38A126.4
C20—C19—N24124.78 (19)N28—C39—C40124.70 (19)
C20—C19—C18125.5 (2)N28—C39—C38109.42 (18)
N24—C19—C18109.19 (19)C40—C39—C38125.3 (2)
C19—C20—C1120.25 (19)C21—C40—C39119.68 (19)
C19—C20—C20A120.60 (19)C21—C40—C40A119.78 (19)
C1—C20—C20A119.02 (19)C39—C40—C40A120.45 (19)
C5—C5A—C5B113.49 (18)C25—C25A—C25B112.54 (18)
C5—C5A—H5AA108.9C25—C25A—H25A109.1
C5B—C5A—H5AA108.9C25B—C25A—H25A109.1
C5—C5A—H5AB108.9C25—C25A—H25B109.1
C5B—C5A—H5AB108.9C25B—C25A—H25B109.1
H5AA—C5A—H5AB107.7H25A—C25A—H25B107.8
C5C—C5B—C5A112.96 (19)C25C—C25B—C25A113.5 (2)
C5C—C5B—H5BA109.0C25C—C25B—H25C108.9
C5A—C5B—H5BA109.0C25A—C25B—H25C108.9
C5C—C5B—H5BB109.0C25C—C25B—H25D108.9
C5A—C5B—H5BB109.0C25A—C25B—H25D108.9
H5BA—C5B—H5BB107.8H25C—C25B—H25D107.7
C5D—C5C—C5B112.5 (2)C25D—C25C—C25B113.8 (2)
C5D—C5C—H5CA109.1C25D—C25C—H25E108.8
C5B—C5C—H5CA109.1C25B—C25C—H25E108.8
C5D—C5C—H5CB109.1C25D—C25C—H25F108.8
C5B—C5C—H5CB109.1C25B—C25C—H25F108.8
H5CA—C5C—H5CB107.8H25E—C25C—H25F107.7
C5C—C5D—H5DA109.5C25C—C25D—H25G109.5
C5C—C5D—H5DB109.5C25C—C25D—H25H109.5
H5DA—C5D—H5DB109.5H25G—C25D—H25H109.5
C5C—C5D—H5DC109.5C25C—C25D—H25I109.5
H5DA—C5D—H5DC109.5H25G—C25D—H25I109.5
H5DB—C5D—H5DC109.5H25H—C25D—H25I109.5
C10—C10A—C10B113.14 (18)C30—C30A—C30B112.90 (18)
C10—C10A—H10A109.0C30—C30A—H30A109.0
C10B—C10A—H10A109.0C30B—C30A—H30A109.0
C10—C10A—H10B109.0C30—C30A—H30B109.0
C10B—C10A—H10B109.0C30B—C30A—H30B109.0
H10A—C10A—H10B107.8H30A—C30A—H30B107.8
C10D—C10B—C10C110.9 (2)C30D—C30B—C30C111.5 (2)
C10D—C10B—C10A109.87 (19)C30D—C30B—C30A112.1 (2)
C10C—C10B—C10A111.9 (2)C30C—C30B—C30A109.69 (19)
C10D—C10B—H10C108.0C30D—C30B—H30C107.8
C10C—C10B—H10C108.0C30C—C30B—H30C107.8
C10A—C10B—H10C108.0C30A—C30B—H30C107.8
C10B—C10C—H10D109.5C30B—C30C—H30D109.5
C10B—C10C—H10E109.5C30B—C30C—H30E109.5
H10D—C10C—H10E109.5H30D—C30C—H30E109.5
C10B—C10C—H10F109.5C30B—C30C—H30F109.5
H10D—C10C—H10F109.5H30D—C30C—H30F109.5
H10E—C10C—H10F109.5H30E—C30C—H30F109.5
C10B—C10D—H10G109.5C30B—C30D—H30G109.5
C10B—C10D—H10H109.5C30B—C30D—H30H109.5
H10G—C10D—H10H109.5H30G—C30D—H30H109.5
C10B—C10D—H10I109.5C30B—C30D—H30I109.5
H10G—C10D—H10I109.5H30G—C30D—H30I109.5
H10H—C10D—H10I109.5H30H—C30D—H30I109.5
C20—C20A—C20B114.66 (18)C40—C40A—C40B114.43 (18)
C20—C20A—H20A108.6C40—C40A—H40A108.7
C20B—C20A—H20A108.6C40B—C40A—H40A108.7
C20—C20A—H20B108.6C40—C40A—H40B108.7
C20B—C20A—H20B108.6C40B—C40A—H40B108.7
H20A—C20A—H20B107.6H40A—C40A—H40B107.6
C20D—C20B—C20C110.9 (2)C40C—C40B—C40A113.18 (19)
C20D—C20B—C20A108.64 (19)C40C—C40B—C40D110.34 (19)
C20C—C20B—C20A112.7 (2)C40A—C40B—C40D108.76 (18)
C20D—C20B—H20C108.2C40C—C40B—H40C108.1
C20C—C20B—H20C108.2C40A—C40B—H40C108.1
C20A—C20B—H20C108.2C40D—C40B—H40C108.1
C20B—C20C—H20D109.5C40B—C40C—H40D109.5
C20B—C20C—H20E109.5C40B—C40C—H40E109.5
H20D—C20C—H20E109.5H40D—C40C—H40E109.5
C20B—C20C—H20F109.5C40B—C40C—H40F109.5
H20D—C20C—H20F109.5H40D—C40C—H40F109.5
H20E—C20C—H20F109.5H40E—C40C—H40F109.5
C20B—C20D—H20G109.5C40B—C40D—H40G109.5
C20B—C20D—H20H109.5C40B—C40D—H40H109.5
H20G—C20D—H20H109.5H40G—C40D—H40H109.5
C20B—C20D—H20I109.5C40B—C40D—H40I109.5
H20G—C20D—H20I109.5H40G—C40D—H40I109.5
H20H—C20D—H20I109.5H40H—C40D—H40I109.5
N22—Ni1—N21—C1162.73 (17)N26—Ni2—N25—C21161.29 (17)
N24—Ni1—N21—C116.04 (17)N28—Ni2—N25—C2119.00 (17)
N22—Ni1—N21—C418.99 (17)N26—Ni2—N25—C2418.48 (17)
N24—Ni1—N21—C4162.24 (17)N28—Ni2—N25—C24161.24 (17)
N21—Ni1—N22—C616.75 (17)N25—Ni2—N26—C29160.60 (17)
N23—Ni1—N22—C6162.36 (17)N27—Ni2—N26—C2919.93 (17)
N21—Ni1—N22—C9161.03 (17)N25—Ni2—N26—C2618.11 (17)
N23—Ni1—N22—C919.86 (17)N27—Ni2—N26—C26161.36 (17)
N22—Ni1—N23—C1118.90 (18)N26—Ni2—N27—C34160.36 (17)
N24—Ni1—N23—C11159.87 (18)N28—Ni2—N27—C3419.36 (17)
N22—Ni1—N23—C14161.52 (17)N26—Ni2—N27—C3121.01 (17)
N24—Ni1—N23—C1419.71 (17)N28—Ni2—N27—C31159.28 (17)
N21—Ni1—N24—C16162.10 (17)N25—Ni2—N28—C36159.91 (17)
N23—Ni1—N24—C1617.01 (17)N27—Ni2—N28—C3619.57 (17)
N21—Ni1—N24—C1920.39 (17)N25—Ni2—N28—C3919.96 (17)
N23—Ni1—N24—C19160.49 (17)N27—Ni2—N28—C39160.56 (17)
C4—N21—C1—C20175.2 (2)C24—N25—C21—C40173.9 (2)
Ni1—N21—C1—C203.3 (3)Ni2—N25—C21—C406.3 (3)
C4—N21—C1—C20.1 (2)C24—N25—C21—C220.0 (2)
Ni1—N21—C1—C2178.46 (14)Ni2—N25—C21—C22179.78 (14)
N21—C1—C2—C32.0 (3)N25—C21—C22—C232.3 (3)
C20—C1—C2—C3173.2 (2)C40—C21—C22—C23171.7 (2)
C1—C2—C3—C43.2 (2)C21—C22—C23—C243.6 (3)
C1—N21—C4—C5170.7 (2)C21—N25—C24—C25170.7 (2)
Ni1—N21—C4—C510.8 (3)Ni2—N25—C24—C259.1 (3)
C1—N21—C4—C32.1 (2)C21—N25—C24—C232.2 (2)
Ni1—N21—C4—C3176.46 (14)Ni2—N25—C24—C23178.00 (14)
C2—C3—C4—C5169.3 (2)C22—C23—C24—N253.7 (3)
C2—C3—C4—N213.5 (2)C22—C23—C24—C25169.2 (2)
N21—C4—C5—C67.1 (3)N25—C24—C25—C268.1 (3)
C3—C4—C5—C6164.7 (2)C23—C24—C25—C26163.8 (2)
N21—C4—C5—C5A179.42 (19)N25—C24—C25—C25A178.94 (19)
C3—C4—C5—C5A7.7 (3)C23—C24—C25—C25A7.0 (3)
C9—N22—C6—C5172.0 (2)C29—N26—C26—C25170.5 (2)
Ni1—N22—C6—C56.2 (3)Ni2—N26—C26—C258.4 (3)
C9—N22—C6—C71.0 (2)C29—N26—C26—C271.8 (2)
Ni1—N22—C6—C7179.15 (14)Ni2—N26—C26—C27179.26 (14)
C4—C5—C6—N229.4 (3)C24—C25—C26—N268.5 (3)
C5A—C5—C6—N22178.18 (19)C25A—C25—C26—N26179.28 (19)
C4—C5—C6—C7162.6 (2)C24—C25—C26—C27162.7 (2)
C5A—C5—C6—C79.8 (3)C25A—C25—C26—C278.1 (3)
N22—C6—C7—C82.6 (2)N26—C26—C27—C283.4 (2)
C5—C6—C7—C8170.5 (2)C25—C26—C27—C28169.0 (2)
C6—C7—C8—C93.1 (2)C26—C27—C28—C293.5 (2)
C6—N22—C9—C10172.2 (2)C26—N26—C29—C30173.1 (2)
Ni1—N22—C9—C109.7 (3)Ni2—N26—C29—C307.9 (3)
C6—N22—C9—C80.9 (2)C26—N26—C29—C280.4 (2)
Ni1—N22—C9—C8177.23 (14)Ni2—N26—C29—C28178.55 (14)
C7—C8—C9—N222.6 (2)C27—C28—C29—N262.5 (2)
C7—C8—C9—C10170.6 (2)C27—C28—C29—C30171.1 (2)
N22—C9—C10—C1110.1 (3)N26—C29—C30—C3111.9 (3)
C8—C9—C10—C11162.0 (2)C28—C29—C30—C31160.7 (2)
N22—C9—C10—C10A173.86 (19)N26—C29—C30—C30A171.94 (19)
C8—C9—C10—C10A14.0 (3)C28—C29—C30—C30A15.5 (3)
C14—N23—C11—C10173.2 (2)C29—C30—C31—N2710.9 (3)
Ni1—N23—C11—C107.1 (3)C30A—C30—C31—N27172.96 (19)
C14—N23—C11—C120.5 (2)C29—C30—C31—C32160.1 (2)
Ni1—N23—C11—C12179.20 (14)C30A—C30—C31—C3216.0 (3)
C9—C10—C11—N2311.3 (3)C34—N27—C31—C30171.49 (19)
C10A—C10—C11—N23172.68 (19)Ni2—N27—C31—C309.6 (3)
C9—C10—C11—C12161.4 (2)C34—N27—C31—C320.7 (2)
C10A—C10—C11—C1214.6 (3)Ni2—N27—C31—C32178.14 (14)
N23—C11—C12—C132.7 (3)C30—C31—C32—C33169.5 (2)
C10—C11—C12—C13170.9 (2)N27—C31—C32—C332.7 (2)
C11—C12—C13—C143.8 (3)C31—C32—C33—C343.4 (2)
C11—N23—C14—C15168.8 (2)C31—N27—C34—C35169.9 (2)
Ni1—N23—C14—C1510.9 (3)Ni2—N27—C34—C359.0 (3)
C11—N23—C14—C131.9 (2)C31—N27—C34—C331.4 (2)
Ni1—N23—C14—C13178.43 (14)Ni2—N27—C34—C33179.73 (14)
C12—C13—C14—C15167.0 (2)C32—C33—C34—C35168.1 (2)
C12—C13—C14—N233.7 (3)C32—C33—C34—N273.1 (2)
N23—C14—C15—C168.7 (3)N27—C34—C35—C369.3 (3)
C13—C14—C15—C16160.8 (2)C33—C34—C35—C36160.7 (2)
C14—C15—C16—N2411.7 (3)C34—C35—C36—N289.1 (3)
C14—C15—C16—C17160.6 (2)C34—C35—C36—C37162.5 (2)
C19—N24—C16—C15172.9 (2)C39—N28—C36—C35170.6 (2)
Ni1—N24—C16—C155.1 (3)Ni2—N28—C36—C359.5 (3)
C19—N24—C16—C170.4 (2)C39—N28—C36—C372.0 (2)
Ni1—N24—C16—C17178.33 (14)Ni2—N28—C36—C37177.93 (14)
C15—C16—C17—C18170.5 (2)C35—C36—C37—C38169.2 (2)
N24—C16—C17—C182.8 (3)N28—C36—C37—C383.4 (2)
C16—C17—C18—C193.9 (3)C36—C37—C38—C393.2 (2)
C16—N24—C19—C20169.7 (2)C36—N28—C39—C40171.8 (2)
Ni1—N24—C19—C2012.4 (3)Ni2—N28—C39—C408.1 (3)
C16—N24—C19—C182.0 (2)C36—N28—C39—C380.0 (2)
Ni1—N24—C19—C18175.91 (14)Ni2—N28—C39—C38179.94 (14)
C17—C18—C19—C20167.8 (2)C37—C38—C39—N282.1 (2)
C17—C18—C19—N243.8 (2)C37—C38—C39—C40169.6 (2)
N24—C19—C20—C17.7 (3)N25—C21—C40—C3913.6 (3)
C18—C19—C20—C1162.7 (2)C22—C21—C40—C39159.5 (2)
N24—C19—C20—C20A176.53 (19)N25—C21—C40—C40A169.83 (19)
C18—C19—C20—C20A13.1 (3)C22—C21—C40—C40A17.1 (3)
N21—C1—C20—C1912.4 (3)N28—C39—C40—C2112.5 (3)
C2—C1—C20—C19162.1 (2)C38—C39—C40—C21158.0 (2)
N21—C1—C20—C20A171.77 (19)N28—C39—C40—C40A170.88 (19)
C2—C1—C20—C20A13.7 (3)C38—C39—C40—C40A18.6 (3)
C4—C5—C5A—C5B88.9 (2)C26—C25—C25A—C25B85.4 (2)
C6—C5—C5A—C5B83.6 (2)C24—C25—C25A—C25B85.6 (2)
C5—C5A—C5B—C5C175.75 (19)C25—C25A—C25B—C25C178.5 (2)
C5A—C5B—C5C—C5D175.8 (2)C25A—C25B—C25C—C25D65.3 (3)
C11—C10—C10A—C10B106.1 (2)C31—C30—C30A—C30B112.5 (2)
C9—C10—C10A—C10B77.8 (3)C29—C30—C30A—C30B71.3 (3)
C10—C10A—C10B—C10D173.6 (2)C30—C30A—C30B—C30D63.3 (3)
C10—C10A—C10B—C10C62.8 (3)C30—C30A—C30B—C30C172.2 (2)
C19—C20—C20A—C20B112.8 (2)C21—C40—C40A—C40B63.0 (3)
C1—C20—C20A—C20B71.3 (3)C39—C40—C40A—C40B120.4 (2)
C20—C20A—C20B—C20D173.34 (19)C40—C40A—C40B—C40C44.7 (3)
C20—C20A—C20B—C20C50.1 (3)C40—C40A—C40B—C40D167.76 (19)

Experimental details

Crystal data
Chemical formula[Ni(C32H36N4)]
Mr535.34
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)10.2557 (14), 11.3234 (15), 23.220 (3)
α, β, γ (°)87.474 (2), 81.501 (2), 89.955 (2)
V3)2664.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.40 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.752, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
34414, 12344, 9370
Rint0.035
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.04
No. of reflections12344
No. of parameters677
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.47

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL-Plus (Sheldrick, 2008).

Selected structural and conformation parameters for (II) (Å). top
Molecule 1Molecule 2
Ni—Nav1.912 (2)1.910 (2)
οa1.9141.910
Θb0.030.03
Δ24c0.300.31
ΔCmd0.610.65
δC5e0.580.61
δC10e0.650.67
δC15e0.600.64
δC20e0.610.66
Notes: (a) core size, average vector length from the geometric centre of the four N atoms to the N atoms; (b) core elongation parameter defined as the difference between the vector lengths (|N21-N22|+|N23-N24|)/2-(|N22-N23|+|N21-N24|)/2; (c) average deviation of the 24 macrocycle atoms from their least-squares plane; (d) average deviation of the Cm C atoms from the N4 plane; (e) average deviation of the Cm C atoms from the N4 plane.
 

Acknowledgements

This work was supported by a grant from Science Foundation Ireland (SFI PI 09/IN.1/B2650).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHope, H. (1994). Prog. Inorg. Chem. 41, 1–19.  CrossRef CAS Web of Science Google Scholar
First citationJentzen, W., Song, X.-Z. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684–1699.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScheidt, W. R. & Lee, Y. J. (1987). Struct. Bond. (Berlin), 64, 1–73.  CrossRef CAS Google Scholar
First citationSenge, M. O. (2005). Acc. Chem. Res. 38, 733–743.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSenge, M. O. (2006). Chem. Commun. pp. 243–256.  Web of Science CrossRef Google Scholar
First citationSenge, M. O. (2012). Acta Cryst. E68, m1191–m1192.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSenge, M. O., Bischoff, I., Nelson, N. Y. & Smith, K. M. (1999). J. Porphyrins Phthalocyanines 3, 99–116.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiehe, A., Shaker, Y. M., Brandt, J. C., Mebs, S. & Senge, M. O. (2005). Tetrahedron, 61, 5535–5564.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds