metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,3-thia­zol-2-aminium) hexa­chlorido­stannate(IV)

aZibo Environmental Protection Bureau, Shandong 255030, People's Republic of China, and bSchool of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
*Correspondence e-mail: xuert@163.com

(Received 1 June 2014; accepted 15 June 2014; online 21 June 2014)

The asymmetric unit of the title compound, (C3H5N2S)2[SnCl6], contains one cation in a general position and one-half of the dianion situated on an inversion center. The geometry of the [SnCl6]2− dianion is almost regular octa­hedral. In the crystal, weak N—H⋯Cl and N—H⋯S hydrogen bonds and electrostatic forces link cations and anions into a three-dimensional framework.

Keywords: crystal structure.

Related literature

For general background to inorganic-organic hybrid compounds, see: Zhang et al. (2009[Zhang, S. J., Lanty, G., Lauret, J. S., Deleporte, E., Audebert, P. & Galmiche, L. (2009). Acta Mater. 57, 3301-3309.]); Descazo et al. (2006[Descazo, A. B., Martinez-Manez, R., Sancenón, F., Hoffmann, K. & Rurack, K. (2006). Angew. Chem. Int. Ed. 45, 5924-5948.]); Li et al. (2007[Li, Y. Y., Zheng, G. L., Lin, C. K. & Lin, J. (2007). Solid State Sci. 9, 855-861.]); Sanchez et al. (2005[Sanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559-3592.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H5N2S)2[SnCl6]

  • Mr = 533.69

  • Monoclinic, P 21 /c

  • a = 7.9185 (7) Å

  • b = 8.6737 (10) Å

  • c = 12.8952 (14) Å

  • β = 101.629 (1)°

  • V = 867.50 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 298 K

  • 0.43 × 0.41 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.398, Tmax = 0.420

  • 4171 measured reflections

  • 1529 independent reflections

  • 1311 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.082

  • S = 1.01

  • 1529 reflections

  • 89 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.89 2.70 3.522 (4) 155
N2—H2C⋯Cl3i 0.89 2.78 3.337 (4) 122
N2—H2B⋯Cl2ii 0.89 2.50 3.353 (4) 162
N2—H2C⋯S1iii 0.89 2.84 3.595 (4) 144
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been devoted to inorganic-organic hybrid materials over recent years·[Zhang et al., 2009]. The supramolecular chemistry, the optical properties and the applications of this kind of hybrid materials have been reviewed in the literatures [Descazo et al., 2006; Li et al., 2007; Sanchez et al., 2005]. Recently, we have prepared the title compound and here its crystal structure is reported.

This title compound contains SnCl6 inorganic anions and organic cations. The SnCl6 inorganic anion adopts an octahedron geometry, with average Sn—Cl distance 2.4278 Å. The inorganic anion and organic cation are linked through N—H···Cl hydrogen bond.

In the crystal structure, intermolecular N—H···Cl and N—H···S hydrogen bonds link cations and anions into a three-dimensioal framework. There are π-π stacking interactions involving the two thiazole rings, with a centroid···centroid distance of 3.769 (3) Å.

Related literature top

For general background to inorganic-organic hybrid compounds, see: Zhang et al. (2009); Descazo et al. (2006); Li et al. (2007), Sanchez et al. (2005).

Experimental top

2-aminothiazole (10 mmol) was dissolved to acid methanol solution (10 ml). Ten minutes later, an methanol solution (10 ml) of stannic chloride (5 mmol) was added with stirring. The mixture was stirred for 4 h. The solution was held at room temperature for about two weeks, whereupon yellow crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H=0.93 Å (aromatic), N—H=0.89 Å (ammonium) and Uiso(H) =1.2Ueq(C), Uiso(H) =1.5Ueq(N)

Structure description top

Considerable attention has been devoted to inorganic-organic hybrid materials over recent years·[Zhang et al., 2009]. The supramolecular chemistry, the optical properties and the applications of this kind of hybrid materials have been reviewed in the literatures [Descazo et al., 2006; Li et al., 2007; Sanchez et al., 2005]. Recently, we have prepared the title compound and here its crystal structure is reported.

This title compound contains SnCl6 inorganic anions and organic cations. The SnCl6 inorganic anion adopts an octahedron geometry, with average Sn—Cl distance 2.4278 Å. The inorganic anion and organic cation are linked through N—H···Cl hydrogen bond.

In the crystal structure, intermolecular N—H···Cl and N—H···S hydrogen bonds link cations and anions into a three-dimensioal framework. There are π-π stacking interactions involving the two thiazole rings, with a centroid···centroid distance of 3.769 (3) Å.

For general background to inorganic-organic hybrid compounds, see: Zhang et al. (2009); Descazo et al. (2006); Li et al. (2007), Sanchez et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (A) -x + 1, -y + 1, -z + 1]. Dashed lines denote weak N—H···Cl hydrogen bonds.
Bis(1,3-thiazol-2-aminium) hexachloridostannate(IV) top
Crystal data top
(C3H5N2S)2[SnCl6]F(000) = 516
Mr = 533.69Dx = 2.043 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.9185 (7) ÅCell parameters from 2903 reflections
b = 8.6737 (10) Åθ = 2.6–28.3°
c = 12.8952 (14) ŵ = 2.63 mm1
β = 101.629 (1)°T = 298 K
V = 867.50 (16) Å3Block, yellow
Z = 20.43 × 0.41 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1529 independent reflections
Radiation source: fine-focus sealed tube1311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.398, Tmax = 0.420k = 1010
4171 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.6842P]
where P = (Fo2 + 2Fc2)/3
1529 reflections(Δ/σ)max = 0.006
89 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C3H5N2S)2[SnCl6]V = 867.50 (16) Å3
Mr = 533.69Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.9185 (7) ŵ = 2.63 mm1
b = 8.6737 (10) ÅT = 298 K
c = 12.8952 (14) Å0.43 × 0.41 × 0.40 mm
β = 101.629 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1529 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1311 reflections with I > 2σ(I)
Tmin = 0.398, Tmax = 0.420Rint = 0.039
4171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.01Δρmax = 0.81 e Å3
1529 reflectionsΔρmin = 0.52 e Å3
89 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.50000.50000.02834 (16)
S11.05330 (13)0.99651 (11)0.36139 (10)0.0395 (3)
Cl10.76310 (12)0.61913 (12)0.59476 (8)0.0430 (3)
Cl20.40115 (11)0.75120 (11)0.42742 (9)0.0422 (3)
Cl30.36409 (13)0.53966 (14)0.65020 (9)0.0438 (3)
N10.7590 (4)0.8875 (4)0.3679 (3)0.0398 (8)
N20.9732 (4)0.6990 (4)0.3846 (3)0.0474 (9)
H2A0.95210.66190.44510.071*
H2B1.08580.69430.38580.071*
H2C0.91670.64300.33080.071*
C10.9217 (5)0.8423 (5)0.3731 (3)0.0338 (9)
C20.7362 (5)1.0453 (6)0.3548 (4)0.0445 (10)
H20.63031.09390.35030.053*
C30.8803 (5)1.1204 (5)0.3493 (3)0.0421 (10)
H30.88701.22640.34000.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0269 (2)0.0288 (3)0.0304 (2)0.00006 (13)0.00865 (16)0.00225 (14)
S10.0343 (5)0.0390 (7)0.0467 (7)0.0025 (4)0.0117 (5)0.0049 (5)
Cl10.0382 (5)0.0456 (6)0.0431 (6)0.0105 (4)0.0028 (4)0.0016 (5)
Cl20.0375 (5)0.0338 (6)0.0569 (7)0.0046 (4)0.0136 (4)0.0113 (5)
Cl30.0439 (5)0.0513 (6)0.0408 (6)0.0007 (5)0.0192 (4)0.0030 (5)
N10.0332 (16)0.048 (2)0.0395 (19)0.0017 (15)0.0110 (14)0.0024 (18)
N20.0449 (19)0.045 (2)0.056 (2)0.0028 (16)0.0174 (17)0.0019 (19)
C10.038 (2)0.038 (2)0.028 (2)0.0007 (17)0.0108 (16)0.0004 (18)
C20.040 (2)0.053 (3)0.040 (2)0.012 (2)0.0048 (18)0.003 (3)
C30.045 (2)0.038 (2)0.044 (2)0.0062 (18)0.0099 (19)0.003 (2)
Geometric parameters (Å, º) top
Sn1—Cl3i2.4224 (10)N1—C21.387 (6)
Sn1—Cl32.4224 (10)N2—C11.307 (5)
Sn1—Cl12.4238 (9)N2—H2A0.8900
Sn1—Cl1i2.4238 (9)N2—H2B0.8900
Sn1—Cl2i2.4374 (10)N2—H2C0.8900
Sn1—Cl22.4374 (10)C2—C31.328 (6)
S1—C11.721 (4)C2—H20.9300
S1—C31.723 (4)C3—H30.9300
N1—C11.335 (5)
Cl3i—Sn1—Cl3180.0C1—N1—C2113.4 (3)
Cl3i—Sn1—Cl189.33 (4)C1—N2—H2A109.5
Cl3—Sn1—Cl190.67 (4)C1—N2—H2B109.5
Cl3i—Sn1—Cl1i90.67 (4)H2A—N2—H2B109.5
Cl3—Sn1—Cl1i89.33 (4)C1—N2—H2C109.5
Cl1—Sn1—Cl1i180.0H2A—N2—H2C109.5
Cl3i—Sn1—Cl2i91.15 (4)H2B—N2—H2C109.5
Cl3—Sn1—Cl2i88.85 (4)N2—C1—N1124.1 (4)
Cl1—Sn1—Cl2i90.61 (3)N2—C1—S1124.6 (3)
Cl1i—Sn1—Cl2i89.39 (3)N1—C1—S1111.3 (3)
Cl3i—Sn1—Cl288.85 (4)C3—C2—N1113.5 (4)
Cl3—Sn1—Cl291.15 (4)C3—C2—H2123.3
Cl1—Sn1—Cl289.39 (3)N1—C2—H2123.3
Cl1i—Sn1—Cl290.61 (3)C2—C3—S1111.4 (4)
Cl2i—Sn1—Cl2180.00 (5)C2—C3—H3124.3
C1—S1—C390.5 (2)S1—C3—H3124.3
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.892.703.522 (4)155
N2—H2C···Cl3i0.892.783.337 (4)122
N2—H2B···Cl2ii0.892.503.353 (4)162
N2—H2C···S1iii0.892.843.595 (4)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.892.703.522 (4)155.0
N2—H2C···Cl3i0.892.783.337 (4)121.8
N2—H2B···Cl2ii0.892.503.353 (4)162.0
N2—H2C···S1iii0.892.843.595 (4)143.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the National Science Foundation of China for its financial support of this project (grant Nos. 50672090 and 50702053).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDescazo, A. B., Martinez-Manez, R., Sancenón, F., Hoffmann, K. & Rurack, K. (2006). Angew. Chem. Int. Ed. 45, 5924–5948.  Google Scholar
First citationLi, Y. Y., Zheng, G. L., Lin, C. K. & Lin, J. (2007). Solid State Sci. 9, 855–861.  Web of Science CSD CrossRef Google Scholar
First citationSanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559–3592.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. J., Lanty, G., Lauret, J. S., Deleporte, E., Audebert, P. & Galmiche, L. (2009). Acta Mater. 57, 3301–3309.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds