organic compounds
2′,7′-Dibromospiro[cyclopropane-1,9′-fluorene]
aDepartment of Chemistry and Chemical Engineering, Lvliang University, Lvliang, Shanxi 033001, People's Republic of China, and bLaboratory of Medicinal Chemistry, Lvliang University, Lvliang, Shanxi 033001, People's Republic of China
*Correspondence e-mail: qinyq2003@163.com
In the title compound, C15H10Br2, each molecule is situated on special postion mm, so the contains one-quater of a molecule. The 2,7-dibromo-9H-fluorene fragment and three spirocyclopropane C atoms lie on different planes, which are perpendicular to each other. In the crystal, π–π interactions between aromatic rings [intercentroid distance = 3.699 (3) Å] pack the molecules into stacks extending in [001].
Keywords: crystal structure.
CCDC reference: 1009321
Related literature
For et al. (2007); Jiang et al. (2005); Wei et al. (2008). For the crystal structures of related compounds, see: Jason et al. (1981); Wang et al. (2007).
properties of fluorene derivatives, see: ChoExperimental
Crystal data
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1009321
https://doi.org/10.1107/S1600536814014585/cv5463sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536814014585/cv5463Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536814014585/cv5463Isup3.cml
The title compound was prepared by the reaction of 2,7-dibromo-9H-fluorene(0.01 mol), 1,2-dibromethane(0.01 mol) and KOH(0.03 mol) in 1,4-dioxane(20 ml) at 358 K for 3 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.
H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances = 0.93–0.97 Å; and with Uiso(H) = 1.2Ueq(C).
Fluorene derivatives have a wide range of applications in
materials (Jiang et al., 2005; Wei et al., 2008) because of their good thermal, light and chemical stability (Cho et al., 2007). Herewith we present the title compound (I), which is a new derivative of fluorene.In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related spiro(cyclopropane-1,9'-(9H)fluorene) (Jason et al., 1981) and 2',7'-diiodospiro(cyclopropane-1,9'-fluorene) (Wang, et al., 2007). In (I), the 2,7-dibromo-9H-fluorene fragment and three carbon atoms of spirocyclopropane lie on different planes m, which are perpendicular to each other, so
contains one fourth of the molecule.In the crystal, π–π interactions between the aromatic rings [intercentroid distance of 3.699 (3) Å] pack molecules into stacks extended in [001].
For
properties of fluorene derivatives, see: Cho et al. (2007); Jiang et al. (2005); Wei et al. (2008). For the crystal structures of related compounds, see: Jason et al. (1981); Wang et al. (2007).Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids. |
C15H10Br2 | Dx = 1.820 Mg m−3 |
Mr = 350.05 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Cmcm | Cell parameters from 933 reflections |
a = 16.9485 (17) Å | θ = 2.2–25.0° |
b = 11.0619 (11) Å | µ = 6.32 mm−1 |
c = 6.8127 (10) Å | T = 293 K |
V = 1277.3 (3) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.20 × 0.20 mm |
F(000) = 680 |
Bruker SMART CCD area-detector diffractometer | Rint = 0.155 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.2° |
phi and ω scans | h = −20→17 |
3276 measured reflections | k = −13→12 |
640 independent reflections | l = −8→7 |
471 reflections with I > 2σ(I) |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0438P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
640 reflections | Δρmax = 0.30 e Å−3 |
53 parameters | Δρmin = −0.68 e Å−3 |
C15H10Br2 | V = 1277.3 (3) Å3 |
Mr = 350.05 | Z = 4 |
Orthorhombic, Cmcm | Mo Kα radiation |
a = 16.9485 (17) Å | µ = 6.32 mm−1 |
b = 11.0619 (11) Å | T = 293 K |
c = 6.8127 (10) Å | 0.30 × 0.20 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 471 reflections with I > 2σ(I) |
3276 measured reflections | Rint = 0.155 |
640 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.30 e Å−3 |
640 reflections | Δρmin = −0.68 e Å−3 |
53 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.31110 (3) | 0.12115 (5) | 0.7500 | 0.0746 (4) | |
C1 | 0.0691 (3) | 0.1592 (4) | 0.7500 | 0.0396 (11) | |
C2 | 0.1489 (3) | 0.1851 (4) | 0.7500 | 0.0470 (12) | |
H2 | 0.1666 | 0.2647 | 0.7500 | 0.056* | |
C3 | 0.2011 (3) | 0.0894 (5) | 0.7500 | 0.0478 (12) | |
C4 | 0.1763 (3) | −0.0277 (4) | 0.7500 | 0.0506 (12) | |
H4 | 0.2130 | −0.0901 | 0.7500 | 0.061* | |
C5 | 0.0965 (3) | −0.0541 (4) | 0.7500 | 0.0450 (12) | |
H5 | 0.0792 | −0.1339 | 0.7500 | 0.054* | |
C6 | 0.0429 (2) | 0.0393 (4) | 0.7500 | 0.0380 (10) | |
C13 | 0.0000 | 0.2412 (5) | 0.7500 | 0.0424 (16) | |
C14 | 0.0000 | 0.3609 (3) | 0.6418 (11) | 0.0725 (18) | |
H14 | 0.0485 | 0.3846 | 0.5754 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0506 (4) | 0.0657 (5) | 0.1074 (6) | 0.0008 (3) | 0.000 | 0.000 |
C1 | 0.054 (3) | 0.0309 (19) | 0.034 (2) | −0.001 (2) | 0.000 | 0.000 |
C2 | 0.056 (3) | 0.034 (2) | 0.051 (3) | −0.004 (2) | 0.000 | 0.000 |
C3 | 0.047 (3) | 0.049 (3) | 0.047 (3) | 0.005 (2) | 0.000 | 0.000 |
C4 | 0.059 (3) | 0.046 (3) | 0.047 (3) | 0.012 (2) | 0.000 | 0.000 |
C5 | 0.063 (3) | 0.031 (2) | 0.041 (3) | 0.003 (2) | 0.000 | 0.000 |
C6 | 0.052 (2) | 0.032 (2) | 0.031 (2) | 0.0006 (19) | 0.000 | 0.000 |
C13 | 0.051 (4) | 0.028 (3) | 0.048 (4) | 0.000 | 0.000 | 0.000 |
C14 | 0.054 (3) | 0.039 (3) | 0.125 (5) | 0.000 | 0.000 | 0.030 (3) |
Br1—C3 | 1.897 (5) | C5—C6 | 1.375 (6) |
C1—C2 | 1.383 (6) | C5—H5 | 0.9299 |
C1—C6 | 1.398 (6) | C6—C6i | 1.454 (8) |
C1—C13 | 1.481 (6) | C13—C1i | 1.481 (6) |
C2—C3 | 1.380 (7) | C13—C14 | 1.516 (7) |
C2—H2 | 0.9300 | C13—C14ii | 1.516 (7) |
C3—C4 | 1.361 (7) | C14—C14ii | 1.475 (14) |
C4—C5 | 1.384 (6) | C14—H14 | 0.9741 |
C4—H4 | 0.9299 | ||
C2—C1—C6 | 120.5 (4) | C4—C5—H5 | 120.5 |
C2—C1—C13 | 130.3 (4) | C5—C6—C1 | 120.2 (4) |
C6—C1—C13 | 109.3 (4) | C5—C6—C6i | 131.3 (3) |
C3—C2—C1 | 117.9 (4) | C1—C6—C6i | 108.5 (3) |
C3—C2—H2 | 121.3 | C1i—C13—C1 | 104.5 (5) |
C1—C2—H2 | 120.8 | C1i—C13—C14 | 122.36 (19) |
C4—C3—C2 | 122.1 (5) | C1—C13—C14 | 122.36 (19) |
C4—C3—Br1 | 118.7 (4) | C1i—C13—C14ii | 122.36 (19) |
C2—C3—Br1 | 119.2 (4) | C1—C13—C14ii | 122.36 (19) |
C3—C4—C5 | 120.2 (4) | C14—C13—C14ii | 58.2 (6) |
C3—C4—H4 | 120.0 | C14ii—C14—C13 | 60.9 (3) |
C5—C4—H4 | 119.8 | C14ii—C14—H14 | 117.6 |
C6—C5—C4 | 119.1 (4) | C13—C14—H14 | 117.4 |
C6—C5—H5 | 120.4 | ||
C6—C1—C2—C3 | 0.0 | C2—C1—C6—C6i | 180.0 |
C13—C1—C2—C3 | 180.0 | C13—C1—C6—C6i | 0.0 |
C1—C2—C3—C4 | 0.0 | C2—C1—C13—C1i | 180.0 |
C1—C2—C3—Br1 | 180.0 | C6—C1—C13—C1i | 0.0 |
C2—C3—C4—C5 | 0.0 | C2—C1—C13—C14 | 35.1 (4) |
Br1—C3—C4—C5 | 180.0 | C6—C1—C13—C14 | −144.9 (4) |
C3—C4—C5—C6 | 0.0 | C2—C1—C13—C14ii | −35.1 (4) |
C4—C5—C6—C1 | 0.0 | C6—C1—C13—C14ii | 144.9 (4) |
C4—C5—C6—C6i | 180.0 | C1i—C13—C14—C14ii | 110.6 (3) |
C2—C1—C6—C5 | 0.0 | C1—C13—C14—C14ii | −110.6 (3) |
C13—C1—C6—C5 | 180.0 |
Symmetry codes: (i) −x, y, z; (ii) x, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C15H10Br2 |
Mr | 350.05 |
Crystal system, space group | Orthorhombic, Cmcm |
Temperature (K) | 293 |
a, b, c (Å) | 16.9485 (17), 11.0619 (11), 6.8127 (10) |
V (Å3) | 1277.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.32 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3276, 640, 471 |
Rint | 0.155 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.100, 0.98 |
No. of reflections | 640 |
No. of parameters | 53 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.68 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors thank the Colleges and Universities Technology Project of Shanxi Province (grant No. 20121033) and the Natural Science Fund of Lvliang University (ZRXN201206 and ZRXN201210).
References
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cho, S. Y., Grimsdale, A. C., Jones, D. J., Watkins, S. E. & Holmes, A. B. (2007). J. Am. Chem. Soc. 39, 11910–11911. Web of Science CrossRef Google Scholar
Jason, M. E., Gallucci, J. C. & Ibers, J. A. (1981). Isr. J. Chem. 21, 95–104. CrossRef CAS Google Scholar
Jiang, H., Feng, J., Wen, G., Wei, W., Xu, X. & Huang, W. (2005). Prog. Chem. 17, 818–825. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Shao, H., Ye, J., Zhang, L. & Lu, P. (2007). Adv. Funct. Mater. 17, 253–263. Web of Science CSD CrossRef CAS Google Scholar
Wei, R., Liu, Y., Guo, J., Liu, B. & Zhang, D. (2008). Chin. J. Org. Chem. 28, 390–397. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Fluorene derivatives have a wide range of applications in electroluminescence materials (Jiang et al., 2005; Wei et al., 2008) because of their good thermal, light and chemical stability (Cho et al., 2007). Herewith we present the title compound (I), which is a new derivative of fluorene.
In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related spiro(cyclopropane-1,9'-(9H)fluorene) (Jason et al., 1981) and 2',7'-diiodospiro(cyclopropane-1,9'-fluorene) (Wang, et al., 2007). In (I), the 2,7-dibromo-9H-fluorene fragment and three carbon atoms of spirocyclopropane lie on different planes m, which are perpendicular to each other, so asymmetric unit contains one fourth of the molecule.
In the crystal, π–π interactions between the aromatic rings [intercentroid distance of 3.699 (3) Å] pack molecules into stacks extended in [001].