organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′,7′-Di­bromo­spiro­[cyclo­propane-1,9′-fluorene]

aDepartment of Chemistry and Chemical Engineering, Lvliang University, Lvliang, Shanxi 033001, People's Republic of China, and bLaboratory of Medicinal Chemistry, Lvliang University, Lvliang, Shanxi 033001, People's Republic of China
*Correspondence e-mail: qinyq2003@163.com

(Received 3 June 2014; accepted 20 June 2014; online 25 June 2014)

In the title compound, C15H10Br2, each mol­ecule is situated on special postion mm, so the asymmetric unit contains one-quater of a mol­ecule. The 2,7-di­bromo-9H-fluorene fragment and three spiro­cyclo­propane C atoms lie on different planes, which are perpendicular to each other. In the crystal, ππ inter­actions between aromatic rings [inter­centroid distance = 3.699 (3) Å] pack the mol­ecules into stacks extending in [001].

Keywords: crystal structure.

Related literature

For electroluminescence properties of fluorene derivatives, see: Cho et al. (2007[Cho, S. Y., Grimsdale, A. C., Jones, D. J., Watkins, S. E. & Holmes, A. B. (2007). J. Am. Chem. Soc. 39, 11910-11911.]); Jiang et al. (2005[Jiang, H., Feng, J., Wen, G., Wei, W., Xu, X. & Huang, W. (2005). Prog. Chem. 17, 818-825.]); Wei et al. (2008[Wei, R., Liu, Y., Guo, J., Liu, B. & Zhang, D. (2008). Chin. J. Org. Chem. 28, 390-397.]). For the crystal structures of related compounds, see: Jason et al. (1981[Jason, M. E., Gallucci, J. C. & Ibers, J. A. (1981). Isr. J. Chem. 21, 95-104.]); Wang et al. (2007[Wang, Z., Shao, H., Ye, J., Zhang, L. & Lu, P. (2007). Adv. Funct. Mater. 17, 253-263.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Br2

  • Mr = 350.05

  • Orthorhombic, C m c m

  • a = 16.9485 (17) Å

  • b = 11.0619 (11) Å

  • c = 6.8127 (10) Å

  • V = 1277.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.32 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 3276 measured reflections

  • 640 independent reflections

  • 471 reflections with I > 2σ(I)

  • Rint = 0.155

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 0.98

  • 640 reflections

  • 53 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Fluorene derivatives have a wide range of applications in electroluminescence materials (Jiang et al., 2005; Wei et al., 2008) because of their good thermal, light and chemical stability (Cho et al., 2007). Herewith we present the title compound (I), which is a new derivative of fluorene.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related spiro(cyclopropane-1,9'-(9H)fluorene) (Jason et al., 1981) and 2',7'-diiodospiro(cyclopropane-1,9'-fluorene) (Wang, et al., 2007). In (I), the 2,7-dibromo-9H-fluorene fragment and three carbon atoms of spirocyclopropane lie on different planes m, which are perpendicular to each other, so asymmetric unit contains one fourth of the molecule.

In the crystal, ππ interactions between the aromatic rings [intercentroid distance of 3.699 (3) Å] pack molecules into stacks extended in [001].

Related literature top

For electroluminescence properties of fluorene derivatives, see: Cho et al. (2007); Jiang et al. (2005); Wei et al. (2008). For the crystal structures of related compounds, see: Jason et al. (1981); Wang et al. (2007).

Experimental top

The title compound was prepared by the reaction of 2,7-dibromo-9H-fluorene(0.01 mol), 1,2-dibromethane(0.01 mol) and KOH(0.03 mol) in 1,4-dioxane(20 ml) at 358 K for 3 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances = 0.93–0.97 Å; and with Uiso(H) = 1.2Ueq(C).

Structure description top

Fluorene derivatives have a wide range of applications in electroluminescence materials (Jiang et al., 2005; Wei et al., 2008) because of their good thermal, light and chemical stability (Cho et al., 2007). Herewith we present the title compound (I), which is a new derivative of fluorene.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related spiro(cyclopropane-1,9'-(9H)fluorene) (Jason et al., 1981) and 2',7'-diiodospiro(cyclopropane-1,9'-fluorene) (Wang, et al., 2007). In (I), the 2,7-dibromo-9H-fluorene fragment and three carbon atoms of spirocyclopropane lie on different planes m, which are perpendicular to each other, so asymmetric unit contains one fourth of the molecule.

In the crystal, ππ interactions between the aromatic rings [intercentroid distance of 3.699 (3) Å] pack molecules into stacks extended in [001].

For electroluminescence properties of fluorene derivatives, see: Cho et al. (2007); Jiang et al. (2005); Wei et al. (2008). For the crystal structures of related compounds, see: Jason et al. (1981); Wang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids.
2',7'-Dibromospiro[cyclopropane-1,9'-fluorene] top
Crystal data top
C15H10Br2Dx = 1.820 Mg m3
Mr = 350.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 933 reflections
a = 16.9485 (17) Åθ = 2.2–25.0°
b = 11.0619 (11) ŵ = 6.32 mm1
c = 6.8127 (10) ÅT = 293 K
V = 1277.3 (3) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 680
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.155
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
phi and ω scansh = 2017
3276 measured reflectionsk = 1312
640 independent reflectionsl = 87
471 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
640 reflectionsΔρmax = 0.30 e Å3
53 parametersΔρmin = 0.68 e Å3
Crystal data top
C15H10Br2V = 1277.3 (3) Å3
Mr = 350.05Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 16.9485 (17) ŵ = 6.32 mm1
b = 11.0619 (11) ÅT = 293 K
c = 6.8127 (10) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
471 reflections with I > 2σ(I)
3276 measured reflectionsRint = 0.155
640 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.98Δρmax = 0.30 e Å3
640 reflectionsΔρmin = 0.68 e Å3
53 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.31110 (3)0.12115 (5)0.75000.0746 (4)
C10.0691 (3)0.1592 (4)0.75000.0396 (11)
C20.1489 (3)0.1851 (4)0.75000.0470 (12)
H20.16660.26470.75000.056*
C30.2011 (3)0.0894 (5)0.75000.0478 (12)
C40.1763 (3)0.0277 (4)0.75000.0506 (12)
H40.21300.09010.75000.061*
C50.0965 (3)0.0541 (4)0.75000.0450 (12)
H50.07920.13390.75000.054*
C60.0429 (2)0.0393 (4)0.75000.0380 (10)
C130.00000.2412 (5)0.75000.0424 (16)
C140.00000.3609 (3)0.6418 (11)0.0725 (18)
H140.04850.38460.57540.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0506 (4)0.0657 (5)0.1074 (6)0.0008 (3)0.0000.000
C10.054 (3)0.0309 (19)0.034 (2)0.001 (2)0.0000.000
C20.056 (3)0.034 (2)0.051 (3)0.004 (2)0.0000.000
C30.047 (3)0.049 (3)0.047 (3)0.005 (2)0.0000.000
C40.059 (3)0.046 (3)0.047 (3)0.012 (2)0.0000.000
C50.063 (3)0.031 (2)0.041 (3)0.003 (2)0.0000.000
C60.052 (2)0.032 (2)0.031 (2)0.0006 (19)0.0000.000
C130.051 (4)0.028 (3)0.048 (4)0.0000.0000.000
C140.054 (3)0.039 (3)0.125 (5)0.0000.0000.030 (3)
Geometric parameters (Å, º) top
Br1—C31.897 (5)C5—C61.375 (6)
C1—C21.383 (6)C5—H50.9299
C1—C61.398 (6)C6—C6i1.454 (8)
C1—C131.481 (6)C13—C1i1.481 (6)
C2—C31.380 (7)C13—C141.516 (7)
C2—H20.9300C13—C14ii1.516 (7)
C3—C41.361 (7)C14—C14ii1.475 (14)
C4—C51.384 (6)C14—H140.9741
C4—H40.9299
C2—C1—C6120.5 (4)C4—C5—H5120.5
C2—C1—C13130.3 (4)C5—C6—C1120.2 (4)
C6—C1—C13109.3 (4)C5—C6—C6i131.3 (3)
C3—C2—C1117.9 (4)C1—C6—C6i108.5 (3)
C3—C2—H2121.3C1i—C13—C1104.5 (5)
C1—C2—H2120.8C1i—C13—C14122.36 (19)
C4—C3—C2122.1 (5)C1—C13—C14122.36 (19)
C4—C3—Br1118.7 (4)C1i—C13—C14ii122.36 (19)
C2—C3—Br1119.2 (4)C1—C13—C14ii122.36 (19)
C3—C4—C5120.2 (4)C14—C13—C14ii58.2 (6)
C3—C4—H4120.0C14ii—C14—C1360.9 (3)
C5—C4—H4119.8C14ii—C14—H14117.6
C6—C5—C4119.1 (4)C13—C14—H14117.4
C6—C5—H5120.4
C6—C1—C2—C30.0C2—C1—C6—C6i180.0
C13—C1—C2—C3180.0C13—C1—C6—C6i0.0
C1—C2—C3—C40.0C2—C1—C13—C1i180.0
C1—C2—C3—Br1180.0C6—C1—C13—C1i0.0
C2—C3—C4—C50.0C2—C1—C13—C1435.1 (4)
Br1—C3—C4—C5180.0C6—C1—C13—C14144.9 (4)
C3—C4—C5—C60.0C2—C1—C13—C14ii35.1 (4)
C4—C5—C6—C10.0C6—C1—C13—C14ii144.9 (4)
C4—C5—C6—C6i180.0C1i—C13—C14—C14ii110.6 (3)
C2—C1—C6—C50.0C1—C13—C14—C14ii110.6 (3)
C13—C1—C6—C5180.0
Symmetry codes: (i) x, y, z; (ii) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H10Br2
Mr350.05
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)293
a, b, c (Å)16.9485 (17), 11.0619 (11), 6.8127 (10)
V3)1277.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.32
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3276, 640, 471
Rint0.155
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 0.98
No. of reflections640
No. of parameters53
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.68

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Colleges and Universities Technology Project of Shanxi Province (grant No. 20121033) and the Natural Science Fund of Lvliang University (ZRXN201206 and ZRXN201210).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, S. Y., Grimsdale, A. C., Jones, D. J., Watkins, S. E. & Holmes, A. B. (2007). J. Am. Chem. Soc. 39, 11910–11911.  Web of Science CrossRef Google Scholar
First citationJason, M. E., Gallucci, J. C. & Ibers, J. A. (1981). Isr. J. Chem. 21, 95–104.  CrossRef CAS Google Scholar
First citationJiang, H., Feng, J., Wen, G., Wei, W., Xu, X. & Huang, W. (2005). Prog. Chem. 17, 818–825.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Shao, H., Ye, J., Zhang, L. & Lu, P. (2007). Adv. Funct. Mater. 17, 253–263.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, R., Liu, Y., Guo, J., Liu, B. & Zhang, D. (2008). Chin. J. Org. Chem. 28, 390–397.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds