organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-1-[1-(4-bromo­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]ethanone

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, bDepartment of General and Theoretical Physics, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 12 June 2014; accepted 20 June 2014; online 25 June 2014)

The asymmetric unit of the title compound, C11H9Br2N3O, contains two crystallographically independent mol­ecules with similar geometries; the Br—C—C=O torsion angles are 1.2 (4) and −2.8 (4)°, and the benzene and triazole rings are inclined o one another by 51.90 (16) and 51.88 (16)°. The two molecules are related by a pseudo-screw 21 axis directed along [100]. In the crystal, mol­ecules are linked into a three-dimensional network by weak C—H⋯O and C—H⋯N hydrogen bonds and secondary Br⋯Br [3.5991 (8) and 3.6503 (9) Å] inter­actions.

Keywords: crystal structure.

Related literature

For applications of 1,2,3-triazoles, see recent reviews by Agalave et al. (2011[Agalave, S. G., Maujan, S. R. & Pore, V. S. (2011). Chem. Asian J. 6, 2696-2718.]); Thirumurugan et al. (2013[Thirumurugan, P., Matosiuk, D. & Jozwiak, K. (2013). Chem. Rev. 113, 4905-4979.]). For the crystal structures of related compounds, see: Danence et al. (2011[Danence, L. J. T., Gao, Y., Li, M., Huang, Y. & Wang, J. (2011). Chem. Eur. J. 17, 3584-3587.]); Zeghada et al. (2011[Zeghada, S., Bentabed-Ababsa, G., Derdour, A., Abdelmounim, S., Domingo, L. R., Saez, J. A., Roisnel, T., Nassar, E. & Mongin, F. (2011). Org. Biomol. Chem. 9, 4295-4305.]); Abdel-Wahab, Abdel-Latif et al. (2013[Abdel-Wahab, B. F., Abdel-Latif, E., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o639-o640.]); Abdel-Wahab, Mohamed et al. (2013[Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o638.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9Br2N3O

  • Mr = 359.03

  • Monoclinic, P n

  • a = 3.9699 (10) Å

  • b = 19.437 (5) Å

  • c = 15.402 (4) Å

  • β = 90.908 (3)°

  • V = 1188.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.81 mm−1

  • T = 100 K

  • 0.30 × 0.03 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.235, Tmax = 0.822

  • 18272 measured reflections

  • 6924 independent reflections

  • 6426 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.04

  • 6924 reflections

  • 309 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.59 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3428 Friedel pairs

  • Absolute structure parameter: 0.032 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.95 2.44 3.205 (4) 137
C13—H13B⋯N6ii 0.99 2.49 3.467 (4) 170
C21—H21⋯O2iii 0.95 2.45 3.210 (4) 137
C24—H24B⋯N3 0.99 2.49 3.482 (4) 177
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-H-1,2,3-Triazole occupies a special place in heterocyclic chemistry because it is the core structure of many agents of various interests (used as pharmaceuticals, afrochemicals etc.). These compounds and their derivatives demonstrate antiviral, antimicrobial, anticancer activities as well as the inhibition activity of VIM-2 Metallo-β-Lactamase, and α-Glucosidases (Agalave et al., 2011; Thirumurugan et al., 2013). In this work, the title compound was prepared by the reaction of 1-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)ethanone with bromine (Figure 1), and its structure was unambiguously established by the X-ray diffraction study.

The title compound (I) crystallizes in the non-centrosymmetric monoclinic space group Pn with two crystallographically independent molecules in the asymmetric unit (Figure 2). The two crystallographically independent molecules are related by pseudo-screw axis 21 directed in [100] and, consequently, have very similar geometries (Figure 3). The position of the pseudo-screw axis 21 with the approximate coordinates of (x, 0.75, 0.55) is shifted relative to the crystallographic position of (x, 0.75, 0.75) by ca. 0.20 Å towards the c axis, apparently, due to the formation of the more dense crystal packing as well as different non-valent intermolecular interactions.

The bond lengths and angles within the molecules of I are in a good agreement with those found in the related compounds (Danence et al. 2011; Zeghada et al. 2011; Abdel-Wahab, Abdel-Latif et al. 2013; Abdel-Wahab, Mohamed et al. 2013). The 2-bromo-1-ethanone substituent in the molecules of I has a significantly flattened conformation (the Br–C–CO torsion angles are 1.2 (4) and -2.8 (4)° for the two independent molecules, respectively), with the carbonyl group directed toward the methyl substituent, and lies almost within the triazole plane (r.m.s. deviations are 0.037 and 0.023 Å for the two independent molecules, respectively) (Figure 2). The bromo-benzene substituent is twisted by 52.30 (6) and 51.81 (6)° (for the two independent molecules, respectively) relative to this main plane of the molecule.

In the crystal, the molecules of I are linked into three-dimensional framework by intermolecular C–H···O and C–H···N hydrogen bonds (Table 1) as well as secondary Br1···Br2i (3.5991 (8) Å) and Br3···Br4ii (3.6503 (9) Å) interactions [symmetry codes: (i) x, y, z+1; (ii) x, y, z-1].

Related literature top

For applications of 1,2,3-triazoles, see recent reviews by Agalave et al. (2011); Thirumurugan et al. (2013). For the crystal structures of related compounds, see: Danence et al. (2011); Zeghada et al. (2011); Abdel-Wahab, Abdel-Latif et al. (2013); Abdel-Wahab, Mohamed et al. (2013).

Experimental top

Bromine (1.6 g, 10 mmol) was slowly added to a solution of 1-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)ethanone (2.8 g, 10 mmol) in AcOH (30 mL). The mixture was stirred at 80 oC for 20 min. Then the reaction mixture was cooled to room temperature. The crude precipitate formed was filtrated, washed with H2O (20 mL), dried, and re-crystallized from EtOH. Yield is 83%. The single-crystals of the product I were obtained by slow crystallization from EtOH. M.p. = 398-399 K. IR (KBr), ν/cm-1: 3301, 1693, 1550, 1495, 1181, 972, 872. 1H NMR (600 MHz, DMSO-d6, 304 K): 2.55 (s, 3H), 4.88 (s, 2H), 7.62 (d, 2H, J = 8.8), 7.87 (d, 2H, J = 8.8). Anal. Calcd for C11H9Br2N3O: C, 42.00; H, 2.88. Found: C, 42.07; H, 2.92.

Refinement top

The absolute configuration of I was objectively determined by the refinement of Flack parameter (3428 (99%) Friedel pairs measured) to 0.032 (7). The calculated Hooft parameter is equal to 0.023 (6).

All hydrogen atoms were placed in the calculated positions with C–H = 0.95 (aryl-H), 0.98 (methyl-H) and 0.99 (methylene-H) Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2-1.5Ueq(C).

Structure description top

1-H-1,2,3-Triazole occupies a special place in heterocyclic chemistry because it is the core structure of many agents of various interests (used as pharmaceuticals, afrochemicals etc.). These compounds and their derivatives demonstrate antiviral, antimicrobial, anticancer activities as well as the inhibition activity of VIM-2 Metallo-β-Lactamase, and α-Glucosidases (Agalave et al., 2011; Thirumurugan et al., 2013). In this work, the title compound was prepared by the reaction of 1-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)ethanone with bromine (Figure 1), and its structure was unambiguously established by the X-ray diffraction study.

The title compound (I) crystallizes in the non-centrosymmetric monoclinic space group Pn with two crystallographically independent molecules in the asymmetric unit (Figure 2). The two crystallographically independent molecules are related by pseudo-screw axis 21 directed in [100] and, consequently, have very similar geometries (Figure 3). The position of the pseudo-screw axis 21 with the approximate coordinates of (x, 0.75, 0.55) is shifted relative to the crystallographic position of (x, 0.75, 0.75) by ca. 0.20 Å towards the c axis, apparently, due to the formation of the more dense crystal packing as well as different non-valent intermolecular interactions.

The bond lengths and angles within the molecules of I are in a good agreement with those found in the related compounds (Danence et al. 2011; Zeghada et al. 2011; Abdel-Wahab, Abdel-Latif et al. 2013; Abdel-Wahab, Mohamed et al. 2013). The 2-bromo-1-ethanone substituent in the molecules of I has a significantly flattened conformation (the Br–C–CO torsion angles are 1.2 (4) and -2.8 (4)° for the two independent molecules, respectively), with the carbonyl group directed toward the methyl substituent, and lies almost within the triazole plane (r.m.s. deviations are 0.037 and 0.023 Å for the two independent molecules, respectively) (Figure 2). The bromo-benzene substituent is twisted by 52.30 (6) and 51.81 (6)° (for the two independent molecules, respectively) relative to this main plane of the molecule.

In the crystal, the molecules of I are linked into three-dimensional framework by intermolecular C–H···O and C–H···N hydrogen bonds (Table 1) as well as secondary Br1···Br2i (3.5991 (8) Å) and Br3···Br4ii (3.6503 (9) Å) interactions [symmetry codes: (i) x, y, z+1; (ii) x, y, z-1].

For applications of 1,2,3-triazoles, see recent reviews by Agalave et al. (2011); Thirumurugan et al. (2013). For the crystal structures of related compounds, see: Danence et al. (2011); Zeghada et al. (2011); Abdel-Wahab, Abdel-Latif et al. (2013); Abdel-Wahab, Mohamed et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthesis of 7-nitro-2-phenylimidazo[2,1-b][1,3]benzothiazole.
[Figure 2] Fig. 2. Two independent molecules in the asymmetric unit of I. Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.
[Figure 3] Fig. 3. Superposition of the two independent molecules of I.
2-Bromo-1-[1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl]ethanone top
Crystal data top
C11H9Br2N3OF(000) = 696
Mr = 359.03Dx = 2.007 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 9920 reflections
a = 3.9699 (10) Åθ = 2.5–32.2°
b = 19.437 (5) ŵ = 6.81 mm1
c = 15.402 (4) ÅT = 100 K
β = 90.908 (3)°Needle, colourless
V = 1188.3 (5) Å30.30 × 0.03 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6924 independent reflections
Radiation source: fine-focus sealed tube6426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 55
Tmin = 0.235, Tmax = 0.822k = 2627
18272 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0221P)2 + 0.4369P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6924 reflectionsΔρmax = 0.72 e Å3
309 parametersΔρmin = 0.59 e Å3
2 restraintsAbsolute structure: Flack (1983), 3428 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.032 (7)
Crystal data top
C11H9Br2N3OV = 1188.3 (5) Å3
Mr = 359.03Z = 4
Monoclinic, PnMo Kα radiation
a = 3.9699 (10) ŵ = 6.81 mm1
b = 19.437 (5) ÅT = 100 K
c = 15.402 (4) Å0.30 × 0.03 × 0.03 mm
β = 90.908 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6426 reflections with I > 2σ(I)
Tmin = 0.235, Tmax = 0.822Rint = 0.028
18272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.72 e Å3
S = 1.04Δρmin = 0.59 e Å3
6924 reflectionsAbsolute structure: Flack (1983), 3428 Friedel pairs
309 parametersAbsolute structure parameter: 0.032 (7)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.07896 (7)0.863924 (17)1.13454 (2)0.02912 (7)
Br20.64876 (8)0.877518 (19)0.33776 (2)0.03474 (8)
O10.8585 (6)0.94649 (11)0.50458 (14)0.0356 (5)
N10.7274 (6)0.85632 (12)0.75006 (16)0.0257 (5)
N20.5627 (7)0.79965 (16)0.71724 (18)0.0297 (6)
N30.5412 (7)0.80839 (14)0.63358 (19)0.0281 (5)
C40.6933 (8)0.86928 (14)0.61085 (19)0.0251 (5)
C50.8151 (7)0.90045 (14)0.68650 (18)0.0250 (5)
C60.8065 (7)0.85860 (15)0.84105 (19)0.0257 (5)
C70.9625 (7)0.80248 (15)0.87919 (18)0.0270 (6)
H71.01340.76300.84540.032*
C81.0442 (8)0.80396 (16)0.9666 (2)0.0290 (6)
H81.15260.76580.99360.035*
C90.9654 (7)0.86206 (14)1.01434 (18)0.0243 (5)
C100.8081 (8)0.91854 (15)0.97703 (19)0.0282 (6)
H100.75620.95781.01110.034*
C110.7278 (8)0.91690 (15)0.8897 (2)0.0281 (6)
H110.61970.95510.86270.034*
C120.7233 (7)0.89258 (15)0.52097 (19)0.0258 (5)
C130.5797 (8)0.84371 (17)0.4533 (2)0.0270 (6)
H13A0.33540.83770.46270.032*
H13B0.68900.79820.45980.032*
C141.0031 (8)0.96530 (16)0.7007 (2)0.0304 (6)
H14A1.12970.96260.75570.046*
H14B0.84451.00390.70270.046*
H14C1.15980.97240.65300.046*
Br30.55988 (7)0.633881 (18)0.03542 (2)0.03091 (8)
Br40.09749 (12)0.62103 (2)0.75847 (3)0.04919 (11)
O20.3422 (6)0.55351 (11)0.59535 (15)0.0374 (5)
N40.2428 (7)0.64530 (13)0.34827 (17)0.0287 (5)
N50.0796 (7)0.70220 (15)0.3795 (2)0.0320 (6)
N60.0522 (7)0.69383 (14)0.46281 (19)0.0304 (5)
C150.2015 (8)0.63260 (15)0.4854 (2)0.0264 (6)
C160.3230 (8)0.60064 (15)0.41271 (19)0.0268 (5)
C170.3215 (7)0.64193 (15)0.2580 (2)0.0274 (6)
C180.4783 (8)0.69686 (15)0.21998 (19)0.0281 (6)
H180.53730.73620.25350.034*
C190.5504 (8)0.69455 (16)0.1318 (2)0.0274 (6)
H190.65880.73210.10440.033*
C200.4609 (7)0.63628 (15)0.08477 (19)0.0261 (6)
C210.3038 (7)0.58060 (15)0.12237 (19)0.0278 (6)
H210.24710.54120.08880.033*
C220.2301 (8)0.58320 (15)0.21009 (19)0.0272 (6)
H220.11960.54580.23730.033*
C230.2154 (8)0.60812 (15)0.5765 (2)0.0286 (6)
C240.0729 (9)0.65717 (17)0.6432 (2)0.0287 (6)
H24A0.16530.66710.62790.034*
H24B0.19900.70110.64120.034*
C250.5068 (8)0.53557 (16)0.4007 (2)0.0300 (6)
H25A0.64220.53850.34820.045*
H25B0.34550.49760.39490.045*
H25C0.65510.52730.45110.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03673 (15)0.02734 (16)0.02318 (14)0.00060 (12)0.00311 (11)0.00161 (13)
Br20.04801 (19)0.03298 (17)0.02315 (15)0.00318 (14)0.00196 (12)0.00142 (13)
O10.0514 (14)0.0268 (11)0.0287 (11)0.0091 (10)0.0011 (10)0.0018 (8)
N10.0319 (12)0.0221 (11)0.0229 (11)0.0024 (9)0.0001 (9)0.0005 (9)
N20.0389 (14)0.0273 (15)0.0229 (13)0.0062 (11)0.0002 (10)0.0017 (11)
N30.0363 (13)0.0253 (13)0.0226 (11)0.0035 (11)0.0004 (9)0.0014 (11)
C40.0283 (13)0.0211 (13)0.0257 (13)0.0016 (10)0.0003 (11)0.0007 (10)
C50.0290 (13)0.0198 (12)0.0261 (13)0.0008 (10)0.0028 (10)0.0014 (10)
C60.0297 (13)0.0254 (13)0.0220 (12)0.0005 (11)0.0024 (11)0.0008 (10)
C70.0344 (15)0.0219 (13)0.0247 (13)0.0007 (11)0.0026 (11)0.0026 (10)
C80.0351 (14)0.0228 (14)0.0291 (15)0.0025 (12)0.0024 (11)0.0005 (13)
C90.0293 (14)0.0223 (13)0.0213 (12)0.0028 (10)0.0010 (10)0.0015 (10)
C100.0336 (15)0.0216 (13)0.0293 (14)0.0007 (11)0.0020 (12)0.0028 (11)
C110.0320 (14)0.0233 (13)0.0291 (14)0.0050 (11)0.0009 (11)0.0005 (11)
C120.0301 (13)0.0233 (13)0.0239 (13)0.0005 (10)0.0027 (10)0.0004 (10)
C130.0317 (15)0.0263 (16)0.0230 (15)0.0013 (12)0.0022 (12)0.0030 (13)
C140.0377 (16)0.0213 (14)0.0321 (15)0.0044 (12)0.0067 (13)0.0017 (11)
Br30.03856 (16)0.02766 (17)0.02664 (16)0.00068 (13)0.00437 (12)0.00241 (13)
Br40.0812 (3)0.0374 (2)0.02920 (19)0.00705 (19)0.00878 (18)0.00159 (15)
O20.0526 (14)0.0267 (11)0.0331 (12)0.0070 (10)0.0034 (10)0.0033 (9)
N40.0356 (13)0.0220 (11)0.0284 (12)0.0018 (9)0.0011 (10)0.0014 (9)
N50.0417 (15)0.0234 (14)0.0309 (15)0.0055 (11)0.0008 (11)0.0035 (12)
N60.0375 (13)0.0245 (13)0.0291 (13)0.0048 (11)0.0032 (10)0.0029 (11)
C150.0299 (14)0.0241 (14)0.0252 (13)0.0010 (11)0.0035 (12)0.0016 (10)
C160.0305 (14)0.0222 (13)0.0279 (13)0.0015 (11)0.0034 (11)0.0000 (11)
C170.0275 (14)0.0255 (14)0.0292 (14)0.0026 (11)0.0005 (11)0.0028 (11)
C180.0335 (15)0.0225 (13)0.0282 (14)0.0024 (11)0.0031 (11)0.0016 (11)
C190.0340 (14)0.0202 (13)0.0279 (14)0.0024 (12)0.0035 (11)0.0025 (13)
C200.0278 (14)0.0250 (14)0.0253 (13)0.0018 (10)0.0006 (11)0.0027 (10)
C210.0336 (15)0.0228 (13)0.0269 (13)0.0001 (11)0.0003 (11)0.0062 (10)
C220.0318 (14)0.0240 (13)0.0258 (13)0.0060 (11)0.0002 (11)0.0021 (11)
C230.0332 (14)0.0227 (13)0.0300 (14)0.0027 (11)0.0014 (12)0.0037 (11)
C240.0369 (15)0.0241 (15)0.0251 (15)0.0011 (13)0.0013 (12)0.0015 (13)
C250.0358 (16)0.0249 (15)0.0294 (14)0.0001 (12)0.0040 (12)0.0007 (11)
Geometric parameters (Å, º) top
Br1—C91.899 (3)Br3—C201.899 (3)
Br2—C131.920 (3)Br4—C241.911 (3)
O1—C121.206 (4)O2—C231.208 (4)
N1—C51.351 (4)N4—C161.353 (4)
N1—N21.373 (4)N4—N51.373 (4)
N1—C61.432 (4)N4—C171.432 (4)
N2—N31.301 (4)N5—N61.299 (4)
N3—C41.376 (4)N6—C151.372 (4)
C4—C51.393 (4)C15—C161.375 (4)
C4—C121.463 (4)C15—C231.482 (4)
C5—C141.479 (4)C16—C251.473 (4)
C6—C71.381 (4)C17—C181.372 (4)
C6—C111.396 (4)C17—C221.404 (4)
C7—C81.380 (4)C18—C191.393 (5)
C7—H70.9500C18—H180.9500
C8—C91.386 (4)C19—C201.388 (4)
C8—H80.9500C19—H190.9500
C9—C101.384 (4)C20—C211.381 (4)
C10—C111.378 (4)C21—C221.388 (4)
C10—H100.9500C21—H210.9500
C11—H110.9500C22—H220.9500
C12—C131.515 (4)C23—C241.516 (4)
C13—H13A0.9900C24—H24A0.9900
C13—H13B0.9900C24—H24B0.9900
C14—H14A0.9800C25—H25A0.9800
C14—H14B0.9800C25—H25B0.9800
C14—H14C0.9800C25—H25C0.9800
C5—N1—N2111.7 (2)C16—N4—N5111.5 (3)
C5—N1—C6129.4 (2)C16—N4—C17129.1 (3)
N2—N1—C6118.7 (2)N5—N4—C17119.3 (3)
N3—N2—N1106.5 (3)N6—N5—N4107.0 (3)
N2—N3—C4110.0 (3)N5—N6—C15108.5 (3)
N3—C4—C5108.0 (3)N6—C15—C16109.9 (3)
N3—C4—C12123.3 (3)N6—C15—C23121.9 (3)
C5—C4—C12128.6 (3)C16—C15—C23128.2 (3)
N1—C5—C4103.9 (2)N4—C16—C15103.1 (3)
N1—C5—C14124.7 (3)N4—C16—C25124.8 (3)
C4—C5—C14131.4 (3)C15—C16—C25132.1 (3)
C7—C6—C11121.0 (3)C18—C17—C22121.6 (3)
C7—C6—N1118.8 (3)C18—C17—N4119.1 (3)
C11—C6—N1120.2 (3)C22—C17—N4119.3 (3)
C8—C7—C6119.7 (3)C17—C18—C19119.5 (3)
C8—C7—H7120.2C17—C18—H18120.2
C6—C7—H7120.2C19—C18—H18120.2
C7—C8—C9118.9 (3)C20—C19—C18118.7 (3)
C7—C8—H8120.6C20—C19—H19120.6
C9—C8—H8120.6C18—C19—H19120.6
C10—C9—C8122.0 (3)C21—C20—C19122.3 (3)
C10—C9—Br1119.2 (2)C21—C20—Br3119.4 (2)
C8—C9—Br1118.7 (2)C19—C20—Br3118.3 (2)
C11—C10—C9118.9 (3)C20—C21—C22118.9 (3)
C11—C10—H10120.6C20—C21—H21120.6
C9—C10—H10120.6C22—C21—H21120.6
C10—C11—C6119.5 (3)C21—C22—C17119.0 (3)
C10—C11—H11120.3C21—C22—H22120.5
C6—C11—H11120.3C17—C22—H22120.5
O1—C12—C4120.7 (3)O2—C23—C15121.2 (3)
O1—C12—C13124.4 (3)O2—C23—C24123.3 (3)
C4—C12—C13114.9 (3)C15—C23—C24115.5 (3)
C12—C13—Br2111.4 (2)C23—C24—Br4112.6 (2)
C12—C13—H13A109.3C23—C24—H24A109.1
Br2—C13—H13A109.3Br4—C24—H24A109.1
C12—C13—H13B109.3C23—C24—H24B109.1
Br2—C13—H13B109.3Br4—C24—H24B109.1
H13A—C13—H13B108.0H24A—C24—H24B107.8
C5—C14—H14A109.5C16—C25—H25A109.5
C5—C14—H14B109.5C16—C25—H25B109.5
H14A—C14—H14B109.5H25A—C25—H25B109.5
C5—C14—H14C109.5C16—C25—H25C109.5
H14A—C14—H14C109.5H25A—C25—H25C109.5
H14B—C14—H14C109.5H25B—C25—H25C109.5
C5—N1—N2—N31.0 (4)C16—N4—N5—N60.7 (4)
C6—N1—N2—N3176.0 (3)C17—N4—N5—N6177.2 (3)
N1—N2—N3—C40.9 (4)N4—N5—N6—C151.0 (4)
N2—N3—C4—C50.5 (4)N5—N6—C15—C161.0 (4)
N2—N3—C4—C12177.5 (3)N5—N6—C15—C23179.5 (3)
N2—N1—C5—C40.7 (3)N5—N4—C16—C150.0 (3)
C6—N1—C5—C4175.0 (3)C17—N4—C16—C15176.2 (3)
N2—N1—C5—C14178.3 (3)N5—N4—C16—C25178.4 (3)
C6—N1—C5—C144.0 (5)C17—N4—C16—C252.2 (5)
N3—C4—C5—N10.2 (3)N6—C15—C16—N40.6 (3)
C12—C4—C5—N1178.0 (3)C23—C15—C16—N4180.0 (3)
N3—C4—C5—C14178.8 (3)N6—C15—C16—C25178.8 (3)
C12—C4—C5—C141.0 (5)C23—C15—C16—C251.8 (6)
C5—N1—C6—C7124.6 (3)C16—N4—C17—C18126.4 (3)
N2—N1—C6—C749.3 (4)N5—N4—C17—C1849.5 (4)
C5—N1—C6—C1155.1 (4)C16—N4—C17—C2254.9 (4)
N2—N1—C6—C11131.0 (3)N5—N4—C17—C22129.2 (3)
C11—C6—C7—C80.4 (5)C22—C17—C18—C190.2 (5)
N1—C6—C7—C8179.3 (3)N4—C17—C18—C19178.8 (3)
C6—C7—C8—C90.3 (5)C17—C18—C19—C200.0 (5)
C7—C8—C9—C100.1 (5)C18—C19—C20—C210.2 (5)
C7—C8—C9—Br1179.9 (2)C18—C19—C20—Br3179.9 (2)
C8—C9—C10—C110.1 (5)C19—C20—C21—C220.6 (5)
Br1—C9—C10—C11179.7 (2)Br3—C20—C21—C22179.4 (2)
C9—C10—C11—C60.0 (5)C20—C21—C22—C170.8 (4)
C7—C6—C11—C100.2 (5)C18—C17—C22—C210.7 (5)
N1—C6—C11—C10179.5 (3)N4—C17—C22—C21179.3 (3)
N3—C4—C12—O1179.9 (3)N6—C15—C23—O2178.6 (3)
C5—C4—C12—O12.6 (5)C16—C15—C23—O20.7 (5)
N3—C4—C12—C131.2 (4)N6—C15—C23—C243.5 (4)
C5—C4—C12—C13176.3 (3)C16—C15—C23—C24177.1 (3)
O1—C12—C13—Br21.2 (4)O2—C23—C24—Br42.8 (4)
C4—C12—C13—Br2177.6 (2)C15—C23—C24—Br4179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.952.443.205 (4)137
C13—H13B···N6ii0.992.493.467 (4)170
C21—H21···O2iii0.952.453.210 (4)137
C24—H24B···N30.992.493.482 (4)177
Symmetry codes: (i) x1/2, y+2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.952.443.205 (4)137
C13—H13B···N6ii0.992.493.467 (4)170
C21—H21···O2iii0.952.453.210 (4)137
C24—H24B···N30.992.493.482 (4)177
Symmetry codes: (i) x1/2, y+2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1, z1/2.
 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 426).

References

First citationAbdel-Wahab, B. F., Abdel-Latif, E., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o639–o640.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o638.  CSD CrossRef IUCr Journals Google Scholar
First citationAgalave, S. G., Maujan, S. R. & Pore, V. S. (2011). Chem. Asian J. 6, 2696–2718.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanence, L. J. T., Gao, Y., Li, M., Huang, Y. & Wang, J. (2011). Chem. Eur. J. 17, 3584–3587.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, P., Matosiuk, D. & Jozwiak, K. (2013). Chem. Rev. 113, 4905–4979.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZeghada, S., Bentabed-Ababsa, G., Derdour, A., Abdelmounim, S., Domingo, L. R., Saez, J. A., Roisnel, T., Nassar, E. & Mongin, F. (2011). Org. Biomol. Chem. 9, 4295–4305.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds