organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­phenyl­sulfin­yl)-2,4,5,6-tetra­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 18 June 2014; accepted 23 June 2014; online 25 June 2014)

In the title compound, C18H17FO2S, the dihedral angle between the plane of the benzo­furan ring system (r.m.s. deviation = 0.013 Å) and that of the 4-fluoro­phenyl ring is 74.30 (5)°. In the crystal, weak C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into columns extending in direction [100].

Keywords: crystal structure.

Related literature

For the crystal structures of related compounds, see: Choi et al. (2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o2742.]); Seo et al. (2011a[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o1512.],b[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o2327.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17FO2S

  • Mr = 316.38

  • Orthorhombic, P n a 21

  • a = 7.8869 (2) Å

  • b = 11.0042 (2) Å

  • c = 17.5181 (4) Å

  • V = 1520.38 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.67 × 0.32 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.862, Tmax = 0.941

  • 13898 measured reflections

  • 3761 independent reflections

  • 3369 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.05

  • 3761 reflections

  • 203 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1812 Friedel pairs

  • Absolute structure parameter: −0.02 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.95 2.31 3.247 (3) 169
C17—H17⋯F1ii 0.95 2.50 3.083 (2) 120
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing project of 2,4,5,6-tetramethyl-1-benzofuran derivatives containing phenylsulfinyl (Seo et al., 2011a), 3-fluorophenylsulfinyl (Seo et al., 2011b) and 2-fluorophenylsulfinyl (Choi et al., 2012) substituents in 3-position, we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is essentially planar, with a mean deviation of 0.002 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 4-fluorophenyl ring is 74.30 (5)°. In the crystal structure (Fig. 2), weak intermolecular C—H···O and C—H···F hydrogen bonds (Table 1) link the molecules into columns extended in [100].

Related literature top

For the crystal structures of related compounds, see: Choi et al. (2012); Seo et al. (2011a,b)

Experimental top

3-Chloroperoxybenzoic acid (77%, 269 mg, 1.2 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)-2,4,5,6-tetramethyl-1-benzofuran (330 mg, 1.1 mmol) in dichloromethane (35 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 74%, m.p. 443–444 K; Rf = 0.59 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Structure description top

As a part of our ongoing project of 2,4,5,6-tetramethyl-1-benzofuran derivatives containing phenylsulfinyl (Seo et al., 2011a), 3-fluorophenylsulfinyl (Seo et al., 2011b) and 2-fluorophenylsulfinyl (Choi et al., 2012) substituents in 3-position, we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is essentially planar, with a mean deviation of 0.002 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 4-fluorophenyl ring is 74.30 (5)°. In the crystal structure (Fig. 2), weak intermolecular C—H···O and C—H···F hydrogen bonds (Table 1) link the molecules into columns extended in [100].

For the crystal structures of related compounds, see: Choi et al. (2012); Seo et al. (2011a,b)

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A portion of the crystal packing showing the C—H···O and C—H···F interactions as dotted lines. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1/2, - y + 3/2, z; (iii) x + 1, y, z; (iv) x - 1/2, - y + 3/2, z.]
3-(4-Fluorophenylsulfinyl)-2,4,5,6-tetramethyl-1-benzofuran top
Crystal data top
C18H17FO2SDx = 1.382 Mg m3
Mr = 316.38Melting point = 444–443 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3560 reflections
a = 7.8869 (2) Åθ = 2.2–27.1°
b = 11.0042 (2) ŵ = 0.23 mm1
c = 17.5181 (4) ÅT = 173 K
V = 1520.38 (6) Å3Block, colourless
Z = 40.67 × 0.32 × 0.27 mm
F(000) = 664
Data collection top
Bruker SMART APEXII CCD
diffractometer
3761 independent reflections
Radiation source: rotating anode3369 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.039
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.2°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1314
Tmin = 0.862, Tmax = 0.941l = 2323
13898 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.0839P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3761 reflectionsΔρmax = 0.21 e Å3
203 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1812 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
C18H17FO2SV = 1520.38 (6) Å3
Mr = 316.38Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.8869 (2) ŵ = 0.23 mm1
b = 11.0042 (2) ÅT = 173 K
c = 17.5181 (4) Å0.67 × 0.32 × 0.27 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3761 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3369 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.941Rint = 0.039
13898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.25 e Å3
3761 reflectionsAbsolute structure: Flack (1983), 1812 Friedel pairs
203 parametersAbsolute structure parameter: 0.02 (7)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51230 (6)0.40717 (5)0.79515 (3)0.03465 (13)
F10.01469 (18)0.65099 (13)0.97462 (9)0.0533 (4)
O10.34363 (18)0.36849 (11)0.58751 (7)0.0285 (3)
O20.67580 (19)0.47156 (18)0.80968 (9)0.0501 (4)
C10.4429 (3)0.43098 (17)0.70108 (10)0.0284 (4)
C20.4022 (2)0.53931 (16)0.65691 (10)0.0258 (4)
C30.4111 (2)0.66591 (17)0.66725 (10)0.0290 (4)
C40.3498 (3)0.73996 (17)0.60784 (11)0.0322 (4)
C50.2879 (3)0.68941 (18)0.53945 (11)0.0320 (4)
C60.2837 (3)0.56431 (17)0.52893 (11)0.0303 (4)
H60.24320.52910.48290.036*
C70.3410 (2)0.49393 (15)0.58838 (10)0.0248 (4)
C80.4051 (2)0.33292 (16)0.65686 (10)0.0292 (4)
C90.4869 (3)0.7198 (2)0.73820 (12)0.0379 (5)
H9A0.55480.65810.76450.057*
H9B0.39600.74780.77200.057*
H9C0.55950.78870.72440.057*
C100.3533 (3)0.87599 (18)0.61812 (15)0.0465 (6)
H10A0.46660.90680.60570.070*
H10B0.32600.89610.67120.070*
H10C0.26960.91350.58420.070*
C110.2277 (3)0.7687 (2)0.47404 (14)0.0458 (6)
H11A0.19270.71720.43120.069*
H11B0.32020.82220.45770.069*
H11C0.13130.81810.49090.069*
C120.4159 (3)0.19987 (17)0.66832 (12)0.0401 (5)
H12A0.50870.16700.63740.060*
H12B0.30880.16200.65280.060*
H12C0.43730.18250.72230.060*
C130.3505 (2)0.49187 (17)0.84426 (10)0.0285 (4)
C140.1820 (3)0.47592 (19)0.82583 (10)0.0318 (4)
H140.15180.42720.78320.038*
C150.0572 (3)0.53021 (19)0.86895 (11)0.0352 (4)
H150.05930.52050.85670.042*
C160.1075 (3)0.59918 (18)0.93053 (12)0.0360 (5)
C170.2734 (3)0.61688 (18)0.94997 (13)0.0381 (5)
H170.30290.66550.99280.046*
C180.3969 (3)0.56253 (19)0.90609 (11)0.0349 (5)
H180.51320.57350.91820.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0286 (2)0.0469 (3)0.02846 (19)0.0087 (2)0.0041 (2)0.0047 (2)
F10.0522 (9)0.0416 (8)0.0662 (9)0.0090 (6)0.0207 (7)0.0019 (7)
O10.0321 (7)0.0232 (6)0.0300 (6)0.0017 (6)0.0017 (6)0.0008 (5)
O20.0249 (7)0.0827 (12)0.0429 (9)0.0025 (8)0.0057 (6)0.0053 (8)
C10.0249 (9)0.0339 (10)0.0264 (8)0.0038 (8)0.0003 (7)0.0030 (7)
C20.0251 (10)0.0258 (8)0.0265 (8)0.0008 (7)0.0039 (7)0.0012 (7)
C30.0256 (10)0.0282 (9)0.0332 (9)0.0029 (8)0.0096 (8)0.0016 (7)
C40.0300 (11)0.0260 (9)0.0406 (10)0.0015 (8)0.0131 (9)0.0041 (7)
C50.0287 (10)0.0330 (10)0.0344 (9)0.0043 (8)0.0077 (8)0.0104 (8)
C60.0285 (10)0.0353 (10)0.0271 (8)0.0013 (8)0.0019 (8)0.0032 (8)
C70.0230 (9)0.0237 (8)0.0277 (8)0.0013 (7)0.0031 (7)0.0003 (7)
C80.0284 (10)0.0274 (9)0.0318 (9)0.0047 (8)0.0006 (8)0.0040 (7)
C90.0397 (12)0.0354 (11)0.0385 (10)0.0108 (9)0.0074 (9)0.0103 (9)
C100.0478 (14)0.0286 (10)0.0631 (14)0.0003 (10)0.0213 (12)0.0057 (10)
C110.0433 (13)0.0459 (12)0.0481 (12)0.0081 (11)0.0053 (10)0.0209 (10)
C120.0431 (13)0.0280 (10)0.0491 (11)0.0056 (9)0.0008 (10)0.0028 (9)
C130.0283 (10)0.0322 (9)0.0249 (7)0.0017 (8)0.0009 (8)0.0055 (7)
C140.0288 (10)0.0411 (11)0.0255 (8)0.0032 (9)0.0038 (7)0.0039 (7)
C150.0258 (10)0.0417 (11)0.0382 (10)0.0012 (9)0.0017 (8)0.0119 (9)
C160.0404 (13)0.0286 (9)0.0390 (10)0.0021 (9)0.0114 (9)0.0078 (8)
C170.0432 (13)0.0345 (10)0.0366 (9)0.0108 (9)0.0053 (10)0.0032 (8)
C180.0267 (10)0.0456 (12)0.0323 (9)0.0081 (9)0.0024 (8)0.0038 (8)
Geometric parameters (Å, º) top
S1—O21.4932 (17)C9—H9C0.9800
S1—C11.7560 (18)C10—H10A0.9800
S1—C131.799 (2)C10—H10B0.9800
F1—C161.361 (3)C10—H10C0.9800
O1—C81.365 (2)C11—H11A0.9800
O1—C71.381 (2)C11—H11B0.9800
C1—C81.361 (3)C11—H11C0.9800
C1—C21.457 (3)C12—H12A0.9800
C2—C71.387 (2)C12—H12B0.9800
C2—C31.407 (3)C12—H12C0.9800
C3—C41.408 (3)C13—C141.379 (3)
C3—C91.501 (3)C13—C181.383 (3)
C4—C51.408 (3)C14—C151.377 (3)
C4—C101.508 (3)C14—H140.9500
C5—C61.389 (3)C15—C161.377 (3)
C5—C111.517 (3)C15—H150.9500
C6—C71.374 (2)C16—C171.366 (3)
C6—H60.9500C17—C181.377 (3)
C8—C121.480 (3)C17—H170.9500
C9—H9A0.9800C18—H180.9500
C9—H9B0.9800
O2—S1—C1110.99 (10)C4—C10—H10B109.5
O2—S1—C13106.57 (10)H10A—C10—H10B109.5
C1—S1—C1398.65 (9)C4—C10—H10C109.5
C8—O1—C7106.39 (13)H10A—C10—H10C109.5
C8—C1—C2107.33 (16)H10B—C10—H10C109.5
C8—C1—S1118.95 (14)C5—C11—H11A109.5
C2—C1—S1133.56 (14)C5—C11—H11B109.5
C7—C2—C3119.05 (16)H11A—C11—H11B109.5
C7—C2—C1104.00 (15)C5—C11—H11C109.5
C3—C2—C1136.95 (17)H11A—C11—H11C109.5
C2—C3—C4117.44 (17)H11B—C11—H11C109.5
C2—C3—C9121.18 (18)C8—C12—H12A109.5
C4—C3—C9121.36 (17)C8—C12—H12B109.5
C3—C4—C5121.30 (16)H12A—C12—H12B109.5
C3—C4—C10118.68 (19)C8—C12—H12C109.5
C5—C4—C10120.02 (19)H12A—C12—H12C109.5
C6—C5—C4120.84 (17)H12B—C12—H12C109.5
C6—C5—C11117.55 (19)C14—C13—C18120.66 (19)
C4—C5—C11121.59 (18)C14—C13—S1120.38 (15)
C7—C6—C5116.75 (18)C18—C13—S1118.57 (15)
C7—C6—H6121.6C15—C14—C13120.33 (18)
C5—C6—H6121.6C15—C14—H14119.8
C6—C7—O1124.06 (16)C13—C14—H14119.8
C6—C7—C2124.57 (16)C14—C15—C16117.6 (2)
O1—C7—C2111.37 (14)C14—C15—H15121.2
C1—C8—O1110.92 (15)C16—C15—H15121.2
C1—C8—C12133.95 (18)F1—C16—C17118.5 (2)
O1—C8—C12115.13 (16)F1—C16—C15118.1 (2)
C3—C9—H9A109.5C17—C16—C15123.4 (2)
C3—C9—H9B109.5C16—C17—C18118.4 (2)
H9A—C9—H9B109.5C16—C17—H17120.8
C3—C9—H9C109.5C18—C17—H17120.8
H9A—C9—H9C109.5C17—C18—C13119.6 (2)
H9B—C9—H9C109.5C17—C18—H18120.2
C4—C10—H10A109.5C13—C18—H18120.2
O2—S1—C1—C8126.77 (17)C8—O1—C7—C20.87 (19)
C13—S1—C1—C8121.68 (17)C3—C2—C7—C61.4 (3)
O2—S1—C1—C258.4 (2)C1—C2—C7—C6178.85 (18)
C13—S1—C1—C253.1 (2)C3—C2—C7—O1178.97 (16)
C8—C1—C2—C70.3 (2)C1—C2—C7—O10.7 (2)
S1—C1—C2—C7174.90 (17)C2—C1—C8—O10.2 (2)
C8—C1—C2—C3179.3 (2)S1—C1—C8—O1176.24 (13)
S1—C1—C2—C35.5 (4)C2—C1—C8—C12179.5 (2)
C7—C2—C3—C42.7 (3)S1—C1—C8—C123.5 (3)
C1—C2—C3—C4177.7 (2)C7—O1—C8—C10.6 (2)
C7—C2—C3—C9175.95 (18)C7—O1—C8—C12179.11 (17)
C1—C2—C3—C93.6 (3)O2—S1—C13—C14162.46 (14)
C2—C3—C4—C52.4 (3)C1—S1—C13—C1447.42 (16)
C9—C3—C4—C5176.21 (18)O2—S1—C13—C1824.61 (18)
C2—C3—C4—C10178.38 (18)C1—S1—C13—C18139.66 (16)
C9—C3—C4—C103.0 (3)C18—C13—C14—C150.1 (3)
C3—C4—C5—C60.8 (3)S1—C13—C14—C15172.70 (15)
C10—C4—C5—C6179.98 (19)C13—C14—C15—C160.5 (3)
C3—C4—C5—C11177.67 (19)C14—C15—C16—F1178.51 (17)
C10—C4—C5—C111.5 (3)C14—C15—C16—C170.7 (3)
C4—C5—C6—C70.6 (3)F1—C16—C17—C18178.83 (18)
C11—C5—C6—C7179.10 (18)C15—C16—C17—C180.4 (3)
C5—C6—C7—O1179.29 (17)C16—C17—C18—C130.2 (3)
C5—C6—C7—C20.2 (3)C14—C13—C18—C170.4 (3)
C8—O1—C7—C6178.71 (18)S1—C13—C18—C17172.50 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.313.247 (3)169
C17—H17···F1ii0.952.503.083 (2)120
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.952.313.247 (3)169.2
C17—H17···F1ii0.952.503.083 (2)119.7
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o2742.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o1512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o2327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds