metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(18-Crown-6)potassium(I) di­phenyl­stibate(−1)

aInstitut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
*Correspondence e-mail: nikolaus.korber@chemie.uni-regensburg.de

(Received 28 May 2014; accepted 6 June 2014; online 14 June 2014)

Red crystals of the title salt, [K(C12H24O6)][Sb(C6H5)2], were obtained by the reaction of SbPh3, KSnBi and 18-crown-6 in liquid ammonia. The asymmetric unit contains one half of a [K(18-crown-6)]+ cation and one half of an SbPh2 anion, with the central element lying on a twofold axis and a centre of inversion, respectively. In the crystal structure, the sequestered potassium cations show weak inter­actions with the π-electrons of the phenyl groups of the SbPh2 anion [shortest K⋯C distances = 3.190 (2) and 3.441 (2) Å], leading to one-dimensional strands along the crystallographic c axis. These strands are aligned in a pseudo-hexa­gonal packing perpendicular to the ab plane.

Related literature

For literature focusing on mechanisms of crystallization and inter­molecular inter­actions or di­phenyl­stibide as a nucleophile, see: Desiraju (2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]); Ugrinov & Sevov (2003[Ugrinov, A. & Sevov, S. C. (2003). J. Am. Chem. Soc. 125, 14059-14064.]). For a related compound, see Effendy et al. (1997[Effendy, Grigsby, W.J., Hart, R.D., Raston, C.L., Skelton, B.W. & White, A.H. (1997). Aust. J. Chem. 50, 675-682.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C12H24O6)][Sb(C6H5)2]

  • Mr = 579.36

  • Monoclinic, I 2/a

  • a = 15.6933 (9) Å

  • b = 9.2655 (3) Å

  • c = 19.1321 (10) Å

  • β = 112.654 (6)°

  • V = 2567.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 123 K

  • 0.47 × 0.27 × 0.15 mm

Data collection
  • Agilent SuperNova (Single source at offset, Eos) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.726, Tmax = 0.863

  • 4194 measured reflections

  • 2592 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.053

  • S = 1.08

  • 2592 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Sb1—C1 2.154 (2)
K1—O2 2.7823 (14)
K1—O3 2.8106 (16)
K1—O1 2.7738 (15)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2011[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2011). In preparation.]).

Supporting information


Comment top

The crystal structure of [K(18-crown-6)]SbPh2 was obtained during the investigations of oxidation processes of SnBi-polyanions in liquid ammonia. The asymmetric unit contains one half of a [K(18-crown-6)]+-cation together with one half of a SbPh2- anion. Figure 1 shows these two molecular ions. K—O bond lengths within the complex range from 2.7738 (15) Å to 2.8106 (15) Å. The Sb—C bond lengths of SbPh2--anion of 2.154 (2) Å and the previously reported values for SbPh3 of 2.1392 (77) Å - 2.1539 (68) Å (Effendy et al., 1997) are in good agreement. The two phenyl groups of SbPh2- exhibit a torsion angle of 28.53 (15)° between C2—C1—Sb1—C1ii and C1—Sb1—C1ii—C2ii. Short K—C distances suggest π-interactions between the alkali metal cation and the phenyl rings. Two carbon atoms of each phenyl ligand are connected to the cation with a hapticity of two and distances of 3.190 (2) Å and 3.441 (2) Å. Due to symmetry, the SbPh2--anion acts as a linker molecule between two [K(18-crown-6)]+ complexes that leads to the formation of one dimensional strands along the c-axis (Figure 2). The strands are arranged in a hexagonal packing and no further interactions can be found between neighbouring strands (Figure 3).

Related literature top

For literature focusing on mechanisms of crystallization and intermolecular interactions or diphenylstibide as nucleophile: Desiraju (2007); Ugrinov & Sevov (2003). For a related compound, see Effendy et al. (1997).

Experimental top

KSnBi was prepared from the elements in a high temperature synthesis at 723 K in a sealed tube. 88 mg (0.25 mmol) SbPh3, 203 mg (0.27 mmol) KSnBi and 66 mg (0.25 mmol) 18-crown-6 were dissolved in dried liquid ammonia in a baked-out reaction vessel. Liquid ammonia was dried over potassium metal and condensed using a standard Schlenk line. The mixture was stored at 237 K for crystallization. Crystals appeared as red blocks in a brownish red solution after 4 weeks.

Refinement top

All H-atoms could be located in the difference map but were positioned with idealized geometry, with Uiso(H) set to 1.2Ueq of the parent atom. Furthermore there were no irregularities such as dislocation.

Structure description top

The crystal structure of [K(18-crown-6)]SbPh2 was obtained during the investigations of oxidation processes of SnBi-polyanions in liquid ammonia. The asymmetric unit contains one half of a [K(18-crown-6)]+-cation together with one half of a SbPh2- anion. Figure 1 shows these two molecular ions. K—O bond lengths within the complex range from 2.7738 (15) Å to 2.8106 (15) Å. The Sb—C bond lengths of SbPh2--anion of 2.154 (2) Å and the previously reported values for SbPh3 of 2.1392 (77) Å - 2.1539 (68) Å (Effendy et al., 1997) are in good agreement. The two phenyl groups of SbPh2- exhibit a torsion angle of 28.53 (15)° between C2—C1—Sb1—C1ii and C1—Sb1—C1ii—C2ii. Short K—C distances suggest π-interactions between the alkali metal cation and the phenyl rings. Two carbon atoms of each phenyl ligand are connected to the cation with a hapticity of two and distances of 3.190 (2) Å and 3.441 (2) Å. Due to symmetry, the SbPh2--anion acts as a linker molecule between two [K(18-crown-6)]+ complexes that leads to the formation of one dimensional strands along the c-axis (Figure 2). The strands are arranged in a hexagonal packing and no further interactions can be found between neighbouring strands (Figure 3).

For literature focusing on mechanisms of crystallization and intermolecular interactions or diphenylstibide as nucleophile: Desiraju (2007); Ugrinov & Sevov (2003). For a related compound, see Effendy et al. (1997).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2011).

Figures top
[Figure 1] Fig. 1. Molecular unit of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) 1.5 - x, 1.5 - y, 1.5 - z, (ii) 1.5 - x, y, 2 - z
[Figure 2] Fig. 2. View of the crystal structure showing the one-dimensional strands along the c-axis.
[Figure 3] Fig. 3. : Projection of the crystal structure showing the pseudo-hexagonal arrangement of the strands perpendicular to the ab-plane.
(1,4,7,10,13,16-Hexaoxacyclooctadecane)potassium diphenylstibide top
Crystal data top
[K(C12H24O6)][Sb(C6H5)2]F(000) = 1184
Mr = 579.36Dx = 1.499 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 15.6933 (9) ÅCell parameters from 1900 reflections
b = 9.2655 (3) Åθ = 3.4–28.0°
c = 19.1321 (10) ŵ = 1.27 mm1
β = 112.654 (6)°T = 123 K
V = 2567.3 (2) Å3Block, clear reddish red
Z = 40.47 × 0.27 × 0.15 mm
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
h = 1819
Tmin = 0.726, Tmax = 0.863k = 1110
4194 measured reflectionsl = 1523
2592 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.019P)2 + 0.7904P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2592 reflectionsΔρmax = 0.39 e Å3
147 parametersΔρmin = 0.56 e Å3
0 restraints
Crystal data top
[K(C12H24O6)][Sb(C6H5)2]V = 2567.3 (2) Å3
Mr = 579.36Z = 4
Monoclinic, I2/aMo Kα radiation
a = 15.6933 (9) ŵ = 1.27 mm1
b = 9.2655 (3) ÅT = 123 K
c = 19.1321 (10) Å0.47 × 0.27 × 0.15 mm
β = 112.654 (6)°
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
2592 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
2297 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.863Rint = 0.019
4194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.08Δρmax = 0.39 e Å3
2592 reflectionsΔρmin = 0.56 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.75001.08580 (2)1.00000.02163 (8)
K10.75000.75000.75000.02190 (15)
O20.62864 (10)0.83061 (17)0.60590 (8)0.0237 (3)
O30.74551 (10)1.03820 (17)0.70288 (8)0.0241 (4)
O10.60734 (10)0.56706 (17)0.66609 (8)0.0225 (3)
C10.67008 (14)0.9316 (2)0.91614 (11)0.0191 (5)
C100.54293 (15)0.7554 (3)0.57688 (12)0.0278 (5)
H10A0.51060.77740.52360.033*
H10B0.50450.78550.60360.033*
C40.56109 (15)0.7424 (3)0.79930 (12)0.0279 (5)
H40.52630.67980.76090.033*
C110.61898 (16)0.9803 (3)0.58922 (12)0.0292 (5)
H11A0.57811.02360.61060.035*
H11B0.59240.99470.53480.035*
C30.59436 (14)0.6990 (3)0.87465 (12)0.0249 (5)
H30.58130.60680.88700.030*
C70.66870 (16)0.3883 (3)0.76152 (13)0.0286 (5)
H7A0.62530.42050.78310.034*
H7B0.67790.28530.77010.034*
C20.64697 (14)0.7928 (3)0.93162 (12)0.0215 (5)
H20.66750.76220.98170.026*
C50.58069 (15)0.8799 (3)0.78264 (12)0.0283 (6)
H50.55770.91110.73260.034*
C90.56103 (15)0.5973 (3)0.58705 (12)0.0256 (5)
H9A0.50320.54460.56680.031*
H9B0.59910.56700.56000.031*
C80.63067 (16)0.4186 (3)0.67829 (13)0.0267 (5)
H8A0.67630.39460.65740.032*
H8B0.57620.36000.65300.032*
C120.71193 (16)1.0495 (3)0.62224 (12)0.0276 (5)
H12A0.75411.00160.60370.033*
H12B0.70751.15020.60740.033*
C60.63440 (15)0.9725 (3)0.83964 (12)0.0248 (5)
H60.64711.06450.82670.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.02653 (12)0.01591 (12)0.02407 (12)0.0000.01153 (9)0.000
K10.0173 (3)0.0167 (3)0.0253 (3)0.0019 (3)0.0011 (3)0.0031 (3)
O20.0198 (8)0.0233 (9)0.0239 (8)0.0032 (7)0.0040 (6)0.0018 (7)
O30.0268 (8)0.0216 (9)0.0252 (8)0.0006 (7)0.0114 (7)0.0043 (7)
O10.0253 (8)0.0221 (9)0.0194 (7)0.0013 (7)0.0078 (6)0.0053 (6)
C10.0175 (10)0.0202 (12)0.0218 (10)0.0044 (9)0.0098 (9)0.0001 (9)
C100.0185 (11)0.0411 (16)0.0187 (11)0.0017 (11)0.0016 (9)0.0024 (11)
C40.0201 (11)0.0368 (15)0.0276 (12)0.0002 (11)0.0102 (9)0.0106 (11)
C110.0305 (13)0.0315 (14)0.0248 (12)0.0122 (12)0.0098 (10)0.0096 (11)
C30.0192 (11)0.0213 (12)0.0367 (13)0.0001 (10)0.0134 (10)0.0017 (10)
C70.0311 (13)0.0200 (13)0.0400 (14)0.0053 (11)0.0195 (11)0.0003 (11)
C20.0200 (11)0.0240 (12)0.0213 (11)0.0019 (10)0.0088 (9)0.0032 (9)
C50.0230 (12)0.0424 (16)0.0192 (11)0.0038 (12)0.0080 (9)0.0020 (11)
C90.0221 (11)0.0327 (14)0.0200 (11)0.0061 (11)0.0058 (9)0.0080 (10)
C80.0308 (12)0.0194 (12)0.0338 (12)0.0096 (11)0.0167 (10)0.0076 (10)
C120.0356 (13)0.0236 (13)0.0286 (12)0.0084 (11)0.0178 (10)0.0090 (10)
C60.0245 (12)0.0264 (13)0.0251 (11)0.0020 (11)0.0114 (9)0.0041 (10)
Geometric parameters (Å, º) top
Sb1—C12.154 (2)C4—C51.376 (3)
K1—O22.7823 (14)C11—H11A0.9700
K1—O32.8106 (16)C11—H11B0.9700
K1—O12.7738 (15)C11—C121.493 (3)
K1—C43.441 (2)C3—H30.9300
K1—C53.190 (2)C3—C21.390 (3)
O2—C101.424 (3)C7—H7A0.9700
O2—C111.418 (3)C7—H7B0.9700
O3—C7i1.426 (3)C7—C81.496 (3)
O3—C121.429 (2)C2—H20.9300
O1—C91.431 (2)C5—H50.9300
O1—C81.419 (3)C5—C61.389 (3)
C1—C21.399 (3)C9—H9A0.9700
C1—C61.403 (3)C9—H9B0.9700
C10—H10A0.9700C8—H8A0.9700
C10—H10B0.9700C8—H8B0.9700
C10—C91.490 (3)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C4—C31.390 (3)C6—H60.9300
C1—Sb1—C1ii96.89 (12)O2—C10—H10A109.9
O2—K1—O2i180.00 (6)O2—C10—H10B109.9
O2i—K1—O3i60.27 (4)O2—C10—C9109.03 (18)
O2i—K1—O3119.73 (4)H10A—C10—H10B108.3
O2—K1—O3i119.73 (4)C9—C10—H10A109.9
O2—K1—O360.27 (4)C9—C10—H10B109.9
O2—K1—C486.78 (5)K1—C4—H495.9
O2—K1—C4i93.22 (5)C3—C4—K1105.73 (13)
O2i—K1—C493.22 (5)C3—C4—H4120.7
O2i—K1—C4i86.78 (5)C5—C4—K167.95 (13)
O2—K1—C577.81 (5)C5—C4—H4120.7
O2—K1—C5i102.19 (5)C5—C4—C3118.7 (2)
O2i—K1—C5i77.81 (5)O2—C11—H11A109.9
O2i—K1—C5102.19 (5)O2—C11—H11B109.9
O3—K1—O3i180.0O2—C11—C12108.82 (18)
O3—K1—C4i79.08 (5)H11A—C11—H11B108.3
O3i—K1—C4i100.92 (5)C12—C11—H11A109.9
O3—K1—C4100.92 (5)C12—C11—H11B109.9
O3i—K1—C479.08 (5)C4—C3—H3119.8
O3—K1—C5i102.44 (6)C2—C3—C4120.3 (2)
O3i—K1—C5i77.56 (6)C2—C3—H3119.8
O3i—K1—C5102.44 (6)O3i—C7—H7A109.8
O3—K1—C577.56 (6)O3i—C7—H7B109.8
O1—K1—O259.91 (4)O3i—C7—C8109.56 (18)
O1—K1—O2i120.09 (5)H7A—C7—H7B108.2
O1i—K1—O2i59.91 (5)C8—C7—H7A109.8
O1i—K1—O2120.09 (5)C8—C7—H7B109.8
O1i—K1—O361.31 (4)C1—C2—H2118.9
O1—K1—O3i61.31 (4)C3—C2—C1122.2 (2)
O1i—K1—O3i118.69 (4)C3—C2—H2118.9
O1—K1—O3118.69 (4)K1—C5—H586.5
O1i—K1—O1180.0C4—C5—K188.49 (14)
O1i—K1—C4116.26 (5)C4—C5—H5119.6
O1—K1—C4i116.26 (5)C4—C5—C6120.8 (2)
O1—K1—C463.74 (5)C6—C5—K195.02 (14)
O1i—K1—C4i63.74 (5)C6—C5—H5119.6
O1—K1—C578.25 (5)O1—C9—C10108.91 (18)
O1i—K1—C5i78.25 (5)O1—C9—H9A109.9
O1i—K1—C5101.75 (5)O1—C9—H9B109.9
O1—K1—C5i101.75 (5)C10—C9—H9A109.9
C4—K1—C4i180.00 (10)C10—C9—H9B109.9
C5—K1—C423.57 (6)H9A—C9—H9B108.3
C5i—K1—C4i23.57 (6)O1—C8—C7109.22 (18)
C5—K1—C4i156.43 (6)O1—C8—H8A109.8
C5i—K1—C4156.43 (6)O1—C8—H8B109.8
C5i—K1—C5180.0C7—C8—H8A109.8
C10—O2—K1115.99 (12)C7—C8—H8B109.8
C11—O2—K1117.29 (12)H8A—C8—H8B108.3
C11—O2—C10112.83 (17)O3—C12—C11108.62 (18)
C7i—O3—K1113.46 (12)O3—C12—H12A110.0
C7i—O3—C12111.61 (16)O3—C12—H12B110.0
C12—O3—K1111.65 (13)C11—C12—H12A110.0
C9—O1—K1117.40 (12)C11—C12—H12B110.0
C8—O1—K1113.42 (12)H12A—C12—H12B108.3
C8—O1—C9110.95 (17)C1—C6—H6119.0
C2—C1—Sb1125.20 (15)C5—C6—C1122.0 (2)
C2—C1—C6115.9 (2)C5—C6—H6119.0
C6—C1—Sb1118.81 (17)
Symmetry codes: (i) x+3/2, y+3/2, z+3/2; (ii) x+3/2, y, z+2.
Selected bond lengths (Å) top
Sb1—C12.154 (2)K1—O32.8106 (16)
K1—O22.7823 (14)K1—O12.7738 (15)
 

Acknowledgements

UF thanks the Chemical Industry Fund for a scholarship.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2011). In preparation.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEffendy, Grigsby, W.J., Hart, R.D., Raston, C.L., Skelton, B.W. & White, A.H. (1997). Aust. J. Chem. 50, 675–682.  CSD CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUgrinov, A. & Sevov, S. C. (2003). J. Am. Chem. Soc. 125, 14059–14064.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds