organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N1-[(1H-Imidazol-2-yl)methyl­­idene]-N4-phenyl­benzene-1,4-di­amine

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and bDepartment of Chemistry, Aligarh Muslim University, Aligarh 202 002, India
*Correspondence e-mail: shahid81chem@gmail.com

(Received 15 June 2014; accepted 18 June 2014; online 25 June 2014)

The title compound, C16H14N4, is non-planar with dihedral angles between the planes of the imidazole and phenyl­enedi­amine rings of 30.66 (4)° and between the planes of the phenyl­enedi­amine and N-phenyl rings of 56.63 (7)°. In the crystal, mol­ecules are connected by N—H⋯N hydrogen bonds, generating a chain extending along the b-axis direction. The crystal structure is also stabilized by C—H⋯π inter­actions between N-phenyl and imidazole rings and slipped ππ stacking inter­actions between imidazole rings [centroid–centroid distance = 3.516 (4) Å] giving an overall two-dimensional layered structure lying parallel to (010).

Keywords: crystal structure.

Related literature

For applications of Schiff bases, see: Lozier et al. (1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]); Dalapati et al. (2011[Dalapati, S., Alam, M. A., JANA, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536-540.]); Sun et al. (2012[Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta A, 96, 42-50.]). The present work is part of an ongoing structural study of Schiff base–metal complexes, see: Faizi & Hussain (2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]); Faizi & Sen (2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]). For related Schiff bases and their applications, see: Thompson et al. (2012[Thompson, J. R., Archer, R. J., Hawes, C. S., Ferguson, A., Wattiaux, A., Mathonière, C., Clérac, R. & Kruger, P. E. (2012). Dalton Trans. 41, 12720-12725.]); Shue et al. (1994[Shue, C. F., Lee, Z. C., Wei, H. H., Cheng, M. C. & Wang, Y. (1994). Polyhedron, 13, 2259-2264.]); Garcia et al. (2006[Garcia, Y., Grunert, C. M., Reiman, S., van Campenhoudt, O. & Gütlich, P. (2006). Eur. J. Inorg. Chem. pp. 3333-3339.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4

  • Mr = 262.31

  • Monoclinic, P 21 /n

  • a = 15.663 (5) Å

  • b = 5.063 (3) Å

  • c = 16.800 (5) Å

  • β = 93.124 (5)°

  • V = 1330.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.990

  • 11186 measured reflections

  • 3296 independent reflections

  • 2403 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.03

  • 3296 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N3/N4/C14–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H101⋯N3i 0.86 2.09 2.875 (3) 151
C2—H2⋯Cg1ii 0.93 2.83 3.691 (3) 155
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: DIAMOND.

Supporting information


Comment top

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). They are used as anion sensors (Dalapati et al., 2011) and as non-linear optics compounds (Sun et al., 2012). The present work is part of an ongoing structural study of Schiff base metal complexes (Faizi & Hussain, 2014; Faizi & Sen, 2014) and we report here the structure of N1-((1H-imidazol-2-yl)methylene)-N4-phenylbenzene-1,4-diamine (IMPD). There are very few examples similar to title compound and their metal complex have been reported in the literature (Thompson et al., 2012; Shue et al., 1994; Garcia et al., 2006). The synthesis of IMPD by condensation of 2-imidazolecarboxaldehyde and N-phenyl-p-phenylenediamine has not previously been reported. In the title compound (Fig. 1) IMPD has non planar structure, the dihedral angle between the imidazole and phenylenediamine rings is 30.66 (4) ° and the dihedral angle between the phenylenediamine and N-phenyl rings is 56.63 (7) °. The imine group displays a torsional angle (C10—N2—C13—C14) of 177.29 (2)°. In the crystal, molecules are connected by intermolecular N—H···N hydrogen bond interaction generate a one-dimensional chain structure extending along c axis (Table 1, Fig 2). The crystal structure is also stabilized by C—H···π interations between N-phenyl and imidazole and slipped ππ stacking interactions between imidazole rings [centroid–centroid distance = 3.516 (4) Å] give an overall two-dimensional layered structure lying parallel to (010) given in Fig 3.

Related literature top

For applications of Schiff bases, see: Lozier et al. (1975); Dalapati et al. (2011); Sun et al. (2012). The present work is part of an ongoing structural study of

Schiff base–metal complexes, see: Faizi & Hussain (2014); Faizi & Sen (2014). For related Schiff bases and their applications, see: Thompson et al. (2012); Shue et al. (1994); Garcia et al. (2006).

Experimental top

100 mg (1 mmol) of N-phenyl-p-phenylenediamine were dissolved in 10 ml of absolute ethanol. To this solution, 52 mg (1 mmol) of 2-imidazolecarboxaldehyde in 5 ml of absolute ethanol was dropwisely added under stirring. Then, this mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2h. The resulting light green precipitate was recovered by filtration, washed several times with a small portions of EtOH and then with diethyl ether to give 120 mg (86%) of N1-((1H-imidazol-2-yl)methylene)-N4-phenylbenzene-1,4-diamine (IMPD). The crystal of the title compound suitable for X-ray analysis was obtained within 3 days by slow evaporation of the MeOH solvent.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.92–0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). They are used as anion sensors (Dalapati et al., 2011) and as non-linear optics compounds (Sun et al., 2012). The present work is part of an ongoing structural study of Schiff base metal complexes (Faizi & Hussain, 2014; Faizi & Sen, 2014) and we report here the structure of N1-((1H-imidazol-2-yl)methylene)-N4-phenylbenzene-1,4-diamine (IMPD). There are very few examples similar to title compound and their metal complex have been reported in the literature (Thompson et al., 2012; Shue et al., 1994; Garcia et al., 2006). The synthesis of IMPD by condensation of 2-imidazolecarboxaldehyde and N-phenyl-p-phenylenediamine has not previously been reported. In the title compound (Fig. 1) IMPD has non planar structure, the dihedral angle between the imidazole and phenylenediamine rings is 30.66 (4) ° and the dihedral angle between the phenylenediamine and N-phenyl rings is 56.63 (7) °. The imine group displays a torsional angle (C10—N2—C13—C14) of 177.29 (2)°. In the crystal, molecules are connected by intermolecular N—H···N hydrogen bond interaction generate a one-dimensional chain structure extending along c axis (Table 1, Fig 2). The crystal structure is also stabilized by C—H···π interations between N-phenyl and imidazole and slipped ππ stacking interactions between imidazole rings [centroid–centroid distance = 3.516 (4) Å] give an overall two-dimensional layered structure lying parallel to (010) given in Fig 3.

For applications of Schiff bases, see: Lozier et al. (1975); Dalapati et al. (2011); Sun et al. (2012). The present work is part of an ongoing structural study of

Schiff base–metal complexes, see: Faizi & Hussain (2014); Faizi & Sen (2014). For related Schiff bases and their applications, see: Thompson et al. (2012); Shue et al. (1994); Garcia et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the title compound with non-H atoms drawn as 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded chain structure in the title compound extending along c, with hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. The two-dimensional weak bond interaction present in the title compound extending along b, with weak bond interaction shown as dashed lines.
N1-[(1H-Imidazol-2-yl)methylidene]-N4-phenylbenzene-1,4-diamine top
Crystal data top
C16H14N4F(000) = 552
Mr = 262.31Dx = 1.310 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 999 reflections
a = 15.663 (5) Åθ = 1.8–25.5°
b = 5.063 (3) ŵ = 0.08 mm1
c = 16.800 (5) ÅT = 100 K
β = 93.124 (5)°Block, yellow
V = 1330.3 (10) Å30.15 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3296 independent reflections
Radiation source: fine-focus sealed tube2403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1320
Tmin = 0.984, Tmax = 0.990k = 66
11186 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.404P]
where P = (Fo2 + 2Fc2)/3
3296 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H14N4V = 1330.3 (10) Å3
Mr = 262.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.663 (5) ŵ = 0.08 mm1
b = 5.063 (3) ÅT = 100 K
c = 16.800 (5) Å0.15 × 0.13 × 0.10 mm
β = 93.124 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3296 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2403 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.990Rint = 0.042
11186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
3296 reflectionsΔρmin = 0.18 e Å3
189 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43125 (8)0.1760 (3)0.33278 (8)0.0214 (3)
C20.38397 (9)0.3415 (3)0.28135 (9)0.0282 (3)
H20.38910.32740.22660.034*
C30.32914 (10)0.5278 (3)0.31101 (11)0.0352 (4)
H30.29740.63710.27610.042*
C40.32145 (10)0.5514 (3)0.39221 (11)0.0337 (4)
H40.28610.68020.41210.040*
C50.36660 (10)0.3828 (3)0.44371 (10)0.0308 (4)
H50.36070.39590.49840.037*
C60.42048 (9)0.1945 (3)0.41415 (9)0.0275 (3)
H60.44980.07930.44900.033*
C70.57160 (9)0.0512 (3)0.32757 (8)0.0199 (3)
C80.61533 (9)0.1149 (3)0.38253 (8)0.0202 (3)
H80.58620.25060.40660.024*
C90.70154 (9)0.0785 (3)0.40118 (8)0.0200 (3)
H90.72990.19370.43670.024*
C100.74693 (8)0.1273 (3)0.36788 (8)0.0174 (3)
C110.70272 (9)0.2954 (3)0.31390 (8)0.0200 (3)
H110.73160.43410.29100.024*
C120.61719 (9)0.2582 (3)0.29428 (8)0.0217 (3)
H120.58910.37250.25830.026*
C130.87684 (9)0.3549 (3)0.38064 (8)0.0190 (3)
C140.96846 (8)0.3614 (3)0.39783 (8)0.0173 (3)
C151.09852 (9)0.2263 (3)0.43150 (8)0.0199 (3)
H151.14550.12080.44590.024*
C161.09789 (9)0.4940 (3)0.42150 (8)0.0206 (3)
H161.14560.60270.42810.025*
N10.48649 (8)0.0127 (3)0.30203 (8)0.0259 (3)
N20.83589 (7)0.1392 (2)0.38775 (6)0.0185 (3)
N31.01646 (7)0.5797 (2)0.40025 (7)0.0192 (3)
N41.01628 (7)0.1451 (2)0.41603 (6)0.0181 (3)
H1010.99810.01500.41760.022*
H1020.4709 (11)0.072 (4)0.2555 (11)0.037 (5)*
H130.8508 (10)0.525 (3)0.3660 (9)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0150 (7)0.0220 (7)0.0272 (7)0.0025 (5)0.0010 (5)0.0033 (6)
C20.0250 (8)0.0332 (9)0.0260 (8)0.0003 (7)0.0016 (6)0.0003 (6)
C30.0268 (9)0.0310 (9)0.0470 (10)0.0053 (7)0.0044 (7)0.0042 (8)
C40.0223 (8)0.0287 (8)0.0509 (11)0.0015 (7)0.0083 (7)0.0113 (7)
C50.0254 (8)0.0362 (9)0.0316 (8)0.0038 (7)0.0071 (6)0.0098 (7)
C60.0242 (8)0.0320 (9)0.0262 (8)0.0016 (6)0.0013 (6)0.0003 (6)
C70.0200 (7)0.0198 (7)0.0202 (7)0.0003 (5)0.0021 (5)0.0021 (5)
C80.0208 (7)0.0172 (7)0.0230 (7)0.0029 (5)0.0038 (5)0.0020 (5)
C90.0234 (7)0.0162 (6)0.0204 (7)0.0010 (5)0.0017 (5)0.0009 (5)
C100.0192 (7)0.0153 (6)0.0177 (6)0.0002 (5)0.0024 (5)0.0037 (5)
C110.0246 (7)0.0153 (6)0.0204 (7)0.0026 (5)0.0040 (5)0.0005 (5)
C120.0254 (8)0.0183 (7)0.0213 (7)0.0011 (6)0.0015 (5)0.0028 (6)
C130.0228 (7)0.0165 (7)0.0178 (6)0.0015 (6)0.0027 (5)0.0014 (5)
C140.0214 (7)0.0141 (6)0.0169 (6)0.0004 (5)0.0038 (5)0.0007 (5)
C150.0180 (7)0.0182 (7)0.0234 (7)0.0001 (5)0.0002 (5)0.0014 (5)
C160.0209 (7)0.0176 (7)0.0235 (7)0.0028 (5)0.0020 (5)0.0018 (5)
N10.0198 (6)0.0314 (7)0.0260 (7)0.0040 (5)0.0027 (5)0.0092 (6)
N20.0208 (6)0.0169 (6)0.0179 (6)0.0023 (5)0.0025 (4)0.0010 (4)
N30.0200 (6)0.0149 (6)0.0226 (6)0.0015 (4)0.0018 (5)0.0013 (4)
N40.0208 (6)0.0117 (5)0.0220 (6)0.0024 (4)0.0022 (4)0.0001 (4)
Geometric parameters (Å, º) top
C1—C21.388 (2)C9—H90.9300
C1—C61.390 (2)C10—C111.3990 (19)
C1—N11.4060 (19)C10—N21.4163 (18)
C2—C31.386 (2)C11—C121.375 (2)
C2—H20.9300C11—H110.9300
C3—C41.381 (2)C12—H120.9300
C3—H30.9300C13—N21.2757 (18)
C4—C51.383 (2)C13—C141.449 (2)
C4—H40.9300C13—H130.976 (17)
C5—C61.383 (2)C14—N31.3358 (18)
C5—H50.9300C14—N41.3526 (18)
C6—H60.9300C15—N41.3636 (18)
C7—N11.3918 (18)C15—C161.366 (2)
C7—C81.400 (2)C15—H150.9300
C7—C121.402 (2)C16—N31.3757 (18)
C8—C91.382 (2)C16—H160.9300
C8—H80.9300N1—H1020.860 (19)
C9—C101.3957 (19)N4—H1010.8600
C2—C1—C6118.84 (13)C9—C10—N2116.95 (12)
C2—C1—N1119.97 (14)C11—C10—N2124.95 (12)
C6—C1—N1121.15 (13)C12—C11—C10120.90 (13)
C3—C2—C1120.45 (15)C12—C11—H11119.6
C3—C2—H2119.8C10—C11—H11119.5
C1—C2—H2119.8C11—C12—C7121.16 (13)
C4—C3—C2120.21 (16)C11—C12—H12119.4
C4—C3—H3119.9C7—C12—H12119.4
C2—C3—H3119.9N2—C13—C14119.90 (13)
C3—C4—C5119.69 (15)N2—C13—H13124.9 (9)
C3—C4—H4120.2C14—C13—H13115.2 (9)
C5—C4—H4120.2N3—C14—N4111.05 (12)
C4—C5—C6120.16 (15)N3—C14—C13125.08 (12)
C4—C5—H5119.9N4—C14—C13123.84 (12)
C6—C5—H5119.9N4—C15—C16105.97 (13)
C5—C6—C1120.58 (15)N4—C15—H15127.0
C5—C6—H6119.7C16—C15—H15127.0
C1—C6—H6119.7C15—C16—N3110.19 (13)
N1—C7—C8123.04 (13)C15—C16—H16124.9
N1—C7—C12118.81 (13)N3—C16—H16124.9
C8—C7—C12118.08 (13)C7—N1—C1125.46 (13)
C9—C8—C7120.43 (13)C7—N1—H102116.8 (12)
C9—C8—H8119.8C1—N1—H102114.9 (12)
C7—C8—H8119.8C13—N2—C10120.49 (12)
C8—C9—C10121.43 (13)C14—N3—C16105.04 (12)
C8—C9—H9119.3C14—N4—C15107.74 (11)
C10—C9—H9119.3C14—N4—H101126.1
C9—C10—C11117.97 (13)C15—N4—H101126.1
C6—C1—C2—C32.1 (2)C8—C7—C12—C111.0 (2)
N1—C1—C2—C3179.81 (14)N2—C13—C14—N3172.90 (12)
C1—C2—C3—C40.4 (2)N2—C13—C14—N45.0 (2)
C2—C3—C4—C52.1 (2)N4—C15—C16—N30.14 (16)
C3—C4—C5—C61.2 (2)C8—C7—N1—C16.8 (2)
C4—C5—C6—C11.3 (2)C12—C7—N1—C1176.26 (14)
C2—C1—C6—C53.0 (2)C2—C1—N1—C7130.27 (16)
N1—C1—C6—C5179.36 (14)C6—C1—N1—C752.1 (2)
N1—C7—C8—C9175.16 (13)C14—C13—N2—C10177.30 (11)
C12—C7—C8—C91.8 (2)C9—C10—N2—C13158.92 (12)
C7—C8—C9—C101.8 (2)C11—C10—N2—C1325.31 (19)
C8—C9—C10—C110.8 (2)N4—C14—N3—C160.39 (14)
C8—C9—C10—N2176.86 (12)C13—C14—N3—C16177.74 (12)
C9—C10—C11—C120.07 (19)C15—C16—N3—C140.15 (15)
N2—C10—C11—C12175.65 (12)N3—C14—N4—C150.49 (15)
C10—C11—C12—C70.1 (2)C13—C14—N4—C15177.67 (12)
N1—C7—C12—C11176.13 (13)C16—C15—N4—C140.37 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3/N4/C14–C16 ring.
D—H···AD—HH···AD···AD—H···A
N4—H101···N3i0.862.092.875 (3)151
C2—H2···Cg1ii0.932.833.691 (3)155
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3/N4/C14–C16 ring.
D—H···AD—HH···AD···AD—H···A
N4—H101···N3i0.862.092.875 (3)151
C2—H2···Cg1ii0.932.833.691 (3)155
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Aligarh Muslim University, India, and SERB–DST, New Delhi, for financial assistance (Ref SR/FT/CS-76/2011).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalapati, S., Alam, M. A., JANA, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536–540.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationGarcia, Y., Grunert, C. M., Reiman, S., van Campenhoudt, O. & Gütlich, P. (2006). Eur. J. Inorg. Chem. pp. 3333–3339.  Web of Science CrossRef Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShue, C. F., Lee, Z. C., Wei, H. H., Cheng, M. C. & Wang, Y. (1994). Polyhedron, 13, 2259–2264.  CAS Google Scholar
First citationSun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta A, 96, 42–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationThompson, J. R., Archer, R. J., Hawes, C. S., Ferguson, A., Wattiaux, A., Mathonière, C., Clérac, R. & Kruger, P. E. (2012). Dalton Trans. 41, 12720–12725.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds