research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of Pb3(IO4(OH)2)2

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 April 2014; accepted 25 April 2014; online 23 June 2014)

The structure of the title compound, trilead(II) bis­[di­hydroxido­tetra­oxido­iodate(VII)], was determined from a crystal twinned by non-merohedry with two twin domains present [twin fraction 0.73 (1):0.27 (1)]. It contains three Pb2+ cations and two IO4(OH)23− anions in the asymmetric unit. Each of the Pb2+ cations is surrounded by eight O atoms (cut-off value = 3.1 Å) in the form of a distorted polyhedron. The octa­hedral IO4(OH)23− anions are arranged in rows extending parallel to [021], forming a distorted hexa­gonal rod packing. The cations and anions are linked into a framework structure. Although H-atom positions could not be located, O⋯O distances suggest medium-strength hydrogen-bonding inter­actions between the IO4(OH)2 octa­hedra, further consolidating the crystal packing.

1. Chemical context

Lead and mercury can both exist in different oxidation states and each of the two elements exhibits a peculiar crystal chemistry. In the case of Pb2+-containing compounds, the crystal chemistry is mainly dominated by the stereoactive 6s2 lone-pair of lead (Holloway & Melnik, 1997[Holloway, C. E. & Melnik, M. (1997). Main Group Met. Chem. 20, 583-625.]), whereas Hg2+-containing compounds show a strong preference for a linear coordination of mercury (Breitinger, 2004[Breitinger, D. K. (2004). Cadmium and Mercury, in Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, ch. 6, pp. 1253-1292. Oxford: Elsevier.]). In this respect, it appears surprising that for some Pb2+- and Hg2+-containing compounds an isotypic relationship exists, e.g. for PbAs2O6 (Losilla et al., 1995[Losilla, E. R., Aranda, M. A. G., Ramirez, F. J. & Bruque, S. (1995). J. Phys. Chem. 99, 12975-12979.]) and HgAs2O6 (Mormann & Jeitschko, 2000b[Mormann, T. J. & Jeitschko, W. (2000b). Z. Kristallogr. New Cryst. Struct., 215, 471-472.]; Weil, 2000[Weil, M. (2000). Z. Naturforsch. Teil B, 55, 699-706.]), or for the mineral descloizite PbZn(VO4)OH (Hawthorne & Faggiani, 1979[Hawthorne, F. C. & Faggiani, R. (1979). Acta Cryst. B35, 717-720.]) and the synthetic phase HgZn(AsO4)OH (Weil, 2004[Weil, M. (2004). Acta Cryst. E60, i25-i27.]). With this in mind, it seemed inter­esting to study the relation between phases in the systems HgII–IVII–O–H and PbII–IVII–O–H. Whereas in the system HgII–IVII–O–H two compounds have been structurally characterized, viz. Hg3(IO4(OH)2)2 (Mormann & Jeitschko, 2000a[Mormann, T. J. & Jeitschko, W. (2000a). Z. Kristallogr. New Cryst. Struct., 215, 315-316.]) and Hg(IO3(OH)3) (Mormann & Jeitschko, 2001[Mormann, T. J. & Jeitschko, W. (2001). Z. Kristallogr. New Cryst. Struct., 216, 1-2.]), a phase in the system PbII–IVII–O–H has not yet been structurally determined, although several lead(II) periodate phases have been reported to exist. Willard & Thompson (1934[Willard, H. H. & Thompson, J. J. (1934). J. Am. Chem. Soc. 56, 1828-1830.]) claimed to have obtained only one phase with composition Pb3H4(IO6)2 in the system PbII–IVII–O–H. However, Drátovský & Matějčková (1965a[Drátovský, M. & Matějčková, J. (1965a). Chem. Zvesti, 19, 604-610.],b[Drátovský, M. & Matějčková, J. (1965b). Chem. Zvesti, 19, 447-455.]) reported the existence of three phases with composition Pb3(IO5)2·H2O, Pb2I2O9·3H2O and Pb4I2O11·5H2O in this system. To shed some light on the conflicting composition of the Pb:I 3:2 phase [Pb3H4(IO6)2 versus Pb3(IO5)2·H2O with a lower water content], the synthetic procedure described by Willard & Thompson (1934[Willard, H. H. & Thompson, J. J. (1934). J. Am. Chem. Soc. 56, 1828-1830.]) was repeated for crystal growth of this lead periodate. The current structure determination of the obtained crystals showed the composition Pb3H4(IO6)2 as reported by Willard & Thompson (1934[Willard, H. H. & Thompson, J. J. (1934). J. Am. Chem. Soc. 56, 1828-1830.]) to be correct. In a more reasonable crystal–chemical sense, the formula of these crystals should be rewritten as Pb3(IO4(OH)2)2.

2. Structural commentary

Three Pb2+ cations and two IO4(OH)23− octa­hedra are present in the asymmetric unit. The anions form a slightly distorted hexa­gonal rod packing with the rods extending parallel to [021]. Cations and anions are linked through common oxygen atoms into a framework structure (Fig. 1[link]).

[Figure 1]
Figure 1
The crystal structure of Pb3(IO4(OH)2)2 in a projection along [021]. Displacement ellipsoids are drawn at the 90% probability level. O atoms bearing the OH function are given in green, the other O atoms are white. Pb—O bonds are omitted for clarity; hydrogen-bonding inter­actions are shown as green dashed lines.

Each of the Pb2+ cations exhibits a coordination number of eight if Pb—O inter­actions less than 3.1 Å are considered to be relevant. The resulting [PbO8] polyhedra are considerably distorted [Pb—O distances range from 2.433 (7) to 3.099 (8) Å]. The stereochemical activity of the electron lone pairs in each of the polyhedra appears not to be very pronounced (Fig. 2[link]).

[Figure 2]
Figure 2
Coordination polyhedra of the three Pb2+ cations in the structure of Pb3(IO4(OH)2)2. Bonds shorter than 2.7 Å are given by solid black lines, longer bonds between 2.7 and 3.1 Å as open black lines. Displacement ellipsoids are drawn at the 90% probability level. [Symmetry codes: (i) −x, y − [{1\over 2}], −z + [{1\over 2}]; (ii) x, −y + [{1\over 2}], z − [{1\over 2}]; (iii) x, y − 1, z; (iv) −x + 1, −y + 1, −z; (v) −x, −y + 1, −z; (vi) x, −y + [{1\over 2}], z + [{1\over 2}]; (vii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (viii) −x, y + [{1\over 2}], −z + [{1\over 2}].]

Compounds and structures containing the periodate anion have been reviewed some time ago by Levason (1997[Levason, W. (1997). Coord. Chem. Rev. 161, 33-79.]). The compiled I—O bond lengths are in good agreement with the two IO6 octa­hedra of the title compound, having a mean I—O distance of 1.884 Å. Very similar mean values are found for comparable periodate compounds with large divalent cations, for example in BaI2O6(OH)4·2H2O (one IO6 octa­hedron, 1.895 Å; Häuseler, 2008[Häuseler, H. (2008). J. Mol. Struct. 892, 1-7.]), in Ba(IO3(OH)3) (one IO6 octa­hedron, 1.879 Å; Sasaki et al., 1995[Sasaki, M., Yarita, T. & Sato, S. (1995). Acta Cryst. C51, 1968-1970.]), in Hg3(IO4(OH)2)2 (two IO6 octa­hedra, 1.888 Å; Mormann & Jeitschko, 2000a[Mormann, T. J. & Jeitschko, W. (2000a). Z. Kristallogr. New Cryst. Struct., 215, 315-316.]) or in Sr(IO2(OH)4)2·3H2O (two IO6 octa­hedra, 1.888 Å; Alexandrova & Häuseler, 2004[Alexandrova, M. & Häuseler, H. (2004). J. Mol. Struct. 706, 7-13.]).

Results of bond-valence calculations (Brown, 2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]), using the parameters of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) for I—O bonds and of Krivovichev & Brown (2001[Krivovichev, S. V. & Brown, I. D. (2001). Z. Kristallogr. 216, 245-247.]) for Pb—O bonds, are reasonably close to the expected values (in valence units): Pb1 1.89, Pb2 1.73, Pb3 1.89, I1 6.78, I2 6.90, O1 1.95, O2 1.49, O3 1.90, O4 1.15, O5 1.15, O6 1.92, O7 1.98, O8 1.95, O 9 1.97, O10 1.09, O11 1.34, O12 1.12. The O atoms involved in hydrogen bonding are readily identifiable. The donor O atoms O4, O5, O10 and O12 exhibit the longest I—O bonds and the lowest bond-valence sums. Atom O11 has also a low bond-valence sum, explainable by its role as a twofold acceptor atom of medium-strength hydrogen-bonding inter­actions (Table 2[link]) that additionally stabilize the packing of the structure (Fig. 1[link]).

Table 2
Hydrogen-bond geometry (Å)

D—H⋯A DA D—H⋯A DA
O4⋯O7 2.849 (11) O10⋯O11iv 2.675 (11)
O4⋯O2i 2.849 (11) O12⋯O2iv 2.852 (11)
O5⋯O11iii 2.634 (11)    
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Comparison of the structures of Pb3(IO4(OH)2)2 and of Hg3(IO4(OH)2)2 [P21/c; Z = 4, a = 8.5429 (7), b = 12.2051 (8) Å, c = 9.3549 (8) Å, β = 90.884 (7)°] reveals some close similarities. A `true' isotypic relationship (Lima-de-Faria et al., 1990[Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1-11.]) is difficult to derive for the two structures. However, they are isopointal and show the same type of arrangement in terms of the crystal packing. In the mercury compound, the IO4(OH)23− octa­hedra are likewise hexa­gonally packed in rods (Fig. 3[link]). The cations are situated in between this arrangement which is further consolidated by O—H⋯O hydrogen bonding.

[Figure 3]
Figure 3
The crystal structure of Hg3(IO4(OH)2)2 (Mormann & Jeitschko, 2000a[Mormann, T. J. & Jeitschko, W. (2000a). Z. Kristallogr. New Cryst. Struct., 215, 315-316.]) in a projection along [011]. Colour code as in Fig. 1[link]. Hg—O and O—H⋯O inter­actions are omitted for clarity.

3. Synthesis and crystallization

The preparation conditions described by Willard & Thompson (1934[Willard, H. H. & Thompson, J. J. (1934). J. Am. Chem. Soc. 56, 1828-1830.]) were modified slightly. Instead of using NaIO4 as the periodate source, periodic acid was employed.

1.25 g Pb(NO3)2 was dissolved in 25 ml water, acidified with a few drops of concentrated nitric acid and heated until boiling. Then the periodic acid solution (0.85 g in 25 ml water) was slowly added to the lead solution. The addition of the first portion of the periodic acid solution (ca. 3–4 ml) resulted in an off-white precipitate near the drop point that redissolved under stirring. After further addition, the precipitate remained and changed the colour in the still boiling solution from off-white to yellow–orange within half an hour. After filtration of the precipitate, a few colourless crystals of the title compound formed in the mother liquor on cooling. X-ray powder diffraction data of the polycrystalline precipitate are in very good agreement with simulated data based on the refinement of Pb3(IO4(OH)2)2.

4. Refinement

All investigated crystals were twinned by non-merohedry. Intensity data of the measured crystal could be indexed to belong to two domains, with a refined twin domain ratio of 0.73 (1):0.27 (1). Reflections originating from the minor component as well as overlapping reflections of the two domains (less than 10% of all measured reflections) were separated and excluded. The H atoms of the IO4(OH)2 octa­hedra could not be located from difference maps and were therefore not considered in the final model. The O atoms were refined with isotropic displacement parameters. The remaining maximum and minimum electron densities are found 0.73 and 0.68 Å, respectively, from atom Pb2. Structure data were finally standardized with STRUCTURE-TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]). It should be noted that the intensity statistics point to a pronounced C-centred basis cell (space group C2/c with lattice parameters of a ≃ 14.16, b ≃ 9.21, c ≃ 8.97 Å, β ≃ 117.4°) with weak superstructure reflections violating the C-centering.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Trilead(II) bis[dihydroxidotetraoxidoiodate(VII)] top
Crystal data top
Pb3[IO4(OH)2]2F(000) = 1808
Mr = 1071.40Dx = 6.857 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3673 reflections
a = 8.9653 (9) Åθ = 3.2–30.5°
b = 9.2113 (9) ŵ = 54.55 mm1
c = 12.8052 (13) ÅT = 296 K
β = 101.042 (2)°Block, colourless
V = 1037.90 (18) Å30.06 × 0.06 × 0.05 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
3196 independent reflections
Radiation source: fine-focus sealed tube2587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 30.6°, θmin = 2.3°
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
h = 1212
Tmin = 0.253, Tmax = 0.746k = 013
3196 measured reflectionsl = 018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041H-atom parameters not refined
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0319P)2 + 17.8096P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3196 reflectionsΔρmax = 2.88 e Å3
94 parametersΔρmin = 1.95 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.12192 (5)0.13042 (4)0.11904 (3)0.01318 (10)
Pb20.25685 (5)0.51903 (5)0.01540 (4)0.01842 (11)
Pb30.37507 (5)0.36874 (5)0.38134 (3)0.01409 (10)
I10.00670 (7)0.23313 (7)0.36046 (5)0.00838 (13)
I20.50186 (7)0.24738 (6)0.14267 (5)0.00735 (13)
O10.0343 (9)0.3332 (8)0.0015 (6)0.0110 (14)*
O20.0389 (9)0.7922 (8)0.2811 (6)0.0125 (15)*
O30.1058 (9)0.4046 (8)0.4090 (6)0.0122 (15)*
O40.1088 (10)0.5549 (9)0.1797 (6)0.0178 (17)*
O50.1831 (9)0.8100 (8)0.1159 (6)0.0129 (15)*
O60.1842 (9)0.1429 (8)0.3433 (6)0.0117 (15)*
O70.3161 (9)0.3260 (8)0.1618 (6)0.0121 (15)*
O80.4052 (9)0.0832 (8)0.0785 (6)0.0121 (15)*
O90.4802 (9)0.3391 (8)0.0121 (6)0.0144 (16)*
O100.5247 (9)0.1474 (8)0.2794 (6)0.0145 (16)*
O110.6146 (10)0.3912 (8)0.2170 (6)0.0158 (16)*
O120.6856 (10)0.1562 (9)0.1172 (6)0.0182 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0134 (2)0.01402 (19)0.01215 (19)0.00236 (15)0.00243 (15)0.00042 (14)
Pb20.0168 (2)0.01424 (19)0.0236 (2)0.00084 (17)0.00251 (16)0.00040 (16)
Pb30.0153 (2)0.0173 (2)0.01036 (18)0.00366 (16)0.00426 (15)0.00050 (14)
I10.0075 (3)0.0104 (3)0.0072 (3)0.0003 (2)0.0014 (2)0.0006 (2)
I20.0066 (3)0.0078 (3)0.0076 (3)0.0002 (2)0.0011 (2)0.0005 (2)
Geometric parameters (Å, º) top
Pb1—O12.433 (7)Pb3—O9vi2.599 (8)
Pb1—O72.493 (8)Pb3—O62.678 (8)
Pb1—O2i2.577 (8)Pb3—O12vii2.704 (8)
Pb1—O3ii2.685 (7)Pb3—O8vii2.767 (8)
Pb1—O82.723 (8)Pb3—O72.787 (7)
Pb1—O62.821 (7)Pb3—O102.886 (8)
Pb1—O3i2.888 (8)I1—O61.845 (8)
Pb1—O5iii3.004 (7)I1—O31.860 (7)
Pb2—O72.564 (7)I1—O2i1.861 (7)
Pb2—O92.606 (8)I1—O1vi1.877 (7)
Pb2—O12.609 (7)I1—O5i1.920 (8)
Pb2—O6ii2.638 (7)I1—O4i1.956 (8)
Pb2—O42.714 (8)I2—O111.820 (8)
Pb2—O9iv2.777 (8)I2—O91.850 (8)
Pb2—O1v2.915 (7)I2—O81.855 (7)
Pb2—O53.099 (8)I2—O71.874 (8)
Pb3—O8vi2.527 (7)I2—O121.932 (9)
Pb3—O32.528 (8)I2—O101.954 (8)
O1—Pb1—O773.1 (2)O7—I2—O1090.5 (3)
O1—Pb1—O2i73.6 (2)O12—I2—O1090.0 (3)
O7—Pb1—O2i84.6 (2)I1ii—O1—Pb1108.2 (3)
O1—Pb1—O3ii61.5 (2)I1ii—O1—Pb2103.7 (3)
O7—Pb1—O3ii102.0 (2)Pb1—O1—Pb2108.0 (3)
O2i—Pb1—O3ii129.7 (2)I1ii—O1—Pb2v97.4 (3)
O1—Pb1—O8102.0 (2)Pb1—O1—Pb2v125.6 (3)
O7—Pb1—O861.3 (2)Pb2—O1—Pb2v111.1 (2)
O2i—Pb1—O8144.9 (2)I1ii—O1—Pb3ii57.6 (2)
O3ii—Pb1—O870.3 (2)Pb1—O1—Pb3ii73.14 (18)
O1—Pb1—O6125.2 (2)Pb2—O1—Pb3ii73.13 (17)
O7—Pb1—O675.7 (2)Pb2v—O1—Pb3ii154.3 (2)
O2i—Pb1—O659.4 (2)I1viii—O2—Pb1viii106.0 (3)
O3ii—Pb1—O6170.7 (2)I1viii—O2—Pb2ix156.0 (4)
O8—Pb1—O6101.0 (2)Pb1viii—O2—Pb2ix97.4 (2)
O1—Pb1—O3i109.8 (2)I1viii—O2—Pb1x75.1 (2)
O7—Pb1—O3i174.4 (2)Pb1viii—O2—Pb1x155.4 (3)
O2i—Pb1—O3i91.7 (2)Pb2ix—O2—Pb1x86.03 (16)
O3ii—Pb1—O3i83.5 (2)I1viii—O2—Pb3viii62.0 (2)
O8—Pb1—O3i121.6 (2)Pb1viii—O2—Pb3viii78.83 (19)
O6—Pb1—O3i98.8 (2)Pb2ix—O2—Pb3viii129.9 (2)
O1—Pb1—O5iii141.7 (2)Pb1x—O2—Pb3viii80.39 (14)
O7—Pb1—O5iii126.3 (2)I1—O3—Pb3104.5 (3)
O2i—Pb1—O5iii134.1 (2)I1—O3—Pb1vi99.4 (3)
O3ii—Pb1—O5iii81.0 (2)Pb3—O3—Pb1vi104.8 (3)
O8—Pb1—O5iii70.2 (2)I1—O3—Pb1viii106.8 (3)
O6—Pb1—O5iii93.0 (2)Pb3—O3—Pb1viii138.4 (3)
O3i—Pb1—O5iii54.4 (2)Pb1vi—O3—Pb1viii96.5 (2)
O7—Pb2—O961.2 (2)I1viii—O4—Pb2102.2 (3)
O7—Pb2—O169.1 (2)I1viii—O4—Pb3146.5 (3)
O9—Pb2—O199.3 (2)Pb2—O4—Pb398.2 (2)
O7—Pb2—O6ii101.7 (2)I1viii—O4—Pb1viii71.6 (2)
O9—Pb2—O6ii72.2 (2)Pb2—O4—Pb1viii173.4 (3)
O1—Pb2—O6ii60.6 (2)Pb3—O4—Pb1viii88.39 (17)
O7—Pb2—O465.3 (2)I1viii—O4—Pb2v68.3 (2)
O9—Pb2—O4125.5 (2)Pb2—O4—Pb2v87.5 (2)
O1—Pb2—O469.6 (2)Pb3—O4—Pb2v139.5 (2)
O6ii—Pb2—O4129.6 (2)Pb1viii—O4—Pb2v87.94 (18)
O7—Pb2—O9iv110.9 (2)I1viii—O4—Pb1143.6 (3)
O9—Pb2—O9iv67.9 (3)Pb2—O4—Pb172.12 (18)
O1—Pb2—O9iv163.1 (2)Pb3—O4—Pb168.44 (14)
O6ii—Pb2—O9iv103.9 (2)Pb1viii—O4—Pb1111.3 (2)
O4—Pb2—O9iv126.5 (2)Pb2v—O4—Pb175.48 (15)
O7—Pb2—O1v115.8 (2)I1viii—O5—Pb1x101.0 (3)
O9—Pb2—O1v167.4 (2)I1viii—O5—Pb290.7 (3)
O1—Pb2—O1v68.9 (2)Pb1x—O5—Pb2155.4 (3)
O6ii—Pb2—O1v97.3 (2)I1viii—O5—Pb1v69.1 (2)
O4—Pb2—O1v55.7 (2)Pb1x—O5—Pb1v75.90 (16)
O9iv—Pb2—O1v122.7 (2)Pb2—O5—Pb1v88.49 (18)
O7—Pb2—O5109.1 (2)I1viii—O5—Pb3vii163.1 (3)
O9—Pb2—O5141.5 (2)Pb1x—O5—Pb3vii92.88 (19)
O1—Pb2—O5112.0 (2)Pb2—O5—Pb3vii80.25 (17)
O6ii—Pb2—O5142.9 (2)Pb1v—O5—Pb3vii124.4 (2)
O4—Pb2—O553.0 (2)I1—O6—Pb2vi103.6 (3)
O9iv—Pb2—O584.2 (2)I1—O6—Pb399.4 (3)
O1v—Pb2—O550.8 (2)Pb2vi—O6—Pb3103.9 (3)
O8vi—Pb3—O376.1 (3)I1—O6—Pb197.6 (3)
O8vi—Pb3—O9vi61.9 (2)Pb2vi—O6—Pb1142.8 (3)
O3—Pb3—O9vi104.1 (2)Pb3—O6—Pb1102.2 (2)
O8vi—Pb3—O6105.1 (2)I2—O7—Pb1107.0 (3)
O3—Pb3—O662.2 (2)I2—O7—Pb2103.7 (3)
O9vi—Pb3—O671.7 (2)Pb1—O7—Pb2107.6 (3)
O8vi—Pb3—O12vii78.7 (2)I2—O7—Pb3100.6 (3)
O3—Pb3—O12vii70.9 (3)Pb1—O7—Pb3108.2 (3)
O9vi—Pb3—O12vii140.0 (2)Pb2—O7—Pb3127.7 (3)
O6—Pb3—O12vii129.8 (2)I2—O7—Pb3ii56.96 (19)
O8vi—Pb3—O8vii75.7 (3)Pb1—O7—Pb3ii72.30 (17)
O3—Pb3—O8vii123.1 (2)Pb2—O7—Pb3ii73.10 (17)
O9vi—Pb3—O8vii104.4 (2)Pb3—O7—Pb3ii154.9 (3)
O6—Pb3—O8vii174.5 (2)I2—O8—Pb3ii104.5 (3)
O12vii—Pb3—O8vii55.7 (2)I2—O8—Pb199.1 (3)
O8vi—Pb3—O7174.9 (2)Pb3ii—O8—Pb1103.7 (3)
O3—Pb3—O799.1 (2)I2—O8—Pb3xi104.1 (3)
O9vi—Pb3—O7121.4 (2)Pb3ii—O8—Pb3xi104.3 (3)
O6—Pb3—O773.5 (2)Pb1—O8—Pb3xi137.3 (3)
O12vii—Pb3—O798.4 (2)I2—O9—Pb3ii102.0 (3)
O8vii—Pb3—O7106.2 (2)I2—O9—Pb2102.9 (3)
O8vi—Pb3—O10127.3 (2)Pb3ii—O9—Pb2107.1 (3)
O3—Pb3—O10134.0 (2)I2—O9—Pb2iv112.6 (4)
O9vi—Pb3—O1068.2 (2)Pb3ii—O9—Pb2iv118.5 (3)
O6—Pb3—O1072.9 (2)Pb2—O9—Pb2iv112.1 (3)
O12vii—Pb3—O10143.8 (2)I2—O10—Pb395.4 (3)
O8vii—Pb3—O10102.3 (2)I2—O10—Pb2xi148.8 (4)
O7—Pb3—O1057.2 (2)Pb3—O10—Pb2xi98.9 (2)
O6—I1—O393.1 (3)I2—O10—Pb3xi79.3 (2)
O6—I1—O2i92.8 (3)Pb3—O10—Pb3xi167.0 (3)
O3—I1—O2i94.6 (3)Pb2xi—O10—Pb3xi91.50 (19)
O6—I1—O1vi90.6 (3)I2—O10—Pb167.0 (2)
O3—I1—O1vi89.3 (3)Pb3—O10—Pb178.32 (18)
O2i—I1—O1vi174.7 (3)Pb2xi—O10—Pb1143.2 (2)
O6—I1—O5i174.5 (3)Pb3xi—O10—Pb188.65 (17)
O3—I1—O5i90.9 (3)I2—O11—Pb385.6 (3)
O2i—I1—O5i90.5 (3)I2—O11—Pb2iv88.1 (3)
O1vi—I1—O5i85.8 (3)Pb3—O11—Pb2iv157.4 (3)
O6—I1—O4i90.9 (3)I2—O11—Pb1vii171.0 (4)
O3—I1—O4i174.5 (3)Pb3—O11—Pb1vii95.8 (2)
O2i—I1—O4i89.0 (3)Pb2iv—O11—Pb1vii93.74 (19)
O1vi—I1—O4i86.9 (3)I2—O11—Pb264.5 (2)
O5i—I1—O4i84.8 (3)Pb3—O11—Pb283.53 (18)
O11—I2—O995.3 (3)Pb2iv—O11—Pb274.20 (15)
O11—I2—O8172.0 (3)Pb1vii—O11—Pb2124.5 (2)
O9—I2—O890.7 (3)I2—O12—Pb3xi104.2 (4)
O11—I2—O793.9 (4)I2—O12—Pb2iv85.5 (3)
O9—I2—O790.0 (3)Pb3xi—O12—Pb2iv151.9 (3)
O8—I2—O791.2 (3)I2—O12—Pb3ii68.4 (2)
O11—I2—O1289.9 (4)Pb3xi—O12—Pb3ii79.9 (2)
O9—I2—O1289.5 (4)Pb2iv—O12—Pb3ii79.42 (16)
O8—I2—O1284.9 (3)I2—O12—Pb1xii155.4 (4)
O7—I2—O12176.1 (3)Pb3xi—O12—Pb1xii98.2 (2)
O11—I2—O1085.5 (3)Pb2iv—O12—Pb1xii79.41 (17)
O9—I2—O10179.1 (3)Pb3ii—O12—Pb1xii126.6 (2)
O8—I2—O1088.4 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2; (ix) x, y+3/2, z+1/2; (x) x, y+1, z; (xi) x+1, y1/2, z+1/2; (xii) x+1, y, z.
Hydrogen-bond geometry (Å) top
D—H···AD···A
O4···O72.849 (11)
O4···O2i2.849 (11)
O5···O11vii2.634 (11)
O10···O11xi2.675 (11)
O12···O2xi2.852 (11)
Symmetry codes: (i) x, y1/2, z+1/2; (vii) x+1, y+1/2, z+1/2; (xi) x+1, y1/2, z+1/2.
 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAlexandrova, M. & Häuseler, H. (2004). J. Mol. Struct. 706, 7–13.  Web of Science CrossRef CAS Google Scholar
First citationBreitinger, D. K. (2004). Cadmium and Mercury, in Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, ch. 6, pp. 1253–1292. Oxford: Elsevier.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2008). SMART, SAINT-Plus and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationDrátovský, M. & Matějčková, J. (1965a). Chem. Zvesti, 19, 604–610.  Google Scholar
First citationDrátovský, M. & Matějčková, J. (1965b). Chem. Zvesti, 19, 447–455.  Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHäuseler, H. (2008). J. Mol. Struct. 892, 1–7.  Google Scholar
First citationHawthorne, F. C. & Faggiani, R. (1979). Acta Cryst. B35, 717–720.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHolloway, C. E. & Melnik, M. (1997). Main Group Met. Chem. 20, 583–625.  CAS Google Scholar
First citationKrivovichev, S. V. & Brown, I. D. (2001). Z. Kristallogr. 216, 245–247.  Web of Science CrossRef CAS Google Scholar
First citationLevason, W. (1997). Coord. Chem. Rev. 161, 33–79.  CrossRef CAS Web of Science Google Scholar
First citationLima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1–11.  CrossRef CAS IUCr Journals Google Scholar
First citationLosilla, E. R., Aranda, M. A. G., Ramirez, F. J. & Bruque, S. (1995). J. Phys. Chem. 99, 12975–12979.  CrossRef CAS Web of Science Google Scholar
First citationMormann, T. J. & Jeitschko, W. (2000a). Z. Kristallogr. New Cryst. Struct., 215, 315–316.  CAS Google Scholar
First citationMormann, T. J. & Jeitschko, W. (2000b). Z. Kristallogr. New Cryst. Struct., 215, 471–472.  CAS Google Scholar
First citationMormann, T. J. & Jeitschko, W. (2001). Z. Kristallogr. New Cryst. Struct., 216, 1–2.  CrossRef CAS Google Scholar
First citationSasaki, M., Yarita, T. & Sato, S. (1995). Acta Cryst. C51, 1968–1970.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeil, M. (2000). Z. Naturforsch. Teil B, 55, 699–706.  CAS Google Scholar
First citationWeil, M. (2004). Acta Cryst. E60, i25–i27.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillard, H. H. & Thompson, J. J. (1934). J. Am. Chem. Soc. 56, 1828–1830.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds