research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of N-(pyridin-2-ylmeth­yl)pyrazine-2-carboxamide (monoclinic polymorph) and N-(pyridin-4-ylmeth­yl)pyrazine-2-carboxamide1

aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, CH-1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 April 2014; accepted 25 April 2014; online 23 June 2014)

The title compounds, C11H10N4O (HL1) and C11H10N4O (HL2), are pyridine 2-ylmethyl and 4-ylmethyl derivatives, respectively, of pyrazine-2-carboxamide. HL1 was measured at 153 K and crystallized in the monoclinic space group P21/c with Z = 4. There has been a report of the same structure measured at room temperature but assumed to crystallize in the triclinic space group P-1 with Z = 4 [Sasan et al. (2008[Sasan, K., Khavasi, H. R. & Davari, M. D. (2008). Monatsh. Chem. 139, 773-789.]). Monatsh. Chem. 139, 773–780]. In HL1, the pyridine ring is inclined to the pyrazine ring by 61.34 (6)°, while in HL2 this dihedral angle is 84.33 (12)°. In both mol­ecules, there is a short N—H⋯N inter­action involving the pyrazine carboxamide unit. In the crystal of HL1, mol­ecules are linked by N—H⋯N hydrogen bonds, forming inversion dimers with an R22(10) ring motif. The dimers are linked via bifurcated-acceptor C—H⋯O hydrogen bonds, forming sheets lying parallel to (102). The sheets are linked via C—H⋯N hydrogen bonds, forming a three-dimensional structure. In the crystal of HL2, mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds to form chains propagating along [010]. The chains are linked via C—H⋯O hydrogen bonds, forming sheets lying parallel to (100). Within the sheets there are ππ inter­actions involving neighbouring pyrazine rings [inter-centroid distance = 3.711 (15) Å]. Adjacent sheets are linked via parallel slipped ππ inter­actions involving inversion-related pyridine rings [inter-centroid distance = 3.6395 (17) Å], forming a three-dimensional structure.

1. Chemical context

The title compounds form part of a series of ligands synthesized in order to study their coordination chemistry with 3d transition metals (Cati, 2002[Cati, D. S. (2002). PhD thesis, University of Neuchâtel, Switzerland.]).

[Scheme 1]

They have been used to construct coordination polymers and multi-nuclear compounds, and to study their magnetic properties (Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]). Similar ligands have been synthesized by other groups who have studied, for example, the magnetic properties of some copper(II) complexes (Hausmann et al., 2003[Hausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992-2993.]; Kingele et al., 2007[Kingele, J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, J. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633-645.]).

2. Structural commentary

The mol­ecular structure of ligand HL1 is illustrated in Fig. 1[link]. HL1 was measured at 153 K and crystallized in the monoclinic space group P21/c with Z = 4. The β angle is 91.461 (11)° and the systematic absences, the Rint value (0.0348) and the successful refinement {R1 [I > 2σ(I)] = 0.0319} clearly show that at 153 K the space group is monoclinic P21/c. The same structure measured at room temperature was reported to crystallize in the triclinic space group P[\overline{1}] with Z = 4 (Sasan et al., 2008[Sasan, K., Khavasi, H. R. & Davari, M. D. (2008). Monatsh. Chem. 139, 773-789.]). However, the three cell angles are close 90 (2)° [α = 91.802 (6), β = 89.834 (7), γ = 91.845 (6)°] and the crystal used was a very narrow needle. The final R1 [I > 2σ(I)] factor was rather high at 0.0699, hence it is possible that the choice of crystal system and space group are incorrect. However, this could not be confirmed when analysing the coordinates using the AddSymm routine in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of HL1, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The short intra­molecular N—H⋯N inter­action is shown as a dashed line (see Table 1[link] for details).

In the mol­ecule of HL1 there is a short N—H⋯N hydrogen bond present in the pyrazine carboxamide unit (Table 1[link]), and the amide group, C5(=O1)N3, is approximately coplanar with the pyrazine (N1/N2/C1–C4) ring [dihedral angle = 2.56 (14)°]. The pyrazine and pyridine (N4/C7–C10) rings are inclined to one another by 61.34 (6)°. In the triclinic structure mentioned above, the same angle in the two independent mol­ecules is 63.31 (13) and 61.94 (13)°.

Table 1
Hydrogen-bond geometry (Å, °) for HL1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N1 0.901 (16) 2.332 (15) 2.7136 (15) 105.4 (11)
N3—H3N⋯N4i 0.901 (16) 2.206 (16) 2.9929 (14) 145.6 (13)
C3—H3⋯O1ii 0.95 2.51 3.1544 (15) 125
C4—H4⋯O1ii 0.95 2.56 3.1748 (15) 123
C10—H10⋯N2iii 0.95 2.62 3.5678 (17) 174
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

The mol­ecular structure of HL2 is illustrated in Fig. 2[link]. Here too there is a short intra­molecular N—H⋯N contact involving the pyrazine carboxamide unit (Table 2[link]), and the amide group, C5(=O1)N3, is almost coplanar with the pyrazine (N1/N2/C1–C4) ring with a dihedral angle of 3.9 (3)°. Here the pyrazine and pyridine (N4/C7–C10) rings are almost normal to one another with a dihedral angle of 84.33 (12)°.

Table 2
Hydrogen-bond geometry (Å, °) for HL2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N1 0.83 (3) 2.27 (3) 2.713 (3) 114 (2)
N3—H3N⋯N2i 0.83 (3) 2.52 (3) 3.214 (3) 142 (2)
C2—H2⋯N1ii 0.93 2.47 3.315 (3) 151
C8—H8⋯O1iii 0.93 2.55 3.373 (3) 148
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the mol­ecular structure of HL2, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The short intra­molecular N—H⋯N inter­action is shown as a dashed line (see Table 2[link] for details).

3. Supra­molecular features

In the crystal of HL1, mol­ecules are linked by N—H⋯N hydrogen bonds, forming inversion dimers with an R22(10) ring motif. The dimers are linked via bifurcated-acceptor C—H⋯O hydrogen bonds, forming sheets lying parallel to (102) (see Table 1[link] and Fig. 3[link]). The sheets are linked via C—H⋯N hydrogen bonds, forming a three-dimensional structure (Table 1[link] and Fig. 4[link]).

[Figure 3]
Figure 3
A partial view along the a axis of the crystal packing of compound HL1. The N—H⋯N, C—H⋯O and C-H⋯N hydrogen bonds are shown as dashed lines (see Table 1[link] for details).
[Figure 4]
Figure 4
The crystal packing of compound HL1 viewed along the b axis. The N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

In the crystal of HL2, mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds to form chains propagating along [010], as shown in Table 2[link] and Fig. 5[link]. The chains are linked via C—H⋯O hydrogen bonds, forming sheets lying parallel to (100). Within the sheets there are ππ inter­actions involving neighbouring pyrazine rings [Cg1⋯Cg1i = 3.7113 (15) Å; Cg1 is the centroid of the pyrazine ring N1/N2/C1–C4; symmetry code: (i) = x, −y + [{1\over 2}], z − [{1\over 2}]]. The sheets are linked via slipped parallel ππ inter­actions involving inversion-related pyridine rings [Cg2⋯Cg2ii = 3.6395 (11) Å, normal distance = 3.4164 (11), slippage = 1.255 Å; Cg2 is the centroid of pyridine ring N4/C7–C11; symmetry code: (ii) −x, −y, −z], forming a three-dimensional structure (Table 2[link] and Fig. 6[link]).

[Figure 5]
Figure 5
A partial view along the c axis of the crystal packing of compound HL2. The N—H⋯N, and C—H⋯N hydrogen bonds are shown as dashed lines (see Table 2[link] for details).
[Figure 6]
Figure 6
The crystal packing of compound HL2 viewed along the c axis. The N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds are shown as dashed lines (see Table 2[link] for details).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) indicated the presence of 282 structures containing the pyrazine-2-carboxamide unit. 81 of these concern pyrazine-2-carboxamide itself. There were 10 hits for complexes of ligand HL1. These include a cobalt(III) (Hellyer et al., 2009[Hellyer, R. M., Larsen, D. S. & Brooker, S. (2009). Eur. J. Inorg. Chem. pp. 1162-1171.]), a chromium(III) (Khavasi et al., 2010[Khavasi, H. R., Firouzi, R., Sasan, K. & Zahedi, M. (2010). Solid State Sci. 12, 1960-1965.]) and four copper(II) complexes (Mohamadou et al., 2012[Mohamadou, A., Moreau, J., Dupont, L. & Wenger, E. (2012). Inorg. Chim Acta, 383, 267.]; Khavasi et al., 2011[Khavasi, H. R., Sasan, K., Hashjin, S. S. & Zahedi, M. (2011). C. R. Chim. 14, 563-567.]), all of which are mononuclear with the ligand coordinating in a tridentate manner. There are also two polymeric mercury chloride complexes (Khavasi & Sadegh, 2010[Khavasi, H. R. & Sadegh, B. M. M. (2010). Inorg. Chem. 49, 5356-5358.]), a binuclear manganese chloride complex (Khavasi et al., 2009[Khavasi, H. R., Sasan, K., Pirouzmand, M. & Ebrahim, S. N. (2009). Inorg. Chem. 48, 5593-5595.]), and a polymeric silver tetra­fluoro­borate complex (Hellyer et al., 2009[Hellyer, R. M., Larsen, D. S. & Brooker, S. (2009). Eur. J. Inorg. Chem. pp. 1162-1171.]), where the ligand coordinates in a bis-monodentate manner. Plus the report of the ligand itself as mentioned above (Sasan et al., 2008[Sasan, K., Khavasi, H. R. & Davari, M. D. (2008). Monatsh. Chem. 139, 773-789.]). For ligand HL2 there were no hits.

5. Synthesis and crystallization

The precursor pyrazine-2-carb­oxy­lic acid methyl ester (2-pze) was prepared following the procedure described by Alvarez-Ibarra et al. (1994[Alvarez-Ibarra, C., Cuervo-Rodríguez, R., Fernández-Monreal, M. C. & Ruiz, M. P. (1994). J. Org. Chem. 59, 7284-7291.]). 6.21 g (50 mmol) of pyrazine-2-carb­oxy­lic acid were added to 50 ml of absolute methanol in a two-necked flask (100 ml). The mixture was heated to 303 K and then 0.4 ml of concentrated sulfuric acid was added slowly. The mixture was heated for 23 h, at least. It was then poured over ice and made alkaline using NaOH (2 N), then extracted with CH2Cl2. The organic extract was dried over Na2SO4. The resulting yellow product was purified by recrystallization from hexane, or by column chromatography on silica gel using CH2Cl2 as eluant, giving finally colourless crystals (yield 80%).

The ligand HL1 was prepared by refluxing 2-pze (1.80 g, 13 mmol) and an excess of 2-(amino­meth­yl)pyridine (1.84 g, 17 mmol) in 12 ml of methanol, for 6 h in a two-necked flask (50 ml). A yellowish oil remained when the methanol was evaporated off. The excess of 2-(amino­meth­yl)pyridine was eliminated by column chromatography on silica gel using CH2Cl2 as eluant (r = 2 cm, l = 8 cm). A yellow band of 2-(amino­meth­yl)pyridine remained on the column. After evaporation, the ligand could be recrystallized from diethyl ether, aceto­nitrile or ethyl acetate. HL1 is very soluble in MeOH and in CH2Cl2. Recrystallization from diethyl ether gave colourless blocks of HL1 (yield 91%; m.p. 388 K). Analysis for C11H10N4O (Mr = 214.46 g/mol) Calculated (%) C: 61.67 H: 4.71 N: 26.15; Found (%) C: 61.80 H: 4.76 N: 26.45. Spectroscopic data are available in the supporting information.

HL2 was prepared using the same procedure as for HL1. 2-pze (1.38 g, 10 mmol) with, this time, an excess of 4-(amino­meth­yl)pyridine (1.73 g, 16 mmol) were refluxed in 20 ml of methanol, for 20 h in a two-necked flask (50 ml). 4-(amino­meth­yl)pyridine (1g, 10 mmol) was then added to the red solution. After 4 h the solution was evaporated to about 8 ml. HL2 crystallized out at room temperature. About 20 ml of diethyl ether was added to filtrate the product. It was then recrystallized from a mixture of 3 ml of methanol and 40 ml of diethyl ether to give colourless blocks (yield 84%; m.p. 422 K). Anal. for C11H10N4O (Mr = 214.46 g/mol) Calculated (%) C: 61.67 H: 4.71 N: 26.15 Found (%) C: 61.57 H: 4.75 N: 26.20. Spectroscopic data are available in the supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NH H atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å for HL1 and = 0.93 Å for HL2, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  HL1 HL2
Crystal data
Chemical formula C11H10N4O C11H10N4O
Mr 214.23 214.23
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 153 293
a, b, c (Å) 4.1527 (4), 20.4629 (18), 12.0106 (11) 13.8564 (14), 11.1841 (11), 6.9122 (10)
β (°) 91.461 (11) 104.356 (14)
V3) 1020.28 (16) 1037.7 (2)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.09
Crystal size (mm) 0.50 × 0.40 × 0.35 0.38 × 0.30 × 0.19
 
Data collection
Diffractometer Stoe IPDS 1 Stoe AED2 four-circle
No. of measured, independent and observed [I > 2σ(I)] reflections 7822, 1958, 1548 4132, 1937, 1198
Rint 0.035 0.032
(sin θ/λ)max−1) 0.615 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.03 0.054, 0.127, 1.10
No. of reflections 1958 1937
No. of parameters 149 150
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.17 0.17, −0.16
Computer programs: EXPOSE, CELL and INTEGRATE in IPDSI, STADI4 and X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). IPDSI, STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: EXPOSE in IPDSI (Stoe & Cie, 1997) for HL1; STADI4 (Stoe & Cie, 1997) for HL2. Cell refinement: CELL in IPDSI (Stoe & Cie, 1997) for HL1; STADI4 (Stoe & Cie, 1997) for HL2. Data reduction: INTEGRATE in IPDSI (Stoe & Cie, 1997) for HL1; X-RED (Stoe & Cie, 1997) for HL2. For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(HL1) N-(Pyridin-2-ylmethyl)pyrazine-2-carboxamide top
Crystal data top
C11H10N4OF(000) = 448
Mr = 214.23Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.1527 (4) ÅCell parameters from 6532 reflections
b = 20.4629 (18) Åθ = 2.0–25.9°
c = 12.0106 (11) ŵ = 0.10 mm1
β = 91.461 (11)°T = 153 K
V = 1020.28 (16) Å3Block, colourless
Z = 40.50 × 0.40 × 0.35 mm
Data collection top
Stoe IPDS 1
diffractometer
1548 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Plane graphite monochromatorθmax = 25.9°, θmin = 2.0°
φ rotation scansh = 55
7822 measured reflectionsk = 2525
1958 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.0704P]
where P = (Fo2 + 2Fc2)/3
1958 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Experimental. Spectrosopic data for HL1: 1H NMR (400 MHz, DMSO-d6; code Hh/NH, Hl/C3, Hn/C1, Hm/C2, Hb/C11, Hd/C9, He/C8, Hc/C10, Hg/C6): 9.50 (t, 1H, Jhg = 6.0, Hh); 9.23 (d, 1H, Jlm = 1.5, Hl); 8.91 (d, 1H, Jnm = 2.5, Hn); 8.78 (dd, 1H, Jmn = 2.5, Jml = 1.5, Hm); 8.53 (ddd, 1H, Jbc = 4.8, Jbd = 1.8, Jbe = 0.8, Hb); 7.76 (td, 1H, Jdc = 7.7, Jdb = 1.8, Hd); 7.35 (d, 1H, Jed = 7.9, He); 7.28 (dd, 1H, Jcd = 7.7, Jcb = 4.8, Hc); 4.64 (d, 2H, Jgh = 6.0, He). 13C NMR (400 MHz, DMSO-d6): 163.9, 158.6, 149.7, 148.6, 145.5, 144.4, 144.3, 137.6, 123.1, 121.9, 45.0. IR (KBr pellet, cm-1): 3248 (m), 3066 (w), 3018 (w), 2949 (w), 1669 (versus), 1593 (m), 1570 (m), 1517 (versus), 1478 (m), 1462 (s), 1440 (s), 1423 (s), 1389 (s), 1350 (m), 1320 (m), 1287 (s), 1250 (m), 1221 (m), 1168 (s), 1148 (m), 1103 (m), 1055 (m), 1021 (s), 1000 (m), 975 (m), 870 (m), 840 (w), 776 (m), 753 (s), 707 (m), 634 (m), 611 (m), 528 (m), 444 (m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7345 (3)0.30055 (5)0.42625 (8)0.0260 (2)
N20.7780 (3)0.16917 (5)0.49125 (9)0.0343 (3)
N30.4290 (2)0.38859 (5)0.55546 (8)0.0224 (2)
H3N0.514 (4)0.3982 (7)0.4892 (13)0.037 (4)*
N40.5222 (3)0.53951 (5)0.66045 (8)0.0293 (3)
O10.3074 (2)0.30857 (4)0.67870 (7)0.0344 (2)
C10.6100 (3)0.27903 (5)0.52119 (9)0.0215 (3)
C20.6318 (3)0.21416 (6)0.55317 (10)0.0287 (3)
H20.54010.20110.62130.034*
C30.9010 (3)0.19099 (6)0.39702 (10)0.0305 (3)
H31.00710.16090.35010.037*
C40.8800 (3)0.25567 (6)0.36486 (10)0.0290 (3)
H40.97240.26860.29670.035*
C50.4355 (3)0.32697 (6)0.59277 (9)0.0229 (3)
C60.2435 (3)0.43932 (6)0.60984 (10)0.0263 (3)
H6A0.06270.41860.64880.032*
H6B0.15030.46880.55220.032*
C70.4391 (3)0.47934 (5)0.69249 (9)0.0219 (3)
C80.5266 (3)0.45428 (6)0.79615 (10)0.0271 (3)
H80.46400.41130.81630.033*
C90.7051 (3)0.49220 (6)0.86977 (10)0.0312 (3)
H90.76820.47570.94100.037*
C100.7906 (4)0.55455 (6)0.83801 (11)0.0350 (3)
H100.91150.58220.88700.042*
C110.6957 (4)0.57556 (6)0.73353 (11)0.0376 (3)
H110.75690.61830.71170.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0305 (6)0.0246 (5)0.0231 (5)0.0011 (4)0.0045 (4)0.0005 (4)
N20.0434 (7)0.0239 (5)0.0356 (6)0.0046 (5)0.0043 (5)0.0006 (4)
N30.0263 (5)0.0207 (5)0.0201 (5)0.0007 (4)0.0020 (4)0.0008 (4)
N40.0412 (7)0.0219 (5)0.0249 (5)0.0016 (4)0.0022 (4)0.0007 (4)
O10.0454 (6)0.0295 (5)0.0288 (5)0.0000 (4)0.0154 (4)0.0036 (4)
C10.0219 (6)0.0217 (6)0.0208 (5)0.0024 (5)0.0014 (4)0.0008 (4)
C20.0369 (8)0.0247 (6)0.0246 (6)0.0006 (5)0.0032 (5)0.0016 (5)
C30.0327 (7)0.0275 (6)0.0313 (7)0.0029 (5)0.0039 (5)0.0067 (5)
C40.0321 (7)0.0305 (6)0.0246 (6)0.0012 (5)0.0056 (5)0.0028 (5)
C50.0233 (6)0.0242 (6)0.0211 (6)0.0021 (5)0.0003 (5)0.0001 (4)
C60.0244 (7)0.0248 (6)0.0296 (6)0.0062 (5)0.0010 (5)0.0021 (5)
C70.0210 (6)0.0213 (6)0.0235 (6)0.0055 (5)0.0057 (4)0.0011 (4)
C80.0275 (7)0.0258 (6)0.0281 (6)0.0005 (5)0.0024 (5)0.0046 (5)
C90.0333 (7)0.0374 (7)0.0228 (6)0.0044 (6)0.0001 (5)0.0010 (5)
C100.0420 (8)0.0310 (7)0.0317 (7)0.0002 (6)0.0034 (6)0.0093 (5)
C110.0554 (9)0.0207 (6)0.0366 (7)0.0046 (6)0.0022 (6)0.0006 (5)
Geometric parameters (Å, º) top
N1—C41.3323 (16)C3—H30.9500
N1—C11.3386 (15)C4—H40.9500
N2—C31.3307 (17)C6—C71.5082 (16)
N2—C21.3387 (16)C6—H6A0.9900
N3—C51.3382 (15)C6—H6B0.9900
N3—C61.4570 (15)C7—C81.3865 (17)
N3—H3N0.901 (16)C8—C91.3784 (18)
N4—C71.3379 (15)C8—H80.9500
N4—C111.3422 (17)C9—C101.3806 (18)
O1—C51.2319 (14)C9—H90.9500
C1—C21.3842 (16)C10—C111.3745 (19)
C1—C51.5028 (16)C10—H100.9500
C2—H20.9500C11—H110.9500
C3—C41.3808 (18)
C4—N1—C1115.80 (10)N3—C6—C7113.57 (9)
C3—N2—C2115.53 (11)N3—C6—H6A108.9
C5—N3—C6121.84 (10)C7—C6—H6A108.9
C5—N3—H3N119.7 (9)N3—C6—H6B108.9
C6—N3—H3N117.7 (9)C7—C6—H6B108.9
C7—N4—C11117.12 (10)H6A—C6—H6B107.7
N1—C1—C2121.86 (11)N4—C7—C8122.34 (11)
N1—C1—C5118.36 (10)N4—C7—C6116.69 (10)
C2—C1—C5119.76 (10)C8—C7—C6120.97 (11)
N2—C2—C1122.19 (11)C9—C8—C7119.49 (11)
N2—C2—H2118.9C9—C8—H8120.3
C1—C2—H2118.9C7—C8—H8120.3
N2—C3—C4122.47 (11)C8—C9—C10118.73 (11)
N2—C3—H3118.8C8—C9—H9120.6
C4—C3—H3118.8C10—C9—H9120.6
N1—C4—C3122.14 (11)C11—C10—C9118.14 (12)
N1—C4—H4118.9C11—C10—H10120.9
C3—C4—H4118.9C9—C10—H10120.9
O1—C5—N3124.27 (11)N4—C11—C10124.17 (12)
O1—C5—C1120.30 (10)N4—C11—H11117.9
N3—C5—C1115.43 (10)C10—C11—H11117.9
C4—N1—C1—C20.03 (17)C2—C1—C5—N3179.54 (11)
C4—N1—C1—C5178.51 (11)C5—N3—C6—C795.48 (13)
C3—N2—C2—C10.06 (19)C11—N4—C7—C80.18 (18)
N1—C1—C2—N20.1 (2)C11—N4—C7—C6179.86 (11)
C5—C1—C2—N2178.43 (11)N3—C6—C7—N4104.41 (12)
C2—N2—C3—C40.03 (19)N3—C6—C7—C875.55 (14)
C1—N1—C4—C30.05 (18)N4—C7—C8—C90.12 (18)
N2—C3—C4—N10.1 (2)C6—C7—C8—C9179.92 (11)
C6—N3—C5—O15.16 (19)C7—C8—C9—C100.33 (19)
C6—N3—C5—C1174.05 (10)C8—C9—C10—C110.7 (2)
N1—C1—C5—O1177.36 (11)C7—N4—C11—C100.2 (2)
C2—C1—C5—O11.21 (18)C9—C10—C11—N40.6 (2)
N1—C1—C5—N31.88 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N10.901 (16)2.332 (15)2.7136 (15)105.4 (11)
N3—H3N···N4i0.901 (16)2.206 (16)2.9929 (14)145.6 (13)
C3—H3···O1ii0.952.513.1544 (15)125
C4—H4···O1ii0.952.563.1748 (15)123
C10—H10···N2iii0.952.623.5678 (17)174
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z1/2; (iii) x+2, y+1/2, z+3/2.
(HL2) N-(Pyridin-4-ylmethyl)pyrazine-2-carboxamide top
Crystal data top
C11H10N4OF(000) = 448
Mr = 214.23Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.8564 (14) ÅCell parameters from 20 reflections
b = 11.1841 (11) Åθ = 10.4–17.6°
c = 6.9122 (10) ŵ = 0.09 mm1
β = 104.356 (14)°T = 293 K
V = 1037.7 (2) Å3Block, colourless
Z = 40.38 × 0.30 × 0.19 mm
Data collection top
Stoe AED2 four-circle
diffractometer
Rint = 0.032
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.4°
Plane graphite monochromatorh = 1616
2θ/ω scansk = 130
4132 measured reflectionsl = 88
1937 independent reflections2 standard reflections every 60 min
1198 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.1904P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.17 e Å3
1937 reflectionsΔρmin = 0.16 e Å3
150 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.014 (2)
Special details top

Experimental. Spectroscopic data for HL2: 1H NMR (400 MHz, DMSO-d6; code Hh/NH, Hl/C3, Hn/C1, Hm/C2, Hb/C11, Hd/C9, Ha/C11/, He/C8, Hg/C6): 9.63 (t, 1H, Jhg = 6.3, Hh); 9.21 (d, 1H, Jlm = 1.5, Hl); 8.90 (d, 1H, Jnm = 2.5, Hn); 8.77 (dd, 1H, Jmn = 2.5, Jml = 1.5, Hm); 8.49 (dd, 2H, Jba = 4.4, Jbe = 1.6, Hb = Hd); 7.31 (dd, 2H, Jab = 4.4, Jad = 1.6, Ha = He); 4.54 (d, 2H, Jgh = 6.3, Hg). 13C NMR (400 MHz, DMSO-d6): 164.2, 150.4, 149.0, 148.5, 145.4, 144.5, 144.3, 123.0, 42.4. IR (KBr pellet, cm-1): 3366 (versus), 3089 (s), 3050 (m), 3031 (s), 2967 (m), 2935 (s), 1966 (w), 1924 (w), 1834 (w), 1674 (versus), 1634 (s), 1602 (versus), 1585 (s), 1564 (s) 1526 (versus), 1467 (versus), 1429 (versus), 1415 (versus), 1399 (versus), 1359 (s), 1329 (s), 1288 (versus), 1240 (m), 1216 (versus), 1167 (s), 1155 (s), 1059 (versus), 1025 (versus), 1020 (versus), 993 (s), 981 (s), 968 (s), 887 (m), 870 (s), 842 (s), 832 (s), 804 (versus), 775 (s), 731 (m), 652 (versus), 608 (s), 517 (s), 479 (m), 445 (versus), 411 (m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32038 (14)0.28041 (15)0.2248 (3)0.0618 (6)
N10.52051 (15)0.08089 (17)0.2297 (3)0.0456 (6)
N20.61838 (17)0.29856 (19)0.2153 (3)0.0530 (6)
N30.32823 (16)0.0787 (2)0.2548 (3)0.0495 (6)
H3N0.367 (2)0.022 (2)0.251 (4)0.057 (9)*
N40.04496 (18)0.1046 (2)0.2659 (4)0.0677 (7)
C10.47371 (18)0.1855 (2)0.2255 (3)0.0389 (6)
C20.5226 (2)0.2927 (2)0.2174 (4)0.0477 (7)
H20.48700.36350.21320.057*
C30.6641 (2)0.1935 (2)0.2189 (4)0.0531 (7)
H30.73090.19250.21660.064*
C40.61612 (19)0.0861 (2)0.2258 (4)0.0510 (7)
H40.65150.01530.22790.061*
C50.36661 (19)0.1863 (2)0.2342 (4)0.0442 (6)
C60.22661 (19)0.0590 (2)0.2660 (4)0.0548 (7)
H6A0.19720.13500.28770.066*
H6B0.22670.00800.37950.066*
C70.16399 (17)0.0020 (2)0.0798 (4)0.0431 (6)
C80.1571 (2)0.0498 (2)0.1071 (4)0.0534 (7)
H80.19220.11870.12160.064*
C90.0979 (2)0.0052 (3)0.2711 (5)0.0652 (8)
H90.09430.02910.39530.078*
C100.0528 (2)0.1497 (2)0.0853 (5)0.0627 (8)
H100.01710.21880.07520.075*
C110.11055 (19)0.1010 (2)0.0887 (4)0.0517 (7)
H110.11340.13740.21100.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0615 (13)0.0417 (11)0.0868 (15)0.0116 (10)0.0272 (11)0.0013 (10)
N10.0459 (13)0.0334 (12)0.0586 (14)0.0012 (10)0.0149 (10)0.0024 (10)
N20.0553 (15)0.0427 (14)0.0610 (15)0.0100 (11)0.0144 (11)0.0006 (11)
N30.0421 (14)0.0421 (14)0.0663 (16)0.0008 (11)0.0170 (11)0.0043 (11)
N40.0590 (16)0.0684 (18)0.0749 (19)0.0011 (13)0.0148 (14)0.0111 (15)
C10.0441 (14)0.0323 (13)0.0399 (14)0.0006 (11)0.0101 (11)0.0028 (11)
C20.0560 (18)0.0325 (15)0.0531 (17)0.0008 (12)0.0109 (13)0.0023 (12)
C30.0488 (17)0.0505 (16)0.0607 (17)0.0050 (14)0.0149 (13)0.0007 (14)
C40.0496 (16)0.0406 (15)0.0646 (18)0.0044 (13)0.0174 (13)0.0019 (13)
C50.0501 (16)0.0376 (14)0.0447 (15)0.0009 (13)0.0117 (12)0.0045 (12)
C60.0471 (16)0.0585 (18)0.0625 (19)0.0012 (13)0.0206 (14)0.0040 (14)
C70.0321 (13)0.0416 (14)0.0582 (18)0.0048 (11)0.0162 (12)0.0016 (12)
C80.0442 (15)0.0551 (17)0.0646 (19)0.0022 (13)0.0204 (14)0.0059 (15)
C90.0589 (19)0.084 (2)0.056 (2)0.0091 (17)0.0214 (16)0.0066 (17)
C100.0530 (18)0.0444 (16)0.092 (3)0.0008 (14)0.0204 (17)0.0063 (17)
C110.0457 (15)0.0439 (15)0.0674 (19)0.0043 (13)0.0179 (13)0.0087 (14)
Geometric parameters (Å, º) top
O1—C51.225 (3)C3—H30.9300
N1—C41.333 (3)C4—H40.9300
N1—C11.334 (3)C6—C71.504 (3)
N2—C31.332 (3)C6—H6A0.9700
N2—C21.333 (3)C6—H6B0.9700
N3—C51.338 (3)C7—C111.379 (3)
N3—C61.446 (3)C7—C81.379 (4)
N3—H3N0.83 (3)C8—C91.369 (4)
N4—C101.325 (4)C8—H80.9300
N4—C91.337 (4)C9—H90.9300
C1—C21.385 (3)C10—C111.381 (4)
C1—C51.500 (3)C10—H100.9300
C2—H20.9300C11—H110.9300
C3—C41.379 (3)
C4—N1—C1116.2 (2)N3—C6—C7112.4 (2)
C3—N2—C2115.2 (2)N3—C6—H6A109.1
C5—N3—C6124.1 (2)C7—C6—H6A109.1
C5—N3—H3N113.8 (19)N3—C6—H6B109.1
C6—N3—H3N121.9 (19)C7—C6—H6B109.1
C10—N4—C9115.1 (3)H6A—C6—H6B107.9
N1—C1—C2121.3 (2)C11—C7—C8116.9 (3)
N1—C1—C5119.0 (2)C11—C7—C6121.2 (2)
C2—C1—C5119.6 (2)C8—C7—C6121.9 (2)
N2—C2—C1122.8 (2)C9—C8—C7119.3 (3)
N2—C2—H2118.6C9—C8—H8120.3
C1—C2—H2118.6C7—C8—H8120.3
N2—C3—C4122.5 (3)N4—C9—C8124.8 (3)
N2—C3—H3118.7N4—C9—H9117.6
C4—C3—H3118.7C8—C9—H9117.6
N1—C4—C3121.9 (2)N4—C10—C11124.4 (3)
N1—C4—H4119.0N4—C10—H10117.8
C3—C4—H4119.0C11—C10—H10117.8
O1—C5—N3124.2 (2)C7—C11—C10119.5 (3)
O1—C5—C1120.9 (2)C7—C11—H11120.3
N3—C5—C1114.9 (2)C10—C11—H11120.3
C4—N1—C1—C20.1 (3)C2—C1—C5—N3175.8 (2)
C4—N1—C1—C5178.6 (2)C5—N3—C6—C7108.0 (3)
C3—N2—C2—C10.9 (4)N3—C6—C7—C11126.7 (3)
N1—C1—C2—N20.7 (4)N3—C6—C7—C853.3 (3)
C5—C1—C2—N2178.0 (2)C11—C7—C8—C90.8 (4)
C2—N2—C3—C40.5 (4)C6—C7—C8—C9179.2 (2)
C1—N1—C4—C30.3 (4)C10—N4—C9—C80.0 (4)
N2—C3—C4—N10.1 (4)C7—C8—C9—N40.3 (4)
C6—N3—C5—O10.9 (4)C9—N4—C10—C110.1 (4)
C6—N3—C5—C1179.9 (2)C8—C7—C11—C100.9 (4)
N1—C1—C5—O1177.8 (2)C6—C7—C11—C10179.1 (2)
C2—C1—C5—O13.4 (4)N4—C10—C11—C70.6 (4)
N1—C1—C5—N32.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N10.83 (3)2.27 (3)2.713 (3)114 (2)
N3—H3N···N2i0.83 (3)2.52 (3)3.214 (3)142 (2)
C2—H2···N1ii0.932.473.315 (3)151
C8—H8···O1iii0.932.553.373 (3)148
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Footnotes

1This work forms part of the PhD thesis (Neuchâtel, 2002) of DSC.

Acknowledgements

This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlvarez-Ibarra, C., Cuervo-Rodríguez, R., Fernández-Monreal, M. C. & Ruiz, M. P. (1994). J. Org. Chem. 59, 7284–7291.  CAS Google Scholar
First citationCati, D. S. (2002). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationCati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992–2993.  Web of Science CSD CrossRef Google Scholar
First citationHellyer, R. M., Larsen, D. S. & Brooker, S. (2009). Eur. J. Inorg. Chem. pp. 1162–1171.  Web of Science CSD CrossRef Google Scholar
First citationKhavasi, H. R., Firouzi, R., Sasan, K. & Zahedi, M. (2010). Solid State Sci. 12, 1960–1965.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhavasi, H. R. & Sadegh, B. M. M. (2010). Inorg. Chem. 49, 5356–5358.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhavasi, H. R., Sasan, K., Hashjin, S. S. & Zahedi, M. (2011). C. R. Chim. 14, 563–567.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhavasi, H. R., Sasan, K., Pirouzmand, M. & Ebrahim, S. N. (2009). Inorg. Chem. 48, 5593–5595.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKingele, J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, J. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633–645.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamadou, A., Moreau, J., Dupont, L. & Wenger, E. (2012). Inorg. Chim Acta, 383, 267.  Web of Science CSD CrossRef Google Scholar
First citationSasan, K., Khavasi, H. R. & Davari, M. D. (2008). Monatsh. Chem. 139, 773–789.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). IPDSI, STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds