research communications
κO){μ3-N-[(pyridin-4-yl)methyl]pyrazine-2-carboxamidato-κ4N:N1,N2:N4]copper(II)] dihydrate]: a metal–organic framework (MOF)1
of poly[[(acetato-aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, 1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The title compound, [Cu(C11H9N4O)(CH3CO2)]·2H2O (CuL), is a hydrated copper acetate complex of the ligand N-[(pyridin-4-yl)methyl]pyrazine-2-carboxamide (HL). Complex CuL has a metal–organic framework (MOF) structure with a 10 (3) network topology. The ligand coordinates in a bidentate and a bis-monodentate manner, bridging three equivalent CuII atoms via the pyridine N atom and the second pyrazine N atom. The CuII atom has a fivefold coordination sphere, CuN4O, being coordinated to three N atoms of the ligand and the acetate O atom in the equatorial plane and to the second pyrazine atom in the apical position. This gives rise to a fairly regular square-pyramidal geometry. In the crystal, the water molecules are linked to each other and to the three-dimensional framework via O—H⋯O hydrogen bonds. There are also a number of C—H⋯O hydrogen bonds present within the framework.
Keywords: crystal structure; metal-organic framework; 10 (3) network topology; copper(II); pyrazine-2-carboxamide.
CCDC reference: 1004264
1. Chemical context
The ligand N-[(pyridin-4-yl)methyl]pyrazine-2-carboxamide (HL) is one of a series of ligands which were synthesized in order to study their coordination behaviour towards first-row transition metals (Cati, 2002; Cati et al., 2004; Cati & Stoeckli-Evans, 2014). HL is expected to coordinate in a bidentate and possibly a monodentate manner, with eventual bridging of metal atoms to construct two- or three-dimensional networks. A excellent review on the subject of coordination polymers and network structures has been published by Batten et al. (2009).
2. Structural commentary
The title compound, CuL, is a copper acetate complex of the ligand N-[(pyridin-4-yl)methyl]pyrazine-2-carboxamide (HL) [Cati & Stoeckli-Evans, 2014]. In complex CuL the ligand coordinates in a bidentate and a bis-monodentate manner, so bridging three equivalent copper atoms (Fig. 1). This gives rise to the formation of a three-dimensional coordination polymer, or MOF (metal–organic framework) structure, as shown in Fig. 2. The copper⋯copper distances are 7.156 (2) Å via the bridging pyrazine ring (Cu1⋯Cu1iii) and 7.420 (2) Å via the pyridine N atom Cu1⋯Cu1iv; see Fig. 1). Atom Cu1 has a fivefold coordination sphere, CuN4O, with three N atoms (N1, N3 and N4i) and the acetate O atom, O2, in the equatorial plane and the second pyrazine N atom, N2ii, in the apical position [Fig. 2; symmetry codes: (i) x, −y, z − ; (ii) x − , −y + , z − ]. The apical Cu1—N2 bond distance of 2.393 (3) Å is considerably longer that the Cu1–N1, Cu1—N3 and Cu1—N4 bond lengths [2.003 (8), 1.964 (9) and 1.993 (7) Å, respectively], and the Cu1—O2 bond length [1.947 (7) Å] in the equatorial plane. Bond angles O2—Cu1—N3 and N4—Cu1—N1 are 172.2 (3) and 170.6 (3)°, respectively, and this leads to a perfect square-pyramidal geometry with τ = 0.03 (τ = 0 square-pyramidal; τ = 1 trigonal-bipyramidal; Addison et al., 1984). The pyridine ring is inclined to the pyrazine ring by 79.6 (5)° compared to 84.33 (12)° in the free ligand (Cati & Stoeckli-Evans, 2014). The bond distances and angles are normal when compared with geometrical parameters of related copper(II) complexes in the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002), and are similar to those observed in the mononuclear copper(II) acetate complex of the analogous ligand N-[(pyridin-2-yl)methyl]pyrazine-2-carboxamide (Mohamadou et al., 2012). The title compound crystallizes with two solvent water molecules per asymmetric unit.
3. Supramolecular features
The three-dimensional network of the title MOF structure has a 10 (3) network topology (Fig. 3). It is one of the most commonly encountered 3-connected three-dimensional nets with ten-membered rings (Wells, 1984). It is a cubic (10,3)-a net, also known as the srs (SrSi2) net, which is chiral [note that the Flack x parameter = −0.01 (3)]. Such structures contain fourfold helices along the three axes all of the same hand (Batten et al., 2009).
In the crystal of CuL, the water molecules are located in the cavities of the MOF structure. They are hydrogen bonded to one another and to the ligand and acetate carbonyl O atoms (Table 1 and Fig. 4). There are also a number of C—H⋯O hydrogen bonds present within the framework (Table 1).
4. Database survey
A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002) indicated that no complexes of the ligand HL have been described previously. The analogous ligand N-[(pyridin-2-yl)methyl]pyrazine-2-carboxamide has been described as well as a number of metal complexes. These include the mononuclear copper acetate complex (Mohamadou et al., 2012). Here this ligand coordinates in a tridentate manner but in a number of other complexes it coordinates in a bis-monodentate manner via the pyridine N atom and a pyrazine N atom; for example, in two polymeric mercury chloride complexes (Khavasi et al., 2010), and a polymeric silver tetrafluoroborate complex (Hellyer et al., 2009).
5. Synthesis and crystallization
The synthesis of the ligand N-[(pyridin-4-yl)methyl]pyrazine-2-carboxamide (HL) has been described elsewhere (Cati, 2002; Cati & Stoeckli-Evans, 2014). Complex CuL was prepared by adding Cu(acetate)2·H2O (64 mg, 0.318 mmol) to a hot solution (323 K) of HL (68 mg, 0.318 mmol) in dry methanol (25 ml). In 2 min a precipitate appeared and heating was stopped and the mixture stirred as the temperature decreased to room temperature. After 30 min the precipitate was filtered off and washed with dry methanol. It was then dissolved in a mixture of water (12 ml) and methanol (15 ml) and stirred with warming to between 313 to 323 K for 15 min. The resulting blue solution was allowed to stand at room temperature and yielded blue crystals in a few days [yield 72 mg, 61%]. Analysis for C13H12CuN4O3·2(H2O) (Mr = 371.84). Calculated (%): C 41.99, H 4.34, N 15.07. Found: C 42.17, H 4.33, N 14.75.
6. Refinement
Crystal data, data collection and structure . The water H atoms were located in difference Fourier maps were refined with distance restraints: O—H = 0.84 (2) and H⋯H = 1.35 (2) Å with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1004264
https://doi.org/10.1107/S1600536814011520/hb0008sup1.cif
contains datablock CuL. DOI:Structure factors: contains datablock CuL2. DOI: https://doi.org/10.1107/S1600536814011520/hb0008CuL2sup2.hkl
Data collection: EXPOSE in IPDSI (Stoe & Cie, 2004); cell
CELL in IPDSI (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDSI (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Cu(C11H9N4O)(C2H3O2)]·2H2O | F(000) = 764 |
Mr = 371.84 | Dx = 1.672 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2705 reflections |
a = 7.8256 (12) Å | θ = 2.1–26.1° |
b = 22.331 (2) Å | µ = 1.51 mm−1 |
c = 8.9976 (13) Å | T = 153 K |
β = 110.040 (16)° | Block, turquoise blue |
V = 1477.2 (4) Å3 | 0.40 × 0.30 × 0.30 mm |
Z = 4 |
Stoe IPDS I diffractometer | 2705 independent reflections |
Radiation source: fine-focus sealed tube | 1778 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.070 |
φ rotation scans | θmax = 25.9°, θmin = 2.9° |
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009) | h = −9→9 |
Tmin = 0.979, Tmax = 1.000 | k = −27→26 |
5730 measured reflections | l = −11→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.007P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.78 | (Δ/σ)max < 0.001 |
2705 reflections | Δρmax = 0.40 e Å−3 |
203 parameters | Δρmin = −0.59 e Å−3 |
8 restraints | Absolute structure: Flack x determined using 665 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.44720 (19) | 0.13211 (4) | 0.83884 (18) | 0.0155 (2) | |
O1 | 0.3072 (8) | 0.1995 (2) | 1.2004 (7) | 0.0248 (16) | |
O2 | 0.5973 (10) | 0.1326 (3) | 0.7054 (9) | 0.0169 (15) | |
O3 | 0.7386 (8) | 0.0439 (3) | 0.7464 (8) | 0.0266 (15) | |
N1 | 0.5958 (11) | 0.1988 (3) | 0.9695 (9) | 0.0155 (9) | |
N2 | 0.7658 (12) | 0.2933 (3) | 1.1646 (9) | 0.0155 (9) | |
N3 | 0.3109 (12) | 0.1421 (4) | 0.9844 (11) | 0.0155 (9) | |
N4 | 0.3255 (10) | −0.0570 (3) | 1.2361 (9) | 0.0155 (9) | |
C1 | 0.7378 (15) | 0.2255 (5) | 0.9510 (12) | 0.018 (3) | |
H1 | 0.7839 | 0.2120 | 0.8720 | 0.022* | |
C2 | 0.8206 (16) | 0.2742 (5) | 1.0483 (12) | 0.018 (3) | |
H2 | 0.9191 | 0.2940 | 1.0304 | 0.021* | |
C3 | 0.6208 (15) | 0.2647 (4) | 1.1831 (13) | 0.015 (2) | |
H3 | 0.5771 | 0.2774 | 1.2644 | 0.018* | |
C4 | 0.5351 (15) | 0.2174 (5) | 1.0852 (11) | 0.014 (2) | |
C5 | 0.3707 (11) | 0.1848 (3) | 1.0932 (10) | 0.0146 (19) | |
C6 | 0.1512 (13) | 0.1078 (4) | 0.9801 (12) | 0.015 (2) | |
H6A | 0.0774 | 0.0987 | 0.8689 | 0.018* | |
H6B | 0.0757 | 0.1320 | 1.0262 | 0.018* | |
C7 | 0.2058 (11) | 0.0497 (3) | 1.0721 (11) | 0.0124 (17) | |
C8 | 0.1360 (11) | −0.0045 (4) | 1.0059 (11) | 0.020 (2) | |
H8 | 0.0425 | −0.0061 | 0.9053 | 0.024* | |
C9 | 0.2044 (13) | −0.0571 (4) | 1.0884 (13) | 0.020 (2) | |
H9 | 0.1638 | −0.0944 | 1.0381 | 0.024* | |
C10 | 0.3872 (11) | −0.0036 (3) | 1.3001 (11) | 0.019 (2) | |
H10 | 0.4747 | −0.0028 | 1.4039 | 0.023* | |
C11 | 0.3310 (12) | 0.0503 (4) | 1.2239 (10) | 0.016 (2) | |
H11 | 0.3775 | 0.0871 | 1.2748 | 0.019* | |
C12 | 0.6927 (13) | 0.0907 (5) | 0.6705 (13) | 0.016 (2) | |
C13 | 0.7531 (12) | 0.1058 (4) | 0.5323 (10) | 0.024 (2) | |
H13A | 0.7724 | 0.0687 | 0.4820 | 0.035* | |
H13B | 0.8669 | 0.1285 | 0.5701 | 0.035* | |
H13C | 0.6591 | 0.1298 | 0.4552 | 0.035* | |
O1W | 0.7662 (12) | 0.0650 (3) | 0.0791 (10) | 0.0313 (19) | |
H1WA | 0.764 (17) | 0.042 (4) | 0.151 (8) | 0.047* | |
H1WB | 0.752 (15) | 0.044 (4) | −0.002 (7) | 0.047* | |
O2W | 0.9960 (9) | 0.1546 (3) | 0.2989 (8) | 0.0358 (18) | |
H2WA | 0.925 (10) | 0.134 (4) | 0.222 (8) | 0.054* | |
H2WB | 1.072 (10) | 0.169 (4) | 0.261 (10) | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0184 (5) | 0.0119 (4) | 0.0183 (5) | −0.0019 (8) | 0.0092 (4) | −0.0025 (8) |
O1 | 0.032 (4) | 0.021 (3) | 0.032 (4) | −0.011 (3) | 0.025 (4) | −0.013 (3) |
O2 | 0.023 (4) | 0.008 (3) | 0.023 (4) | 0.000 (3) | 0.012 (3) | −0.004 (3) |
O3 | 0.025 (4) | 0.019 (3) | 0.037 (5) | 0.009 (3) | 0.013 (3) | 0.005 (3) |
N1 | 0.018 (2) | 0.0133 (18) | 0.018 (2) | −0.0018 (16) | 0.009 (2) | 0.0013 (17) |
N2 | 0.018 (2) | 0.0133 (18) | 0.018 (2) | −0.0018 (16) | 0.009 (2) | 0.0013 (17) |
N3 | 0.018 (2) | 0.0133 (18) | 0.018 (2) | −0.0018 (16) | 0.009 (2) | 0.0013 (17) |
N4 | 0.018 (2) | 0.0133 (18) | 0.018 (2) | −0.0018 (16) | 0.009 (2) | 0.0013 (17) |
C1 | 0.017 (6) | 0.017 (5) | 0.020 (6) | −0.004 (4) | 0.007 (5) | −0.002 (5) |
C2 | 0.019 (6) | 0.022 (6) | 0.016 (6) | −0.003 (5) | 0.011 (5) | −0.001 (5) |
C3 | 0.018 (6) | 0.014 (5) | 0.016 (6) | −0.005 (4) | 0.012 (5) | −0.001 (4) |
C4 | 0.023 (6) | 0.010 (5) | 0.012 (5) | −0.005 (4) | 0.010 (5) | 0.001 (4) |
C5 | 0.015 (5) | 0.016 (4) | 0.014 (5) | −0.002 (3) | 0.006 (4) | 0.001 (4) |
C6 | 0.013 (6) | 0.010 (5) | 0.021 (6) | −0.002 (4) | 0.004 (5) | 0.003 (4) |
C7 | 0.011 (4) | 0.009 (4) | 0.018 (5) | 0.002 (3) | 0.006 (4) | 0.006 (4) |
C8 | 0.012 (5) | 0.020 (4) | 0.027 (6) | 0.001 (4) | 0.005 (4) | 0.000 (4) |
C9 | 0.020 (5) | 0.012 (5) | 0.028 (7) | −0.004 (4) | 0.009 (5) | 0.002 (4) |
C10 | 0.024 (6) | 0.017 (4) | 0.017 (6) | 0.000 (3) | 0.009 (5) | 0.002 (4) |
C11 | 0.023 (5) | 0.007 (4) | 0.018 (5) | −0.003 (4) | 0.008 (5) | −0.004 (4) |
C12 | 0.007 (5) | 0.022 (6) | 0.019 (6) | 0.001 (4) | 0.004 (5) | 0.001 (5) |
C13 | 0.019 (5) | 0.035 (5) | 0.022 (6) | 0.004 (4) | 0.014 (5) | −0.003 (4) |
O1W | 0.047 (5) | 0.019 (4) | 0.033 (5) | −0.002 (4) | 0.019 (5) | 0.001 (3) |
O2W | 0.042 (5) | 0.038 (4) | 0.034 (5) | −0.007 (3) | 0.022 (4) | −0.006 (3) |
Cu1—O2 | 1.947 (7) | C3—H3 | 0.9500 |
Cu1—N3 | 1.964 (9) | C4—C5 | 1.500 (13) |
Cu1—N4i | 1.993 (7) | C6—C7 | 1.520 (11) |
Cu1—N1 | 2.003 (8) | C6—H6A | 0.9900 |
Cu1—N2ii | 2.393 (8) | C6—H6B | 0.9900 |
O1—C5 | 1.270 (9) | C7—C8 | 1.376 (11) |
O2—C12 | 1.300 (12) | C7—C11 | 1.382 (12) |
O3—C12 | 1.232 (11) | C8—C9 | 1.395 (13) |
N1—C1 | 1.323 (13) | C8—H8 | 0.9500 |
N1—C4 | 1.349 (12) | C9—H9 | 0.9500 |
N2—C2 | 1.330 (13) | C10—C11 | 1.381 (11) |
N2—C3 | 1.360 (13) | C10—H10 | 0.9500 |
N2—Cu1iii | 2.393 (8) | C11—H11 | 0.9500 |
N3—C5 | 1.332 (11) | C12—C13 | 1.512 (12) |
N3—C6 | 1.455 (13) | C13—H13A | 0.9800 |
N4—C10 | 1.341 (10) | C13—H13B | 0.9800 |
N4—C9 | 1.342 (13) | C13—H13C | 0.9800 |
N4—Cu1iv | 1.992 (7) | O1W—H1WA | 0.84 (3) |
C1—C2 | 1.405 (14) | O1W—H1WB | 0.84 (3) |
C1—H1 | 0.9500 | O2W—H2WA | 0.86 (3) |
C2—H2 | 0.9500 | O2W—H2WB | 0.85 (3) |
C3—C4 | 1.393 (13) | ||
O2—Cu1—N3 | 172.2 (3) | O1—C5—N3 | 127.8 (8) |
O2—Cu1—N4i | 90.7 (3) | O1—C5—C4 | 118.5 (8) |
N3—Cu1—N4i | 97.0 (3) | N3—C5—C4 | 113.7 (8) |
O2—Cu1—N1 | 90.4 (3) | N3—C6—C7 | 110.9 (8) |
N3—Cu1—N1 | 82.1 (4) | N3—C6—H6A | 109.5 |
N4i—Cu1—N1 | 170.6 (3) | C7—C6—H6A | 109.5 |
O2—Cu1—N2ii | 86.5 (3) | N3—C6—H6B | 109.5 |
N3—Cu1—N2ii | 91.3 (3) | C7—C6—H6B | 109.5 |
N4i—Cu1—N2ii | 101.5 (3) | H6A—C6—H6B | 108.0 |
N1—Cu1—N2ii | 87.8 (2) | C8—C7—C11 | 118.6 (8) |
C12—O2—Cu1 | 131.5 (6) | C8—C7—C6 | 121.3 (8) |
C1—N1—C4 | 119.4 (8) | C11—C7—C6 | 120.1 (8) |
C1—N1—Cu1 | 127.3 (7) | C7—C8—C9 | 119.2 (9) |
C4—N1—Cu1 | 113.3 (7) | C7—C8—H8 | 120.4 |
C2—N2—C3 | 116.9 (9) | C9—C8—H8 | 120.4 |
C2—N2—Cu1iii | 117.4 (7) | N4—C9—C8 | 122.6 (9) |
C3—N2—Cu1iii | 125.3 (7) | N4—C9—H9 | 118.7 |
C5—N3—C6 | 118.6 (9) | C8—C9—H9 | 118.7 |
C5—N3—Cu1 | 115.9 (6) | N4—C10—C11 | 123.8 (8) |
C6—N3—Cu1 | 125.5 (7) | N4—C10—H10 | 118.1 |
C10—N4—C9 | 117.0 (7) | C11—C10—H10 | 118.1 |
C10—N4—Cu1iv | 120.3 (6) | C10—C11—C7 | 118.6 (8) |
C9—N4—Cu1iv | 121.4 (6) | C10—C11—H11 | 120.7 |
N1—C1—C2 | 119.9 (10) | C7—C11—H11 | 120.7 |
N1—C1—H1 | 120.0 | O3—C12—O2 | 124.0 (9) |
C2—C1—H1 | 120.0 | O3—C12—C13 | 122.0 (9) |
N2—C2—C1 | 122.3 (10) | O2—C12—C13 | 113.9 (8) |
N2—C2—H2 | 118.9 | C12—C13—H13A | 109.5 |
C1—C2—H2 | 118.9 | C12—C13—H13B | 109.5 |
N2—C3—C4 | 121.3 (10) | H13A—C13—H13B | 109.5 |
N2—C3—H3 | 119.3 | C12—C13—H13C | 109.5 |
C4—C3—H3 | 119.3 | H13A—C13—H13C | 109.5 |
N1—C4—C3 | 120.1 (10) | H13B—C13—H13C | 109.5 |
N1—C4—C5 | 115.0 (8) | H1WA—O1W—H1WB | 107 (4) |
C3—C4—C5 | 124.9 (9) | H2WA—O2W—H2WB | 104 (4) |
C4—N1—C1—C2 | −2.0 (14) | N1—C4—C5—N3 | 0.4 (12) |
Cu1—N1—C1—C2 | 176.4 (8) | C3—C4—C5—N3 | 178.4 (10) |
C3—N2—C2—C1 | −1.9 (15) | C5—N3—C6—C7 | −95.5 (10) |
Cu1iii—N2—C2—C1 | 172.1 (9) | Cu1—N3—C6—C7 | 85.8 (10) |
N1—C1—C2—N2 | 2.8 (17) | N3—C6—C7—C8 | −128.6 (9) |
C2—N2—C3—C4 | 0.5 (14) | N3—C6—C7—C11 | 49.7 (12) |
Cu1iii—N2—C3—C4 | −173.0 (8) | C11—C7—C8—C9 | −5.2 (12) |
C1—N1—C4—C3 | 0.5 (14) | C6—C7—C8—C9 | 173.2 (8) |
Cu1—N1—C4—C3 | −178.0 (8) | C10—N4—C9—C8 | −3.5 (12) |
C1—N1—C4—C5 | 178.7 (9) | Cu1iv—N4—C9—C8 | −171.0 (7) |
Cu1—N1—C4—C5 | 0.1 (11) | C7—C8—C9—N4 | 5.7 (13) |
N2—C3—C4—N1 | 0.2 (16) | C9—N4—C10—C11 | 1.1 (11) |
N2—C3—C4—C5 | −177.7 (9) | Cu1iv—N4—C10—C11 | 168.8 (6) |
C6—N3—C5—O1 | 1.8 (14) | N4—C10—C11—C7 | −0.9 (12) |
Cu1—N3—C5—O1 | −179.4 (7) | C8—C7—C11—C10 | 2.9 (12) |
C6—N3—C5—C4 | −179.5 (9) | C6—C7—C11—C10 | −175.5 (8) |
Cu1—N3—C5—C4 | −0.7 (10) | Cu1—O2—C12—O3 | −17.2 (15) |
N1—C4—C5—O1 | 179.2 (8) | Cu1—O2—C12—C13 | 166.2 (7) |
C3—C4—C5—O1 | −2.8 (15) |
Symmetry codes: (i) x, −y, z−1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) x, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3i | 0.84 (3) | 2.13 (5) | 2.908 (9) | 154 (9) |
O1W—H1WB···O3v | 0.84 (3) | 2.23 (5) | 2.964 (10) | 146 (8) |
O2W—H2WA···O1W | 0.86 (3) | 2.11 (4) | 2.951 (10) | 165 (10) |
O2W—H2WB···O1vi | 0.85 (3) | 2.20 (3) | 3.033 (8) | 169 (10) |
C2—H2···O2iii | 0.95 | 2.37 | 2.987 (13) | 123 |
C8—H8···O3vii | 0.95 | 2.57 | 3.364 (11) | 141 |
C9—H9···O2Wviii | 0.95 | 2.50 | 3.358 (12) | 151 |
Symmetry codes: (i) x, −y, z−1/2; (iii) x+1/2, −y+1/2, z+1/2; (v) x, y, z−1; (vi) x+1, y, z−1; (vii) x−1, y, z; (viii) x−1, −y, z+1/2. |
Footnotes
1This work is part of the PhD thesis (University of Neuchâtel, 2002) of DSC.
Acknowledgements
This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.
References
Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Batten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Applications. Cambridge: RSC Publishing. Google Scholar
Cati, D. S. (2002). PhD thesis, University of Neuchâtel, Switzerland. Google Scholar
Cati, D. S., Ribas, J., Ribas-Arño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18–22. CSD CrossRef IUCr Journals Google Scholar
Hellyer, R. M., Larsen, D. S. & Brooker, S. (2009). Eur. J. Inorg. Chem. pp. 1162–1171. Web of Science CSD CrossRef Google Scholar
Khavasi, H. R. & Sadegh, B. M. M. (2010). Inorg. Chem. 49, 5356–5358. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mohamadou, A., Moreau, J., Dupont, L. & Wenger, E. (2012). Inorg. Chim. Acta, 383, 267–276. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2004). IPDSI – Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Wells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. Oxford University Press. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.