research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[(acetato-κO){μ3-N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamidato-κ4N:N1,N2:N4]copper(II)] dihydrate]: a metal–organic framework (MOF)1

aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, 1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 April 2014; accepted 16 May 2014; online 23 June 2014)

The title compound, [Cu(C11H9N4O)(CH3CO2)]·2H2O (CuL), is a hydrated copper acetate complex of the ligand N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamide (HL). Complex CuL has a metal–organic framework (MOF) structure with a 10 (3) network topology. The ligand coordinates in a bidentate and a bis-monodentate manner, bridging three equivalent CuII atoms via the pyridine N atom and the second pyrazine N atom. The CuII atom has a fivefold coordination sphere, CuN4O, being coordinated to three N atoms of the ligand and the acetate O atom in the equatorial plane and to the second pyrazine atom in the apical position. This gives rise to a fairly regular square-pyramidal geometry. In the crystal, the water mol­ecules are linked to each other and to the three-dimensional framework via O—H⋯O hydrogen bonds. There are also a number of C—H⋯O hydrogen bonds present within the framework.

1. Chemical context

The ligand N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamide (HL) is one of a series of ligands which were synthesized in order to study their coordination behaviour towards first-row transition metals (Cati, 2002[Cati, D. S. (2002). PhD thesis, University of Neuchâtel, Switzerland.]; Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Arño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]; Cati & Stoeckli-Evans, 2014[Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18-22.]). HL is expected to coordinate in a bidentate and possibly a monodentate manner, with eventual bridging of metal atoms to construct two- or three-dimensional networks. A excellent review on the subject of coordination polymers and network structures has been published by Batten et al. (2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Applications. Cambridge: RSC Publishing.]).

[Scheme 1]

2. Structural commentary

The title compound, CuL, is a copper acetate complex of the ligand N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamide (HL) [Cati & Stoeckli-Evans, 2014[Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18-22.]]. In complex CuL the ligand coordinates in a bidentate and a bis-monodentate manner, so bridging three equivalent copper atoms (Fig. 1[link]). This gives rise to the formation of a three-dimensional coordination polymer, or MOF (metal–organic framework) structure, as shown in Fig. 2[link]. The copper⋯copper distances are 7.156 (2) Å via the bridging pyrazine ring (Cu1⋯Cu1iii) and 7.420 (2) Å via the pyridine N atom Cu1⋯Cu1iv; see Fig. 1[link]). Atom Cu1 has a fivefold coordination sphere, CuN4O, with three N atoms (N1, N3 and N4i) and the acetate O atom, O2, in the equatorial plane and the second pyrazine N atom, N2ii, in the apical position [Fig. 2[link]; symmetry codes: (i) x, −y, z − [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]]. The apical Cu1—N2 bond distance of 2.393 (3) Å is considerably longer that the Cu1–N1, Cu1—N3 and Cu1—N4 bond lengths [2.003 (8), 1.964 (9) and 1.993 (7) Å, respectively], and the Cu1—O2 bond length [1.947 (7) Å] in the equatorial plane. Bond angles O2—Cu1—N3 and N4—Cu1—N1 are 172.2 (3) and 170.6 (3)°, respectively, and this leads to a perfect square-pyramidal geometry with τ = 0.03 (τ = 0 square-pyramidal; τ = 1 trigonal-bipyramidal; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The pyridine ring is inclined to the pyrazine ring by 79.6 (5)° compared to 84.33 (12)° in the free ligand (Cati & Stoeckli-Evans, 2014[Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18-22.]). The bond distances and angles are normal when compared with geometrical parameters of related copper(II) complexes in the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), and are similar to those observed in the mononuclear copper(II) acetate complex of the analogous ligand N-[(pyridin-2-yl)methyl]pyrazine-2-carboxamide (Moh­a­­madou et al., 2012[Mohamadou, A., Moreau, J., Dupont, L. & Wenger, E. (2012). Inorg. Chim. Acta, 383, 267-276.]). The title compound crystallizes with two solvent water mol­ecules per asymmetric unit.

[Figure 1]
Figure 1
A view of the asymmetric unit of complex CuL, with atom labelling [symmetry codes: (i) x, −y, z − [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (iii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (iv) x, −y, z + [{1\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view along the a axis of the metal–organic framework (MOF) structure of complex CuL. Solvent water mol­ecules and H atoms have been omitted for clarity.

3. Supra­molecular features

The three-dimensional network of the title MOF structure has a 10 (3) network topology (Fig. 3[link]). It is one of the most commonly encountered 3-connected three-dimensional nets with ten-membered rings (Wells, 1984[Wells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. Oxford University Press.]). It is a cubic (10,3)-a net, also known as the srs (SrSi2) net, which is chiral [note that the Flack x parameter = −0.01 (3)]. Such structures contain fourfold helices along the three axes all of the same hand (Batten et al., 2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Applications. Cambridge: RSC Publishing.]).

[Figure 3]
Figure 3
A view of the 10 (3) network topology of the title metal–organic framework (MOF) structure, illustrating the 3-connected three-dimensional nets with ten-membered rings.

In the crystal of CuL, the water mol­ecules are located in the cavities of the MOF structure. They are hydrogen bonded to one another and to the ligand and acetate carbonyl O atoms (Table 1[link] and Fig. 4[link]). There are also a number of C—H⋯O hydrogen bonds present within the framework (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.84 (3) 2.13 (5) 2.908 (9) 154 (9)
O1W—H1WB⋯O3iii 0.84 (3) 2.23 (5) 2.964 (10) 146 (8)
O2W—H2WA⋯O1W 0.86 (3) 2.11 (4) 2.951 (10) 165 (10)
O2W—H2WB⋯O1iv 0.85 (3) 2.20 (3) 3.033 (8) 169 (10)
C2—H2⋯O2v 0.95 2.37 2.987 (13) 123
C8—H8⋯O3vi 0.95 2.57 3.364 (11) 141
C9—H9⋯O2Wvii 0.95 2.50 3.358 (12) 151
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) x+1, y, z-1; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x-1, y, z; (vii) [x-1, -y, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of complex CuL, with the hydrogen bonds involving the water mol­ecules shown as dashed lines (see Table 1[link] for details; H atoms not involved in these hydrogen bonding have been omitted for clarity).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) indicated that no complexes of the ligand HL have been described previously. The analogous ligand N-[(pyridin-2-yl)methyl]pyrazine-2-carboxamide has been described as well as a number of metal complexes. These include the mononuclear copper acetate complex (Mohamadou et al., 2012[Mohamadou, A., Moreau, J., Dupont, L. & Wenger, E. (2012). Inorg. Chim. Acta, 383, 267-276.]). Here this ligand coordin­ates in a tridentate manner but in a number of other complexes it coordinates in a bis-monodentate manner via the pyridine N atom and a pyrazine N atom; for example, in two polymeric mercury chloride complexes (Khavasi et al., 2010[Khavasi, H. R. & Sadegh, B. M. M. (2010). Inorg. Chem. 49, 5356-5358.]), and a polymeric silver tetra­fluoro­borate complex (Hellyer et al., 2009[Hellyer, R. M., Larsen, D. S. & Brooker, S. (2009). Eur. J. Inorg. Chem. pp. 1162-1171.]).

5. Synthesis and crystallization

The synthesis of the ligand N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamide (HL) has been described elsewhere (Cati, 2002[Cati, D. S. (2002). PhD thesis, University of Neuchâtel, Switzerland.]; Cati & Stoeckli-Evans, 2014[Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18-22.]). Complex CuL was prepared by adding Cu(acetate)2·H2O (64 mg, 0.318 mmol) to a hot solution (323 K) of HL (68 mg, 0.318 mmol) in dry methanol (25 ml). In 2 min a precipitate appeared and heating was stopped and the mixture stirred as the temperature decreased to room temperature. After 30 min the precipitate was filtered off and washed with dry methanol. It was then dissolved in a mixture of water (12 ml) and methanol (15 ml) and stirred with warming to between 313 to 323 K for 15 min. The resulting blue solution was allowed to stand at room temperature and yielded blue crystals in a few days [yield 72 mg, 61%]. Analysis for C13H12CuN4O3·2(H2O) (Mr = 371.84). Calculated (%): C 41.99, H 4.34, N 15.07. Found: C 42.17, H 4.33, N 14.75.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The water H atoms were located in difference Fourier maps were refined with distance restraints: O—H = 0.84 (2) and H⋯H = 1.35 (2) Å with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C11H9N4O)(C2H3O2)]·2H2O
Mr 371.84
Crystal system, space group Monoclinic, Cc
Temperature (K) 153
a, b, c (Å) 7.8256 (12), 22.331 (2), 8.9976 (13)
β (°) 110.040 (16)
V3) 1477.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.51
Crystal size (mm) 0.40 × 0.30 × 0.30
 
Data collection
Diffractometer Stoe IPDS I
Absorption correction Multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.979, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5730, 2705, 1778
Rint 0.070
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.072, 0.78
No. of reflections 2705
No. of parameters 203
No. of restraints 8
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.59
Absolute structure Flack x determined using 665 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])
Absolute structure parameter −0.01 (3)
Computer programs: EXPOSE in IPDSI, CELL and INTEGRATE in IPDSI (Stoe & Cie, 2004[Stoe & Cie (2004). IPDSI - Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: EXPOSE in IPDSI (Stoe & Cie, 2004); cell refinement: CELL in IPDSI (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDSI (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Poly[[(acetato-κO){µ3-N-[(pyridin-4-yl)methyl]pyrazine-2-carboxamidato-κ4N:N1,N2:N4]copper(II)] dihydrate] top
Crystal data top
[Cu(C11H9N4O)(C2H3O2)]·2H2OF(000) = 764
Mr = 371.84Dx = 1.672 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2705 reflections
a = 7.8256 (12) Åθ = 2.1–26.1°
b = 22.331 (2) ŵ = 1.51 mm1
c = 8.9976 (13) ÅT = 153 K
β = 110.040 (16)°Block, turquoise blue
V = 1477.2 (4) Å30.40 × 0.30 × 0.30 mm
Z = 4
Data collection top
Stoe IPDS I
diffractometer
2705 independent reflections
Radiation source: fine-focus sealed tube1778 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.070
φ rotation scansθmax = 25.9°, θmin = 2.9°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 99
Tmin = 0.979, Tmax = 1.000k = 2726
5730 measured reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.007P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.78(Δ/σ)max < 0.001
2705 reflectionsΔρmax = 0.40 e Å3
203 parametersΔρmin = 0.59 e Å3
8 restraintsAbsolute structure: Flack x determined using 665 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.44720 (19)0.13211 (4)0.83884 (18)0.0155 (2)
O10.3072 (8)0.1995 (2)1.2004 (7)0.0248 (16)
O20.5973 (10)0.1326 (3)0.7054 (9)0.0169 (15)
O30.7386 (8)0.0439 (3)0.7464 (8)0.0266 (15)
N10.5958 (11)0.1988 (3)0.9695 (9)0.0155 (9)
N20.7658 (12)0.2933 (3)1.1646 (9)0.0155 (9)
N30.3109 (12)0.1421 (4)0.9844 (11)0.0155 (9)
N40.3255 (10)0.0570 (3)1.2361 (9)0.0155 (9)
C10.7378 (15)0.2255 (5)0.9510 (12)0.018 (3)
H10.78390.21200.87200.022*
C20.8206 (16)0.2742 (5)1.0483 (12)0.018 (3)
H20.91910.29401.03040.021*
C30.6208 (15)0.2647 (4)1.1831 (13)0.015 (2)
H30.57710.27741.26440.018*
C40.5351 (15)0.2174 (5)1.0852 (11)0.014 (2)
C50.3707 (11)0.1848 (3)1.0932 (10)0.0146 (19)
C60.1512 (13)0.1078 (4)0.9801 (12)0.015 (2)
H6A0.07740.09870.86890.018*
H6B0.07570.13201.02620.018*
C70.2058 (11)0.0497 (3)1.0721 (11)0.0124 (17)
C80.1360 (11)0.0045 (4)1.0059 (11)0.020 (2)
H80.04250.00610.90530.024*
C90.2044 (13)0.0571 (4)1.0884 (13)0.020 (2)
H90.16380.09441.03810.024*
C100.3872 (11)0.0036 (3)1.3001 (11)0.019 (2)
H100.47470.00281.40390.023*
C110.3310 (12)0.0503 (4)1.2239 (10)0.016 (2)
H110.37750.08711.27480.019*
C120.6927 (13)0.0907 (5)0.6705 (13)0.016 (2)
C130.7531 (12)0.1058 (4)0.5323 (10)0.024 (2)
H13A0.77240.06870.48200.035*
H13B0.86690.12850.57010.035*
H13C0.65910.12980.45520.035*
O1W0.7662 (12)0.0650 (3)0.0791 (10)0.0313 (19)
H1WA0.764 (17)0.042 (4)0.151 (8)0.047*
H1WB0.752 (15)0.044 (4)0.002 (7)0.047*
O2W0.9960 (9)0.1546 (3)0.2989 (8)0.0358 (18)
H2WA0.925 (10)0.134 (4)0.222 (8)0.054*
H2WB1.072 (10)0.169 (4)0.261 (10)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0184 (5)0.0119 (4)0.0183 (5)0.0019 (8)0.0092 (4)0.0025 (8)
O10.032 (4)0.021 (3)0.032 (4)0.011 (3)0.025 (4)0.013 (3)
O20.023 (4)0.008 (3)0.023 (4)0.000 (3)0.012 (3)0.004 (3)
O30.025 (4)0.019 (3)0.037 (5)0.009 (3)0.013 (3)0.005 (3)
N10.018 (2)0.0133 (18)0.018 (2)0.0018 (16)0.009 (2)0.0013 (17)
N20.018 (2)0.0133 (18)0.018 (2)0.0018 (16)0.009 (2)0.0013 (17)
N30.018 (2)0.0133 (18)0.018 (2)0.0018 (16)0.009 (2)0.0013 (17)
N40.018 (2)0.0133 (18)0.018 (2)0.0018 (16)0.009 (2)0.0013 (17)
C10.017 (6)0.017 (5)0.020 (6)0.004 (4)0.007 (5)0.002 (5)
C20.019 (6)0.022 (6)0.016 (6)0.003 (5)0.011 (5)0.001 (5)
C30.018 (6)0.014 (5)0.016 (6)0.005 (4)0.012 (5)0.001 (4)
C40.023 (6)0.010 (5)0.012 (5)0.005 (4)0.010 (5)0.001 (4)
C50.015 (5)0.016 (4)0.014 (5)0.002 (3)0.006 (4)0.001 (4)
C60.013 (6)0.010 (5)0.021 (6)0.002 (4)0.004 (5)0.003 (4)
C70.011 (4)0.009 (4)0.018 (5)0.002 (3)0.006 (4)0.006 (4)
C80.012 (5)0.020 (4)0.027 (6)0.001 (4)0.005 (4)0.000 (4)
C90.020 (5)0.012 (5)0.028 (7)0.004 (4)0.009 (5)0.002 (4)
C100.024 (6)0.017 (4)0.017 (6)0.000 (3)0.009 (5)0.002 (4)
C110.023 (5)0.007 (4)0.018 (5)0.003 (4)0.008 (5)0.004 (4)
C120.007 (5)0.022 (6)0.019 (6)0.001 (4)0.004 (5)0.001 (5)
C130.019 (5)0.035 (5)0.022 (6)0.004 (4)0.014 (5)0.003 (4)
O1W0.047 (5)0.019 (4)0.033 (5)0.002 (4)0.019 (5)0.001 (3)
O2W0.042 (5)0.038 (4)0.034 (5)0.007 (3)0.022 (4)0.006 (3)
Geometric parameters (Å, º) top
Cu1—O21.947 (7)C3—H30.9500
Cu1—N31.964 (9)C4—C51.500 (13)
Cu1—N4i1.993 (7)C6—C71.520 (11)
Cu1—N12.003 (8)C6—H6A0.9900
Cu1—N2ii2.393 (8)C6—H6B0.9900
O1—C51.270 (9)C7—C81.376 (11)
O2—C121.300 (12)C7—C111.382 (12)
O3—C121.232 (11)C8—C91.395 (13)
N1—C11.323 (13)C8—H80.9500
N1—C41.349 (12)C9—H90.9500
N2—C21.330 (13)C10—C111.381 (11)
N2—C31.360 (13)C10—H100.9500
N2—Cu1iii2.393 (8)C11—H110.9500
N3—C51.332 (11)C12—C131.512 (12)
N3—C61.455 (13)C13—H13A0.9800
N4—C101.341 (10)C13—H13B0.9800
N4—C91.342 (13)C13—H13C0.9800
N4—Cu1iv1.992 (7)O1W—H1WA0.84 (3)
C1—C21.405 (14)O1W—H1WB0.84 (3)
C1—H10.9500O2W—H2WA0.86 (3)
C2—H20.9500O2W—H2WB0.85 (3)
C3—C41.393 (13)
O2—Cu1—N3172.2 (3)O1—C5—N3127.8 (8)
O2—Cu1—N4i90.7 (3)O1—C5—C4118.5 (8)
N3—Cu1—N4i97.0 (3)N3—C5—C4113.7 (8)
O2—Cu1—N190.4 (3)N3—C6—C7110.9 (8)
N3—Cu1—N182.1 (4)N3—C6—H6A109.5
N4i—Cu1—N1170.6 (3)C7—C6—H6A109.5
O2—Cu1—N2ii86.5 (3)N3—C6—H6B109.5
N3—Cu1—N2ii91.3 (3)C7—C6—H6B109.5
N4i—Cu1—N2ii101.5 (3)H6A—C6—H6B108.0
N1—Cu1—N2ii87.8 (2)C8—C7—C11118.6 (8)
C12—O2—Cu1131.5 (6)C8—C7—C6121.3 (8)
C1—N1—C4119.4 (8)C11—C7—C6120.1 (8)
C1—N1—Cu1127.3 (7)C7—C8—C9119.2 (9)
C4—N1—Cu1113.3 (7)C7—C8—H8120.4
C2—N2—C3116.9 (9)C9—C8—H8120.4
C2—N2—Cu1iii117.4 (7)N4—C9—C8122.6 (9)
C3—N2—Cu1iii125.3 (7)N4—C9—H9118.7
C5—N3—C6118.6 (9)C8—C9—H9118.7
C5—N3—Cu1115.9 (6)N4—C10—C11123.8 (8)
C6—N3—Cu1125.5 (7)N4—C10—H10118.1
C10—N4—C9117.0 (7)C11—C10—H10118.1
C10—N4—Cu1iv120.3 (6)C10—C11—C7118.6 (8)
C9—N4—Cu1iv121.4 (6)C10—C11—H11120.7
N1—C1—C2119.9 (10)C7—C11—H11120.7
N1—C1—H1120.0O3—C12—O2124.0 (9)
C2—C1—H1120.0O3—C12—C13122.0 (9)
N2—C2—C1122.3 (10)O2—C12—C13113.9 (8)
N2—C2—H2118.9C12—C13—H13A109.5
C1—C2—H2118.9C12—C13—H13B109.5
N2—C3—C4121.3 (10)H13A—C13—H13B109.5
N2—C3—H3119.3C12—C13—H13C109.5
C4—C3—H3119.3H13A—C13—H13C109.5
N1—C4—C3120.1 (10)H13B—C13—H13C109.5
N1—C4—C5115.0 (8)H1WA—O1W—H1WB107 (4)
C3—C4—C5124.9 (9)H2WA—O2W—H2WB104 (4)
C4—N1—C1—C22.0 (14)N1—C4—C5—N30.4 (12)
Cu1—N1—C1—C2176.4 (8)C3—C4—C5—N3178.4 (10)
C3—N2—C2—C11.9 (15)C5—N3—C6—C795.5 (10)
Cu1iii—N2—C2—C1172.1 (9)Cu1—N3—C6—C785.8 (10)
N1—C1—C2—N22.8 (17)N3—C6—C7—C8128.6 (9)
C2—N2—C3—C40.5 (14)N3—C6—C7—C1149.7 (12)
Cu1iii—N2—C3—C4173.0 (8)C11—C7—C8—C95.2 (12)
C1—N1—C4—C30.5 (14)C6—C7—C8—C9173.2 (8)
Cu1—N1—C4—C3178.0 (8)C10—N4—C9—C83.5 (12)
C1—N1—C4—C5178.7 (9)Cu1iv—N4—C9—C8171.0 (7)
Cu1—N1—C4—C50.1 (11)C7—C8—C9—N45.7 (13)
N2—C3—C4—N10.2 (16)C9—N4—C10—C111.1 (11)
N2—C3—C4—C5177.7 (9)Cu1iv—N4—C10—C11168.8 (6)
C6—N3—C5—O11.8 (14)N4—C10—C11—C70.9 (12)
Cu1—N3—C5—O1179.4 (7)C8—C7—C11—C102.9 (12)
C6—N3—C5—C4179.5 (9)C6—C7—C11—C10175.5 (8)
Cu1—N3—C5—C40.7 (10)Cu1—O2—C12—O317.2 (15)
N1—C4—C5—O1179.2 (8)Cu1—O2—C12—C13166.2 (7)
C3—C4—C5—O12.8 (15)
Symmetry codes: (i) x, y, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.84 (3)2.13 (5)2.908 (9)154 (9)
O1W—H1WB···O3v0.84 (3)2.23 (5)2.964 (10)146 (8)
O2W—H2WA···O1W0.86 (3)2.11 (4)2.951 (10)165 (10)
O2W—H2WB···O1vi0.85 (3)2.20 (3)3.033 (8)169 (10)
C2—H2···O2iii0.952.372.987 (13)123
C8—H8···O3vii0.952.573.364 (11)141
C9—H9···O2Wviii0.952.503.358 (12)151
Symmetry codes: (i) x, y, z1/2; (iii) x+1/2, y+1/2, z+1/2; (v) x, y, z1; (vi) x+1, y, z1; (vii) x1, y, z; (viii) x1, y, z+1/2.
 

Footnotes

1This work is part of the PhD thesis (University of Neuchâtel, 2002) of DSC.

Acknowledgements

This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Applications. Cambridge: RSC Publishing.  Google Scholar
First citationCati, D. S. (2002). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationCati, D. S., Ribas, J., Ribas-Arño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18–22.  CSD CrossRef IUCr Journals Google Scholar
First citationHellyer, R. M., Larsen, D. S. & Brooker, S. (2009). Eur. J. Inorg. Chem. pp. 1162–1171.  Web of Science CSD CrossRef Google Scholar
First citationKhavasi, H. R. & Sadegh, B. M. M. (2010). Inorg. Chem. 49, 5356–5358.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamadou, A., Moreau, J., Dupont, L. & Wenger, E. (2012). Inorg. Chim. Acta, 383, 267–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2004). IPDSI – Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. Oxford University Press.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds