metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of di­aqua­tris­­(4-oxo­pent-2-en-2-olato-κ2O,O′)lanthanum(III)

aDepartment of Materials Science and Chemical Engineering, Kitakyushu National College of Technology, Shi-i 5-20-1, Kokuraminami-ku, Kitakyushu, Fukuoka 802-0985, Japan
*Correspondence e-mail: okawara@kct.ac.jp

(Received 5 April 2014; accepted 7 June 2014; online 14 June 2014)

The structure of the title compound, [La(C5H7O2)3(H2O)2], has been redetermined to modern standards with anisotropic displacement parameters for all non-H atoms and the hydrogen-bonding pattern unambiguously established [for the previous study, see Phillips et al. (1968[Phillips, T., Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295-2299.]). Inorg. Chem. 7, 2295–2299]. The La3+ ion is coordinated by three O,O′-bidentate acetyl­acetate (acac) ligands and two water mol­ecules, resulting in a fairly regular square-anti­prismatic LaO8 coordination geometry, with both aqua ligands part of the same square face. In the crystal, the neutral complex mol­ecules are linked into [110] chains by O—H⋯O hydrogen bonds.

Related literature

For the previous report on the title compound, see: Phillips et al. (1968[Phillips, T., Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295-2299.]). For related tris­(acetyl­acetonato)lanthanide complexes, see: Watkins et al. (1969[Watkins, E. D., Cunningham, J. A., Phillips, T., Sands, D. E. & Wagner, W. F. (1969). Inorg. Chem. 8, 29-33.]); Kooijman et al. (2000[Kooijman, H., Nijsen, F., Spek, A. L. & Schip, F. van het (2000). Acta Cryst. C56, 156-158.]). For other lanthanide complexes, see: Richardson et al. (1968[Richardson, M. F., Wagner, W. F. & Sands, D. E. (1968). J. Inorg. Nucl. Chem. 30, 1275-1289.]); Lama et al. (2007[Lama, M., Mamula, O., Kottas, G. S., Rizzo, F., De Cola, L., Nakamura, A., Kuroda, R. & Stoeckli-Evans, H. (2007). Chem. Eur. J. 13, 7358-7373.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C5H7O2)3(H2O)2]

  • Mr = 472.26

  • Triclinic, [P \overline 1]

  • a = 8.9245 (12) Å

  • b = 10.6597 (15) Å

  • c = 11.3727 (15) Å

  • α = 96.614 (2)°

  • β = 100.601 (2)°

  • γ = 114.325 (2)°

  • V = 946.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 100 K

  • 0.50 × 0.50 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.40, Tmax = 0.63

  • 13810 measured reflections

  • 5213 independent reflections

  • 5068 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.058

  • S = 1.06

  • 5213 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.41 e Å−3

Table 1
Selected bond lengths (Å)

La1—O2 2.4365 (14)
La1—O4 2.4754 (13)
La1—O5 2.4917 (14)
La1—O1 2.5013 (14)
La1—O6 2.5067 (13)
La1—O3 2.5241 (13)
La1—O7 2.5381 (13)
La1—O8 2.5811 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H2W⋯O1i 0.76 (3) 2.05 (3) 2.7514 (19) 153 (3)
O7—H1W⋯O3i 0.90 (3) 1.94 (3) 2.7912 (19) 158 (3)
O8—H4W⋯O4ii 0.75 (3) 2.09 (3) 2.7907 (19) 155 (3)
O8—H3W⋯O6ii 0.81 (4) 1.96 (4) 2.721 (2) 155 (3)
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Lanthanum (La) is the first element of the lanthanide in the periodic table. Although La does not show any luminescent properties, it has worth investigating as referece complexs of other luminescent lanthanide analogs. Because structural features of LaIII complexes are similar to those of other lanthanide cases, they can be structurally characterized by nuclear magnetic resonance spectroscopy. LaIII acetylacetonate complexes are used as a precursor of further functionalized complexes. Herein we redetermined the molecular structure of La(acac)3(H2O)2 (compound I) which has been firstly reported by Phillips et al. (1968). In the previous study, all of the oxygen and carbon atoms have been refined isotropically. We have successfully obtained the reliable anisotropic displacement parameters for all non-hydrogen atoms. The molecular geometry of the compound I was almost identical to previous report. The LaIII is ligated from three acetylacetonate ligands and two aqua ligands which are forming 8-coordinate structure around LaIII (Figure 1). The average distance of oxygen atoms of acetylacetonate (O1—O6) and LaIII is 2.489 (30) Å while the original structure showed the average distance of 2.473 (24) Å. The two aqua ligands also align at parpendicular position each other in which O7—La1—O8 angle of 75.20 (5)o. Similar coordination structures are seen in HoIII(acac)3(H2O)2 by Kooijman et al. (2000) and YbIII(acac)3(H2O) by Watkins et al. (1969). Both complexes have three acac ligands and the former one has nearly identical structure in which two aqua ligands ligate to the central ion and complete 8-coordinated square antiprismatic structure. The longest bond lengths between the central lanthanide ion and the oxygen atoms of acac ligands were observed for the compound I due to difference in their ionic radii. The compound I in the crystal are connected by four hydrogen bonding, O7—O1i (symmetry codes: (i) 2 - x, 2 - y, 1 - z), O7—O3i, O8—O4ii (symmetry codes: (ii) 1 - x, 1 - y, 1 - z) and O8—O6ii, which are forming a one dimensional hydrogen bonding network (Figure 2) propagating in the [110] direction.

Related literature top

For the previous report on the title compound, see: Phillips et al. (1968). For related tris(acetylacetonato)lanthanide complexes, see: Watkins et al. (1969); Kooijman et al. (2000). For other lanthanide complexes, see: Richardson et al. (1968); Lama et al. (2007).

Experimental top

An water suspension (10 ml) of acetylacetone (161.9 mg, 1.62 mmol) and LaCl3.7H2 O (200.0 mg, 0.54 mmol) were stirred under room temperature. Quantitative amount of NaOH (64.7 mg, 1.62 mmol) was added to the suspension. A white precipitate was immediately generated. The precipitate was filtered and recrystallized from CH2Cl2 and methanol in the presence of small amount of water (ca. 3%). Colorless blocks of the title compound were obtained in a few days and mounted on a glass capillary. Yield: 77.9 mg, (31%). Analysis: calculated for C15H25LaO8 ([La(acac)3(H2O)2]): C 38.15, H 5.34%; found: C 37.80, H 5.16%. ESI-TOF-MS (CH3OH): m/z 336.97 (calcd: 337.00 for [M–acac–2H2O]+).

Refinement top

H atoms except two aqua ligands were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C—H).

H atoms attached to O7 (H1W and H2W) and O8 (H3W and H4W) were found in a difference Fourier map. Any restraints were not needed for a stable refinement. All hydrogen atoms were included in the structure factor calculation.

Structure description top

Lanthanum (La) is the first element of the lanthanide in the periodic table. Although La does not show any luminescent properties, it has worth investigating as referece complexs of other luminescent lanthanide analogs. Because structural features of LaIII complexes are similar to those of other lanthanide cases, they can be structurally characterized by nuclear magnetic resonance spectroscopy. LaIII acetylacetonate complexes are used as a precursor of further functionalized complexes. Herein we redetermined the molecular structure of La(acac)3(H2O)2 (compound I) which has been firstly reported by Phillips et al. (1968). In the previous study, all of the oxygen and carbon atoms have been refined isotropically. We have successfully obtained the reliable anisotropic displacement parameters for all non-hydrogen atoms. The molecular geometry of the compound I was almost identical to previous report. The LaIII is ligated from three acetylacetonate ligands and two aqua ligands which are forming 8-coordinate structure around LaIII (Figure 1). The average distance of oxygen atoms of acetylacetonate (O1—O6) and LaIII is 2.489 (30) Å while the original structure showed the average distance of 2.473 (24) Å. The two aqua ligands also align at parpendicular position each other in which O7—La1—O8 angle of 75.20 (5)o. Similar coordination structures are seen in HoIII(acac)3(H2O)2 by Kooijman et al. (2000) and YbIII(acac)3(H2O) by Watkins et al. (1969). Both complexes have three acac ligands and the former one has nearly identical structure in which two aqua ligands ligate to the central ion and complete 8-coordinated square antiprismatic structure. The longest bond lengths between the central lanthanide ion and the oxygen atoms of acac ligands were observed for the compound I due to difference in their ionic radii. The compound I in the crystal are connected by four hydrogen bonding, O7—O1i (symmetry codes: (i) 2 - x, 2 - y, 1 - z), O7—O3i, O8—O4ii (symmetry codes: (ii) 1 - x, 1 - y, 1 - z) and O8—O6ii, which are forming a one dimensional hydrogen bonding network (Figure 2) propagating in the [110] direction.

For the previous report on the title compound, see: Phillips et al. (1968). For related tris(acetylacetonato)lanthanide complexes, see: Watkins et al. (1969); Kooijman et al. (2000). For other lanthanide complexes, see: Richardson et al. (1968); Lama et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of a [110] hydrogen-bonded chain in the title compound. The blue broken lines show the hydrogen bonds. Symmetry codes: (i) 2 - x, 2 - y, 1 - z, (ii) x, y, z, (iii) 1 - x, 1 - y, 1 - z, (iv) x - 1, y - 1, z).
Diaquatris(4-oxopent-2-en-2-olato-κ2O,O')lanthanum(III) top
Crystal data top
[La(C5H7O2)3(H2O)2]Z = 2
Mr = 472.26F(000) = 472
Triclinic, P1Dx = 1.657 Mg m3
a = 8.9245 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6597 (15) ÅCell parameters from 9940 reflections
c = 11.3727 (15) Åθ = 2.5–30.5°
α = 96.614 (2)°µ = 2.29 mm1
β = 100.601 (2)°T = 100 K
γ = 114.325 (2)°Block, colourless
V = 946.8 (2) Å30.50 × 0.50 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
5213 independent reflections
Radiation source: fine focus sealed tube5068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3333 pixels mm-1θmax = 29.6°, θmin = 1.9°
phi and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1414
Tmin = 0.40, Tmax = 0.63l = 1515
13810 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.2713P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
5213 reflectionsΔρmax = 1.04 e Å3
240 parametersΔρmin = 1.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0149 (8)
Crystal data top
[La(C5H7O2)3(H2O)2]γ = 114.325 (2)°
Mr = 472.26V = 946.8 (2) Å3
Triclinic, P1Z = 2
a = 8.9245 (12) ÅMo Kα radiation
b = 10.6597 (15) ŵ = 2.29 mm1
c = 11.3727 (15) ÅT = 100 K
α = 96.614 (2)°0.50 × 0.50 × 0.22 mm
β = 100.601 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5213 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5068 reflections with I > 2σ(I)
Tmin = 0.40, Tmax = 0.63Rint = 0.030
13810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.04 e Å3
5213 reflectionsΔρmin = 1.41 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.770906 (10)0.782106 (9)0.614919 (8)0.01085 (5)
O71.00237 (17)0.85834 (14)0.50120 (13)0.0153 (2)
O60.67267 (17)0.56182 (14)0.69763 (12)0.0162 (2)
O40.45916 (16)0.69885 (14)0.55190 (12)0.0159 (2)
O10.95280 (17)1.03835 (14)0.70708 (12)0.0180 (3)
O20.72212 (18)0.84749 (15)0.81177 (13)0.0209 (3)
O30.68870 (16)0.90080 (14)0.45213 (12)0.0161 (2)
O80.66186 (18)0.58124 (15)0.42448 (13)0.0170 (3)
C30.9035 (3)1.0876 (2)0.90089 (18)0.0193 (4)
H30.93671.15930.97160.023*
C20.9814 (2)1.1236 (2)0.80637 (17)0.0170 (3)
C40.7789 (2)0.9524 (2)0.89890 (17)0.0175 (3)
C50.7027 (3)0.9307 (2)1.00763 (19)0.0239 (4)
H5A0.60220.94850.99390.036*
H5B0.78690.99611.08170.036*
H5C0.66970.83361.01770.036*
C11.1092 (3)1.2747 (2)0.8198 (2)0.0281 (4)
H1A1.20861.27670.79370.042*
H1B1.14451.32390.90570.042*
H1C1.05711.32160.76880.042*
C90.3503 (2)0.71969 (18)0.47772 (17)0.0142 (3)
C70.5536 (2)0.89906 (19)0.39080 (17)0.0146 (3)
C100.1669 (2)0.6312 (2)0.47366 (19)0.0188 (4)
H10A0.13240.53360.43360.028*
H10B0.09590.66790.42750.028*
H10C0.15290.63440.55730.028*
C80.3893 (2)0.8151 (2)0.40103 (18)0.0174 (3)
H80.29740.8240.35180.021*
C60.5706 (2)0.9907 (2)0.29805 (18)0.0198 (4)
H6A0.68261.07250.32420.03*
H6B0.48171.02290.29130.03*
H6C0.55860.93660.21830.03*
O51.01440 (17)0.74506 (15)0.72219 (13)0.0189 (3)
C140.7368 (3)0.5254 (2)0.78893 (17)0.0179 (4)
C121.0387 (3)0.6712 (2)0.79565 (17)0.0183 (3)
C130.9103 (3)0.5708 (2)0.83696 (18)0.0209 (4)
H130.94410.53140.90170.025*
C150.6127 (3)0.4243 (3)0.8472 (2)0.0299 (5)
H15A0.56590.47460.89510.045*
H15B0.67140.38420.90110.045*
H15C0.520.34840.78310.045*
C111.2197 (3)0.6933 (3)0.8430 (2)0.0279 (4)
H11A1.27190.69320.77430.042*
H11B1.21940.61710.88380.042*
H11C1.2850.78390.90140.042*
H2W0.985 (4)0.867 (3)0.435 (3)0.035 (8)*
H1W1.104 (4)0.932 (3)0.536 (3)0.034 (8)*
H4W0.659 (4)0.514 (3)0.441 (3)0.027 (7)*
H3W0.569 (4)0.561 (3)0.381 (3)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01059 (7)0.00983 (7)0.01199 (7)0.00403 (4)0.00295 (4)0.00369 (4)
O70.0140 (6)0.0156 (6)0.0167 (6)0.0058 (5)0.0048 (5)0.0062 (5)
O60.0164 (6)0.0141 (6)0.0163 (6)0.0052 (5)0.0030 (5)0.0052 (5)
O40.0127 (6)0.0154 (6)0.0204 (6)0.0062 (5)0.0046 (5)0.0061 (5)
O10.0221 (7)0.0138 (6)0.0152 (6)0.0051 (5)0.0057 (5)0.0021 (5)
O20.0226 (7)0.0193 (7)0.0175 (6)0.0055 (6)0.0082 (5)0.0020 (5)
O30.0127 (6)0.0168 (6)0.0198 (6)0.0068 (5)0.0037 (5)0.0077 (5)
O80.0178 (7)0.0128 (6)0.0177 (6)0.0047 (5)0.0035 (5)0.0029 (5)
C30.0209 (9)0.0185 (9)0.0148 (8)0.0068 (7)0.0036 (7)0.0013 (7)
C20.0174 (8)0.0154 (8)0.0159 (8)0.0065 (7)0.0016 (7)0.0022 (6)
C40.0173 (8)0.0237 (9)0.0145 (8)0.0114 (8)0.0046 (7)0.0047 (7)
C50.0226 (10)0.0329 (11)0.0169 (9)0.0120 (9)0.0081 (8)0.0041 (8)
C10.0319 (11)0.0154 (9)0.0251 (10)0.0010 (8)0.0047 (9)0.0015 (8)
C90.0124 (7)0.0128 (7)0.0180 (8)0.0061 (6)0.0052 (6)0.0014 (6)
C70.0156 (8)0.0129 (8)0.0160 (8)0.0074 (7)0.0031 (6)0.0033 (6)
C100.0128 (8)0.0176 (8)0.0265 (10)0.0065 (7)0.0069 (7)0.0050 (7)
C80.0120 (8)0.0185 (8)0.0220 (9)0.0071 (7)0.0028 (7)0.0066 (7)
C60.0192 (9)0.0215 (9)0.0211 (9)0.0094 (7)0.0055 (7)0.0107 (7)
O50.0165 (6)0.0195 (6)0.0222 (7)0.0084 (5)0.0035 (5)0.0107 (5)
C140.0239 (9)0.0164 (8)0.0130 (8)0.0075 (7)0.0059 (7)0.0051 (7)
C120.0194 (9)0.0184 (8)0.0152 (8)0.0087 (7)0.0011 (7)0.0037 (7)
C130.0226 (9)0.0220 (9)0.0152 (8)0.0081 (8)0.0005 (7)0.0088 (7)
C150.0289 (11)0.0321 (12)0.0229 (10)0.0052 (9)0.0078 (9)0.0146 (9)
C110.0203 (10)0.0310 (11)0.0335 (12)0.0130 (9)0.0002 (8)0.0151 (9)
Geometric parameters (Å, º) top
La1—O22.4365 (14)C1—H1B0.98
La1—O42.4754 (13)C1—H1C0.98
La1—O52.4917 (14)C9—C81.393 (3)
La1—O12.5013 (14)C9—C101.504 (2)
La1—O62.5067 (13)C7—C81.404 (2)
La1—O32.5241 (13)C7—C61.505 (3)
La1—O72.5381 (13)C10—H10A0.98
La1—O82.5811 (14)C10—H10B0.98
O7—H2W0.76 (3)C10—H10C0.98
O7—H1W0.90 (3)C8—H80.95
O6—C141.270 (2)C6—H6A0.98
O4—C91.274 (2)C6—H6B0.98
O1—C21.278 (2)C6—H6C0.98
O2—C41.258 (2)O5—C121.261 (2)
O3—C71.269 (2)C14—C131.393 (3)
O8—H4W0.75 (3)C14—C151.509 (3)
O8—H3W0.81 (4)C12—C131.408 (3)
C3—C21.392 (3)C12—C111.514 (3)
C3—C41.406 (3)C13—H130.95
C3—H30.95C15—H15A0.98
C2—C11.511 (3)C15—H15B0.98
C4—C51.513 (3)C15—H15C0.98
C5—H5A0.98C11—H11A0.98
C5—H5B0.98C11—H11B0.98
C5—H5C0.98C11—H11C0.98
C1—H1A0.98
O2—La1—O480.43 (5)H5A—C5—H5C109.5
O2—La1—O589.79 (5)H5B—C5—H5C109.5
O4—La1—O5147.90 (4)C2—C1—H1A109.5
O2—La1—O168.90 (5)C2—C1—H1B109.5
O4—La1—O1117.77 (4)H1A—C1—H1B109.5
O5—La1—O186.07 (5)C2—C1—H1C109.5
O2—La1—O674.35 (5)H1A—C1—H1C109.5
O4—La1—O679.74 (4)H1B—C1—H1C109.5
O5—La1—O668.17 (4)O4—C9—C8125.02 (16)
O1—La1—O6134.81 (4)O4—C9—C10115.96 (16)
O2—La1—O3114.29 (5)C8—C9—C10119.01 (16)
O4—La1—O368.42 (4)O3—C7—C8124.70 (17)
O5—La1—O3142.08 (4)O3—C7—C6117.55 (16)
O1—La1—O376.92 (4)C8—C7—C6117.74 (16)
O6—La1—O3144.19 (4)C9—C10—H10A109.5
O2—La1—O7139.98 (5)C9—C10—H10B109.5
O4—La1—O7133.31 (5)H10A—C10—H10B109.5
O5—La1—O770.81 (5)C9—C10—H10C109.5
O1—La1—O774.97 (4)H10A—C10—H10C109.5
O6—La1—O7124.99 (4)H10B—C10—H10C109.5
O3—La1—O772.12 (4)C9—C8—C7125.12 (17)
O2—La1—O8143.70 (5)C9—C8—H8117.4
O4—La1—O874.43 (5)C7—C8—H8117.4
O5—La1—O897.74 (5)C7—C6—H6A109.5
O1—La1—O8146.72 (4)C7—C6—H6B109.5
O6—La1—O875.73 (5)H6A—C6—H6B109.5
O3—La1—O880.19 (5)C7—C6—H6C109.5
O7—La1—O875.20 (5)H6A—C6—H6C109.5
La1—O7—H2W122 (2)H6B—C6—H6C109.5
La1—O7—H1W120.9 (19)C12—O5—La1137.23 (13)
H2W—O7—H1W103 (3)O6—C14—C13124.89 (18)
C14—O6—La1133.49 (12)O6—C14—C15116.30 (19)
C9—O4—La1139.02 (12)C13—C14—C15118.80 (18)
C2—O1—La1136.92 (12)O5—C12—C13124.82 (18)
C4—O2—La1139.63 (13)O5—C12—C11117.21 (18)
C7—O3—La1137.69 (12)C13—C12—C11117.97 (17)
La1—O8—H4W112 (2)C14—C13—C12124.17 (17)
La1—O8—H3W117 (2)C14—C13—H13117.9
H4W—O8—H3W106 (3)C12—C13—H13117.9
C2—C3—C4124.49 (18)C14—C15—H15A109.5
C2—C3—H3117.8C14—C15—H15B109.5
C4—C3—H3117.8H15A—C15—H15B109.5
O1—C2—C3124.97 (18)C14—C15—H15C109.5
O1—C2—C1116.52 (17)H15A—C15—H15C109.5
C3—C2—C1118.51 (18)H15B—C15—H15C109.5
O2—C4—C3124.92 (18)C12—C11—H11A109.5
O2—C4—C5116.86 (18)C12—C11—H11B109.5
C3—C4—C5118.19 (18)H11A—C11—H11B109.5
C4—C5—H5A109.5C12—C11—H11C109.5
C4—C5—H5B109.5H11A—C11—H11C109.5
H5A—C5—H5B109.5H11B—C11—H11C109.5
C4—C5—H5C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2W···O1i0.76 (3)2.05 (3)2.7514 (19)153 (3)
O7—H1W···O3i0.90 (3)1.94 (3)2.7912 (19)158 (3)
O8—H4W···O4ii0.75 (3)2.09 (3)2.7907 (19)155 (3)
O8—H3W···O6ii0.81 (4)1.96 (4)2.721 (2)155 (3)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1.
Selected bond lengths (Å) top
La1—O22.4365 (14)La1—O62.5067 (13)
La1—O42.4754 (13)La1—O32.5241 (13)
La1—O52.4917 (14)La1—O72.5381 (13)
La1—O12.5013 (14)La1—O82.5811 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2W···O1i0.76 (3)2.05 (3)2.7514 (19)153.(3)
O7—H1W···O3i0.90 (3)1.94 (3)2.7912 (19)158.(3)
O8—H4W···O4ii0.75 (3)2.09 (3)2.7907 (19)155.(3)
O8—H3W···O6ii0.81 (4)1.96 (4)2.721 (2)155.(3)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by Nanotechnology Platform Project (Kyushu University Mol­ecule and Material Synthesis Platform) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

First citationBruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKooijman, H., Nijsen, F., Spek, A. L. & Schip, F. van het (2000). Acta Cryst. C56, 156–158.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLama, M., Mamula, O., Kottas, G. S., Rizzo, F., De Cola, L., Nakamura, A., Kuroda, R. & Stoeckli-Evans, H. (2007). Chem. Eur. J. 13, 7358–7373.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPhillips, T., Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295–2299.  CSD CrossRef CAS Web of Science Google Scholar
First citationRichardson, M. F., Wagner, W. F. & Sands, D. E. (1968). J. Inorg. Nucl. Chem. 30, 1275–1289.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkins, E. D., Cunningham, J. A., Phillips, T., Sands, D. E. & Wagner, W. F. (1969). Inorg. Chem. 8, 29–33.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds