organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-bromo­benz­yl) ether

aDepartment of Physics, Dr M. G. R. Educational and Research Institute, Maduravoyal, Chennai, India, bDepartment of Chemistry, BET Academy of Higher Education, Bharathi College, Bharthi Nagara, Mandya 571 422, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Chemistry, G. Made Gowda Institute of Technology, Bharthi Nagara, Mandya 571422, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 12 May 2014; accepted 21 May 2014; online 11 June 2014)

In the title compound, C14H12Br2O, the dihedral angle between the aromatic rings is 2.7 (3)° and the Br atoms lie on the same side of the mol­ecule. No inter­molecular inter­actions occur in the crystal beyond van der Waals contacts.

Related literature

For the use of benzyl groups in organic synthesis, see; Rao & Kumar (2001[Rao, H. S. P. & Kumar, S. S. P. (2001). Proc. Indian Acad. Sci. (Chem. Sci.), 113, 191-196.]); Tareque et al. (2006[Tareque, M. H., Ismail, M., Chakravarthy, P. & Rana, A. A. R. (2006). Banglad. J. Sci. Ind. Res. 41, 257-261.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12Br2O

  • Mr = 356.04

  • Monoclinic, P 21 /n

  • a = 11.6022 (6) Å

  • b = 10.1590 (5) Å

  • c = 12.2368 (6) Å

  • β = 112.853 (2)°

  • V = 1329.10 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 7.58 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.21 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) Tmin = 0.275, Tmax = 0.299

  • 10361 measured reflections

  • 2185 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.192

  • S = 1.07

  • 2185 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.61 e Å−3

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: Mercury.

Supporting information


Comment top

Benzyl groups are commonly used for the protection of alcohol and phenol moieties for synthesis. The benzyl alcohol used in the benzylation of phenol (Tareque, et al.,, 2006). The benzyl ethers are used as intermediates in sigmatropic rearrangement reactions such as Claisen and the Cope rearrangements (Rao and Kumar, 2001).

In the title compound, C14H10Br2O, (Fig. 1), the dihedral angle between the aromatic rings is 2.7 (3)° and the Br atoms lie on the same side of the molecule. No intermolecular interactions occur in the crystal beyond van der Waals' contacts.

Related literature top

For the use of benzyl groups in organic synthesis, see; Rao & Kumar (2001); Tareque et al. (2006).

Experimental top

2-Bromobenzyl alcohol (1.87 g, 0.01 mol), sodium hydride 0.24 g, 0.01 mol) and 2-bromobenzyl bromide (2.52 g, 0.01 mol) were ground well and mixed in 25 ml of THF. The mixture were stirred in a beaker at 60 °C for one hour. The mixture was kept aside for five days at room temperature in a vaccum desiccator over phosphorous pentoxide. The colourless crystals were obtained by slow evaporation (M. P. 374 - 376 K). Colourless blocks were obtained from slow evaporation of a solution of ethylacetate.

Refinement top

The hydrogen atom were fixed geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Benzyl groups are commonly used for the protection of alcohol and phenol moieties for synthesis. The benzyl alcohol used in the benzylation of phenol (Tareque, et al.,, 2006). The benzyl ethers are used as intermediates in sigmatropic rearrangement reactions such as Claisen and the Cope rearrangements (Rao and Kumar, 2001).

In the title compound, C14H10Br2O, (Fig. 1), the dihedral angle between the aromatic rings is 2.7 (3)° and the Br atoms lie on the same side of the molecule. No intermolecular interactions occur in the crystal beyond van der Waals' contacts.

For the use of benzyl groups in organic synthesis, see; Rao & Kumar (2001); Tareque et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A viewed along the b axis of the crystal packing of the title compound.
Bis(2-bromobenzyl) ether top
Crystal data top
C14H12Br2OF(000) = 688
Mr = 356.04Dx = 1.769 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 2185 reflections
a = 11.6022 (6) Åθ = 4.5–64.7°
b = 10.1590 (5) ŵ = 7.58 mm1
c = 12.2368 (6) ÅT = 296 K
β = 112.853 (2)°Block, colourless
V = 1329.10 (12) Å30.23 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2185 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1957 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.054
Detector resolution: 10.7 pixels mm-1θmax = 64.7°, θmin = 4.5°
φ and ω scansh = 513
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1111
Tmin = 0.275, Tmax = 0.299l = 1411
10361 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.137P)2 + 1.9645P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2185 reflectionsΔρmax = 1.26 e Å3
155 parametersΔρmin = 1.61 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0219 (17)
Crystal data top
C14H12Br2OV = 1329.10 (12) Å3
Mr = 356.04Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.6022 (6) ŵ = 7.58 mm1
b = 10.1590 (5) ÅT = 296 K
c = 12.2368 (6) Å0.23 × 0.22 × 0.21 mm
β = 112.853 (2)°
Data collection top
Bruker X8 Proteum
diffractometer
2185 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1957 reflections with I > 2σ(I)
Tmin = 0.275, Tmax = 0.299Rint = 0.054
10361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.07Δρmax = 1.26 e Å3
2185 reflectionsΔρmin = 1.61 e Å3
155 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45265 (7)0.18786 (6)0.48911 (7)0.0610 (3)
Br21.11871 (7)0.50492 (7)0.78422 (6)0.0629 (4)
O10.7350 (4)0.4954 (4)0.4857 (4)0.0441 (14)
C11.0514 (5)0.6241 (6)0.6552 (5)0.0410 (17)
C21.1258 (5)0.7260 (7)0.6461 (6)0.051 (2)
C31.0785 (6)0.8126 (6)0.5532 (6)0.052 (2)
C40.9584 (6)0.7975 (6)0.4701 (6)0.0488 (19)
C50.8845 (5)0.6954 (5)0.4814 (5)0.0391 (17)
C60.9296 (5)0.6058 (5)0.5729 (5)0.0348 (16)
C70.8506 (5)0.4919 (5)0.5835 (5)0.0389 (17)
C80.6547 (5)0.3941 (5)0.4916 (5)0.0384 (16)
C90.5324 (5)0.4041 (5)0.3857 (5)0.0350 (16)
C100.5112 (5)0.5001 (5)0.3003 (5)0.0411 (17)
C110.3985 (6)0.5106 (7)0.2048 (6)0.053 (2)
C120.3028 (6)0.4217 (6)0.1926 (5)0.0499 (17)
C130.3212 (6)0.3256 (6)0.2769 (6)0.0493 (19)
C140.4339 (5)0.3178 (5)0.3721 (5)0.0401 (16)
H21.206900.735900.702200.0610*
H31.127700.881700.546200.0630*
H40.927000.855700.406700.0590*
H50.802900.687100.426100.0460*
H7A0.892900.409300.584400.0470*
H7B0.837300.498900.656800.0470*
H8A0.640000.402100.564100.0460*
H8B0.692900.309100.491900.0460*
H100.574700.559500.307400.0490*
H110.386400.576600.148800.0630*
H120.226900.427400.127900.0600*
H130.257700.266100.269500.0590*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0563 (6)0.0420 (5)0.0818 (7)0.0090 (3)0.0236 (4)0.0184 (3)
Br20.0562 (6)0.0755 (7)0.0436 (6)0.0143 (3)0.0047 (4)0.0006 (3)
O10.031 (2)0.047 (2)0.054 (3)0.0052 (16)0.0161 (18)0.0079 (16)
C10.039 (3)0.048 (3)0.038 (3)0.004 (2)0.017 (2)0.014 (2)
C20.035 (3)0.058 (4)0.058 (4)0.009 (3)0.015 (3)0.025 (3)
C30.046 (3)0.047 (4)0.068 (4)0.014 (3)0.028 (3)0.016 (3)
C40.048 (3)0.039 (3)0.061 (4)0.003 (2)0.023 (3)0.004 (3)
C50.033 (3)0.037 (3)0.046 (3)0.002 (2)0.014 (2)0.004 (2)
C60.031 (2)0.037 (3)0.041 (3)0.0037 (19)0.019 (2)0.011 (2)
C70.034 (3)0.043 (3)0.041 (3)0.003 (2)0.016 (2)0.002 (2)
C80.030 (2)0.037 (3)0.052 (3)0.001 (2)0.020 (2)0.007 (2)
C90.033 (2)0.033 (3)0.046 (3)0.004 (2)0.023 (2)0.002 (2)
C100.042 (3)0.043 (3)0.044 (3)0.003 (2)0.023 (3)0.005 (2)
C110.048 (4)0.062 (4)0.052 (4)0.008 (3)0.023 (3)0.011 (3)
C120.040 (3)0.056 (3)0.049 (3)0.003 (3)0.012 (2)0.002 (3)
C130.039 (3)0.045 (3)0.064 (4)0.008 (2)0.020 (3)0.013 (3)
C140.037 (3)0.029 (2)0.060 (3)0.0028 (19)0.025 (3)0.004 (2)
Geometric parameters (Å, º) top
Br1—C141.897 (5)C11—C121.394 (10)
Br2—C11.900 (6)C12—C131.375 (9)
O1—C71.409 (8)C13—C141.375 (9)
O1—C81.409 (7)C2—H20.9300
C1—C21.380 (9)C3—H30.9300
C1—C61.393 (8)C4—H40.9300
C2—C31.372 (9)C5—H50.9300
C3—C41.378 (10)C7—H7A0.9700
C4—C51.386 (9)C7—H7B0.9700
C5—C61.379 (8)C8—H8A0.9700
C6—C71.513 (8)C8—H8B0.9700
C8—C91.508 (8)C10—H100.9300
C9—C101.380 (8)C11—H110.9300
C9—C141.398 (8)C12—H120.9300
C10—C111.378 (9)C13—H130.9300
C7—O1—C8111.6 (4)C2—C3—H3120.00
Br2—C1—C2118.5 (5)C4—C3—H3120.00
Br2—C1—C6119.3 (4)C3—C4—H4120.00
C2—C1—C6122.2 (6)C5—C4—H4120.00
C1—C2—C3119.1 (6)C4—C5—H5119.00
C2—C3—C4120.3 (6)C6—C5—H5119.00
C3—C4—C5119.8 (6)O1—C7—H7A110.00
C4—C5—C6121.4 (6)O1—C7—H7B110.00
C1—C6—C5117.2 (5)C6—C7—H7A110.00
C1—C6—C7121.2 (5)C6—C7—H7B110.00
C5—C6—C7121.5 (5)H7A—C7—H7B108.00
O1—C7—C6108.5 (4)O1—C8—H8A110.00
O1—C8—C9109.1 (4)O1—C8—H8B110.00
C8—C9—C10122.0 (5)C9—C8—H8A110.00
C8—C9—C14120.9 (5)C9—C8—H8B110.00
C10—C9—C14117.1 (5)H8A—C8—H8B108.00
C9—C10—C11121.9 (6)C9—C10—H10119.00
C10—C11—C12119.7 (6)C11—C10—H10119.00
C11—C12—C13119.6 (6)C10—C11—H11120.00
C12—C13—C14119.7 (6)C12—C11—H11120.00
Br1—C14—C9119.9 (4)C11—C12—H12120.00
Br1—C14—C13118.2 (5)C13—C12—H12120.00
C9—C14—C13122.0 (5)C12—C13—H13120.00
C1—C2—H2120.00C14—C13—H13120.00
C3—C2—H2120.00
C8—O1—C7—C6178.2 (5)C5—C6—C7—O12.3 (7)
C7—O1—C8—C9179.3 (5)O1—C8—C9—C100.5 (7)
Br2—C1—C2—C3179.8 (5)O1—C8—C9—C14177.6 (5)
C6—C1—C2—C30.2 (10)C8—C9—C10—C11178.7 (6)
Br2—C1—C6—C5179.5 (4)C14—C9—C10—C110.6 (9)
Br2—C1—C6—C70.8 (8)C8—C9—C14—Br11.0 (7)
C2—C1—C6—C50.9 (9)C8—C9—C14—C13179.5 (6)
C2—C1—C6—C7178.9 (6)C10—C9—C14—Br1177.2 (4)
C1—C2—C3—C40.2 (10)C10—C9—C14—C131.3 (9)
C2—C3—C4—C50.9 (10)C9—C10—C11—C120.5 (10)
C3—C4—C5—C61.7 (10)C10—C11—C12—C130.9 (10)
C4—C5—C6—C11.6 (9)C11—C12—C13—C140.3 (10)
C4—C5—C6—C7178.2 (6)C12—C13—C14—Br1177.7 (5)
C1—C6—C7—O1177.4 (5)C12—C13—C14—C90.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.322.685 (7)103
C10—H10···O10.932.342.705 (8)103
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.93002.32002.685 (7)103.00
C10—H10···O10.93002.34002.705 (8)103.00
 

Acknowledgements

We are grateful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility. PN thanks the BET Academy of Higher Education for the facilities.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRao, H. S. P. & Kumar, S. S. P. (2001). Proc. Indian Acad. Sci. (Chem. Sci.), 113, 191–196.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTareque, M. H., Ismail, M., Chakravarthy, P. & Rana, A. A. R. (2006). Banglad. J. Sci. Ind. Res. 41, 257–261.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds