organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′-([1,1′-Biphen­yl]-4-yl)-1′,1′′,3′′-tri­methyl­di­spiro[indane-2,2′-pyrrolidine-4′,5′′-[1,3]diazin­ane]-1,3,2′′,4′′,6′′-penta­one

aDepartment of Chemistry, Government Science College, Bangalore 560 001, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, cDepartment of Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and dDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: vijaykumargr18@yahoo.co.in

(Received 13 May 2014; accepted 5 June 2014; online 11 June 2014)

In the title compound, C30H25N3O5, the central five-membered heterocyclic ring adopts an envelope conformation, with the N atom as the flap. The dihedral angles between this central ring and the pendant indane ring system, the trione and benzene rings are 87.49 (5), 82.95 (10) and 72.42 (10)°, respectively. The dihedral angle between the rings of the biphenyl group is 45.99 (13)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into [101] C(12) chains.

Related literature

For background to multi-component or tandem reactions, see: Bunce et al. (2007[Bunce, R. A. (2007). Tetrahedron, 63, 5341-5378.]); Duan et al. (2005[Duan, X. H., Liu, X. Y., Guo, L. N., Liao, M. C., Liu, W. M. & Liang, Y. M. (2005). J. Org. Chem. 70, 6980-6983.]); Ohno et al. (2007[Ohno, H., Ohta, Y., Oishi, S. & Fujii, N. (2007). Angew. Chem. Int. Ed. 46, 2295-2298.]); Pache et al. (2003[Pache, S. & Lautens, M. (2003). Org. Lett. 5, 4827-4830.]).

[Scheme 1]

Experimental

Crystal data
  • C30H25N3O5

  • Mr = 507.53

  • Monoclinic, P 21 /n

  • a = 8.3301 (10) Å

  • b = 26.070 (4) Å

  • c = 12.0441 (14) Å

  • β = 94.496 (6)°

  • V = 2607.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.982

  • 18992 measured reflections

  • 4569 independent reflections

  • 3332 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.130

  • S = 1.04

  • 4569 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29⋯O2i 0.93 2.44 3.269 (3) 149
Symmetry code: (i) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

One strategy that potentially meets the goals of synthesis and library production is multicomponent reactions (MCRs), in which three or more starting materials are brought together to build up molecular structure and complexity (Bunce et al. 2007; Duan et al. 2005; Ohno et al. 2007). The tandem reactions are significant in the context of green chemistry, as they offer convenient strategy for the rapid, elegant, and convergent construction of complex organic molecules without isolating and purifying the intermediates (Pache et al. 2003). In this context the title compound has been synthesized by using four components such as bi phenyl carboxaldehdyde, N,N-dimethyl barbituric acid, ninhydrin and sarcosine. Also its structure has been determined.

In the title compoud, C30H25N3O5, the dihedral angles between the rings A and B,C,D,E are 88.73 (11)°, 86.80 (11)°, 82.95 (12)°, 72.42 (10)° respectively, and between A and F, E and F are 45.99 (13)° and 36.43 (13)° respectively. In the crystal, molecules are linked by C29—H29···O2 hydrogen bonds along [101] shown in Fig.2.

Related literature top

For background to multi-component or tandem reactions, see: Bunce et al. (2007); Duan et al. (2005); Ohno et al. (2007); Pache et al. (2003).

Experimental top

To a suspension of biphenyl carboxaldehdyde, (1.0 mmol) in MeOH was added N,N-dimethyl barbituric acid (1.0 mmol), ninhydrin (1.0 mmol), sarcosine (1.0 mmol) and magnesium silicate catalyst (5 mol %) at room temperature. The reaction mass was stirred at 60°C for 20 minutes. Title compound was precipitated as yellow solid on standing the reaction mass. Then it was filtered and washed with cold methanol to remove polar impurities. The compound was further re-crystallized using dichloromethane: methanol: tetrahydrofuron (3:1:1) to yield colourless prisms.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2–1.5 times of the Ueq of the parent atom).

Structure description top

One strategy that potentially meets the goals of synthesis and library production is multicomponent reactions (MCRs), in which three or more starting materials are brought together to build up molecular structure and complexity (Bunce et al. 2007; Duan et al. 2005; Ohno et al. 2007). The tandem reactions are significant in the context of green chemistry, as they offer convenient strategy for the rapid, elegant, and convergent construction of complex organic molecules without isolating and purifying the intermediates (Pache et al. 2003). In this context the title compound has been synthesized by using four components such as bi phenyl carboxaldehdyde, N,N-dimethyl barbituric acid, ninhydrin and sarcosine. Also its structure has been determined.

In the title compoud, C30H25N3O5, the dihedral angles between the rings A and B,C,D,E are 88.73 (11)°, 86.80 (11)°, 82.95 (12)°, 72.42 (10)° respectively, and between A and F, E and F are 45.99 (13)° and 36.43 (13)° respectively. In the crystal, molecules are linked by C29—H29···O2 hydrogen bonds along [101] shown in Fig.2.

For background to multi-component or tandem reactions, see: Bunce et al. (2007); Duan et al. (2005); Ohno et al. (2007); Pache et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound. Dashed lines indicate C—H···O intramolecular and intermolecular interactions.
5'-([1,1'-Biphenyl]-4-yl)-1',1'',3''-trimethyldispiro[indane-2,2'-pyrrolidine-4',5''-[1,3]diazinane]-1,3,2'',4'',6''-pentaone top
Crystal data top
C30H25N3O5Prism
Mr = 507.53Dx = 1.293 Mg m3
Monoclinic, P21/nMelting point: 434 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.3301 (10) ÅCell parameters from 346 reflections
b = 26.070 (4) Åθ = 1.9–25.0°
c = 12.0441 (14) ŵ = 0.09 mm1
β = 94.496 (6)°T = 296 K
V = 2607.5 (6) Å3Prism, colourless
Z = 40.24 × 0.22 × 0.20 mm
F(000) = 1064
Data collection top
Bruker APEXII CCD
diffractometer
4569 independent reflections
Radiation source: fine-focus sealed tube3332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 1.6 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 3130
Tmin = 0.979, Tmax = 0.982l = 1410
18992 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.059P)2 + 0.5965P]
where P = (Fo2 + 2Fc2)/3
4569 reflections(Δ/σ)max = 0.031
346 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
0 constraints
Crystal data top
C30H25N3O5V = 2607.5 (6) Å3
Mr = 507.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3301 (10) ŵ = 0.09 mm1
b = 26.070 (4) ÅT = 296 K
c = 12.0441 (14) Å0.24 × 0.22 × 0.20 mm
β = 94.496 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
4569 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3332 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.982Rint = 0.046
18992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
4569 reflectionsΔρmin = 0.15 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4231 (4)0.04651 (12)0.1141 (2)0.0948 (10)
H10.48130.07290.08430.114*
C20.2878 (5)0.02719 (16)0.0539 (3)0.1201 (14)
H20.25470.04120.01520.144*
C30.2029 (4)0.01227 (15)0.0952 (3)0.1017 (11)
H30.11240.02520.05450.122*
C40.2509 (3)0.03246 (11)0.1956 (3)0.0855 (9)
H40.19410.05970.22350.103*
C50.3845 (3)0.01285 (10)0.2575 (2)0.0675 (7)
H50.41530.02680.32690.081*
C60.4724 (3)0.02708 (8)0.21760 (18)0.0546 (6)
C70.6154 (2)0.04800 (7)0.28376 (16)0.0448 (5)
C80.6096 (3)0.05802 (8)0.39615 (17)0.0480 (5)
H80.51630.05050.43060.058*
C90.7399 (2)0.07903 (8)0.45822 (16)0.0444 (5)
H90.73230.08620.53330.053*
C100.8821 (2)0.08962 (7)0.40952 (15)0.0373 (4)
C110.8908 (2)0.07776 (7)0.29854 (16)0.0441 (5)
H110.98640.08310.26520.053*
C120.7582 (3)0.05790 (8)0.23626 (16)0.0488 (5)
H120.76530.05110.16100.059*
C131.0205 (2)0.11690 (7)0.47311 (15)0.0371 (4)
H131.12030.10760.44000.045*
C141.0065 (2)0.17788 (7)0.47424 (15)0.0361 (4)
C151.0975 (3)0.19325 (8)0.58443 (18)0.0591 (6)
H15A1.02920.21370.62880.071*
H15B1.19240.21310.57090.071*
C161.1458 (2)0.14280 (7)0.64526 (15)0.0388 (5)
C171.0825 (3)0.05128 (8)0.61581 (19)0.0608 (6)
H17A0.99510.02930.58980.091*
H17B1.10400.04710.69480.091*
H17C1.17690.04240.57910.091*
C180.8320 (2)0.19348 (7)0.47277 (16)0.0374 (4)
C190.8226 (2)0.19976 (7)0.27108 (17)0.0443 (5)
C201.0853 (2)0.19684 (8)0.37413 (19)0.0486 (5)
C210.5729 (2)0.20337 (10)0.3638 (2)0.0740 (8)
H21A0.54280.23890.35780.111*
H21B0.53370.18900.42990.111*
H21C0.52710.18510.29980.111*
C221.0650 (4)0.20798 (13)0.1717 (2)0.0980 (11)
H22A1.17950.20410.18480.147*
H22B1.04080.24170.14300.147*
H22C1.02410.18280.11860.147*
C231.3283 (2)0.13417 (8)0.64229 (16)0.0459 (5)
C241.4062 (2)0.14997 (8)0.75118 (16)0.0426 (5)
C251.2897 (2)0.15729 (8)0.82564 (15)0.0415 (5)
C261.1278 (3)0.14805 (8)0.77001 (17)0.0452 (5)
C271.5684 (3)0.15617 (9)0.7833 (2)0.0592 (6)
H271.64600.15150.73280.071*
C281.6111 (3)0.16939 (10)0.8916 (2)0.0666 (7)
H281.71920.17390.91510.080*
C291.4958 (3)0.17615 (9)0.96614 (19)0.0648 (7)
H291.52810.18461.03950.078*
C301.3337 (3)0.17078 (9)0.93507 (17)0.0555 (6)
H301.25670.17600.98580.067*
N11.03912 (19)0.10473 (6)0.59094 (12)0.0416 (4)
N20.75059 (17)0.19896 (6)0.36977 (13)0.0405 (4)
N30.9891 (2)0.20081 (7)0.27705 (13)0.0474 (4)
O11.22834 (18)0.20472 (8)0.37604 (18)0.0910 (7)
O20.7449 (2)0.20158 (7)0.18241 (13)0.0766 (5)
O30.7628 (2)0.19887 (6)0.55632 (13)0.0671 (5)
O41.00353 (19)0.14533 (7)0.81522 (14)0.0754 (5)
O51.3934 (2)0.11654 (8)0.56487 (13)0.0754 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.103 (2)0.093 (2)0.0800 (19)0.0288 (18)0.0449 (17)0.0214 (16)
C20.116 (3)0.138 (3)0.095 (2)0.036 (3)0.065 (2)0.022 (2)
C30.077 (2)0.112 (3)0.108 (3)0.0180 (19)0.0423 (19)0.019 (2)
C40.0650 (18)0.080 (2)0.108 (2)0.0235 (15)0.0125 (16)0.0150 (17)
C50.0614 (16)0.0671 (16)0.0712 (16)0.0162 (13)0.0133 (12)0.0010 (12)
C60.0556 (14)0.0499 (14)0.0552 (14)0.0050 (11)0.0140 (11)0.0057 (10)
C70.0501 (13)0.0386 (11)0.0436 (12)0.0037 (9)0.0100 (10)0.0022 (9)
C80.0472 (12)0.0475 (13)0.0489 (13)0.0074 (9)0.0011 (10)0.0066 (9)
C90.0503 (13)0.0459 (12)0.0368 (11)0.0043 (9)0.0011 (9)0.0090 (9)
C100.0414 (11)0.0326 (10)0.0366 (11)0.0010 (8)0.0052 (8)0.0041 (8)
C110.0482 (12)0.0438 (12)0.0405 (11)0.0052 (9)0.0035 (9)0.0051 (9)
C120.0621 (15)0.0497 (13)0.0334 (11)0.0071 (10)0.0047 (10)0.0070 (9)
C130.0348 (10)0.0376 (11)0.0377 (11)0.0036 (8)0.0053 (8)0.0042 (8)
C140.0318 (10)0.0367 (10)0.0383 (11)0.0020 (8)0.0072 (8)0.0005 (8)
C150.0684 (15)0.0416 (12)0.0617 (14)0.0013 (11)0.0314 (12)0.0056 (10)
C160.0375 (11)0.0425 (11)0.0346 (10)0.0028 (8)0.0087 (8)0.0050 (8)
C170.0794 (17)0.0399 (13)0.0595 (14)0.0090 (11)0.0176 (12)0.0023 (10)
C180.0370 (11)0.0369 (11)0.0392 (11)0.0003 (8)0.0085 (9)0.0010 (8)
C190.0481 (12)0.0406 (12)0.0422 (12)0.0012 (9)0.0093 (10)0.0071 (9)
C200.0295 (11)0.0468 (12)0.0697 (15)0.0001 (9)0.0061 (10)0.0076 (10)
C210.0256 (11)0.0816 (19)0.114 (2)0.0065 (11)0.0020 (12)0.0164 (15)
C220.118 (3)0.111 (3)0.072 (2)0.002 (2)0.0548 (19)0.0207 (17)
C230.0441 (12)0.0581 (13)0.0353 (11)0.0041 (10)0.0020 (9)0.0021 (9)
C240.0391 (11)0.0507 (12)0.0367 (11)0.0021 (9)0.0056 (9)0.0013 (9)
C250.0423 (12)0.0463 (12)0.0346 (11)0.0008 (9)0.0047 (9)0.0005 (8)
C260.0406 (12)0.0497 (13)0.0450 (12)0.0009 (9)0.0017 (10)0.0080 (9)
C270.0406 (12)0.0716 (16)0.0637 (15)0.0025 (11)0.0063 (11)0.0014 (12)
C280.0497 (14)0.0745 (18)0.0712 (17)0.0038 (12)0.0240 (13)0.0008 (13)
C290.0780 (18)0.0662 (16)0.0448 (13)0.0073 (13)0.0293 (13)0.0023 (11)
C300.0633 (15)0.0658 (15)0.0363 (12)0.0047 (12)0.0033 (10)0.0063 (10)
N10.0478 (10)0.0366 (9)0.0380 (9)0.0034 (7)0.0120 (7)0.0025 (7)
N20.0240 (8)0.0466 (10)0.0501 (10)0.0027 (7)0.0020 (7)0.0057 (7)
N30.0466 (10)0.0558 (11)0.0416 (10)0.0023 (8)0.0144 (8)0.0086 (8)
O10.0269 (9)0.1062 (15)0.1406 (18)0.0070 (9)0.0098 (10)0.0395 (12)
O20.0916 (13)0.0810 (13)0.0514 (10)0.0028 (10)0.0321 (9)0.0140 (8)
O30.0786 (12)0.0704 (11)0.0564 (10)0.0113 (9)0.0313 (9)0.0048 (8)
O40.0454 (10)0.1172 (15)0.0652 (11)0.0114 (9)0.0141 (8)0.0243 (10)
O50.0573 (10)0.1211 (15)0.0485 (10)0.0129 (10)0.0084 (8)0.0239 (9)
Geometric parameters (Å, º) top
C1—C61.378 (3)C17—H17A0.9600
C1—C21.386 (4)C17—H17B0.9600
C1—H10.9300C17—H17C0.9600
C2—C31.365 (5)C18—O31.206 (2)
C2—H20.9300C18—O31.206 (2)
C3—C41.350 (4)C18—O31.206 (2)
C3—H30.9300C18—N21.374 (2)
C4—C51.387 (3)C19—O21.205 (2)
C4—H40.9300C19—N21.373 (3)
C5—C61.381 (3)C19—N31.383 (3)
C5—H50.9300C20—O11.208 (2)
C6—C71.484 (3)C20—O11.208 (2)
C7—C81.383 (3)C20—N31.369 (3)
C7—C121.384 (3)C21—N21.480 (2)
C8—C91.382 (3)C21—H21A0.9600
C8—H80.9300C21—H21B0.9600
C9—C101.390 (3)C21—H21C0.9600
C9—H90.9300C22—N31.474 (3)
C10—C111.379 (3)C22—H22A0.9600
C10—C131.511 (2)C22—H22B0.9600
C11—C121.386 (3)C22—H22C0.9600
C11—H110.9300C23—O51.206 (2)
C12—H120.9300C23—C241.475 (3)
C13—N11.451 (2)C24—C251.385 (3)
C13—C141.594 (3)C24—C271.386 (3)
C13—H130.9800C25—C301.385 (3)
C14—C201.501 (3)C25—C261.478 (3)
C14—C181.508 (3)C26—O41.209 (2)
C14—C151.529 (3)C27—C281.369 (3)
C15—C161.544 (3)C27—H270.9300
C15—H15A0.9700C28—C291.376 (4)
C15—H15B0.9700C28—H280.9300
C16—N11.453 (2)C29—C301.380 (3)
C16—C261.528 (3)C29—H290.9300
C16—C231.540 (3)C30—H300.9300
C17—N11.464 (3)
C6—C1—C2120.8 (3)N1—C17—H17C109.5
C6—C1—H1119.6H17A—C17—H17C109.5
C2—C1—H1119.6H17B—C17—H17C109.5
C3—C2—C1120.4 (3)O3—C18—N2120.46 (18)
C3—C2—H2119.8O3—C18—N2120.46 (18)
C1—C2—H2119.8O3—C18—N2120.46 (18)
C4—C3—C2119.7 (3)O3—C18—C14122.99 (18)
C4—C3—H3120.2O3—C18—C14122.99 (18)
C2—C3—H3120.2O3—C18—C14122.99 (18)
C3—C4—C5120.4 (3)N2—C18—C14116.47 (16)
C3—C4—H4119.8O2—C19—N2121.8 (2)
C5—C4—H4119.8O2—C19—N3120.8 (2)
C6—C5—C4121.1 (2)N2—C19—N3117.35 (16)
C6—C5—H5119.5O1—C20—N3120.9 (2)
C4—C5—H5119.5O1—C20—N3120.9 (2)
C1—C6—C5117.6 (2)O1—C20—C14122.3 (2)
C1—C6—C7121.4 (2)O1—C20—C14122.3 (2)
C5—C6—C7121.1 (2)N3—C20—C14116.58 (16)
C8—C7—C12117.82 (18)N2—C21—H21A109.5
C8—C7—C6120.4 (2)N2—C21—H21B109.5
C12—C7—C6121.76 (18)H21A—C21—H21B109.5
C9—C8—C7121.2 (2)N2—C21—H21C109.5
C9—C8—H8119.4H21A—C21—H21C109.5
C7—C8—H8119.4H21B—C21—H21C109.5
C8—C9—C10120.63 (18)N3—C22—H22A109.5
C8—C9—H9119.7N3—C22—H22B109.5
C10—C9—H9119.7H22A—C22—H22B109.5
C11—C10—C9118.38 (17)N3—C22—H22C109.5
C11—C10—C13120.06 (18)H22A—C22—H22C109.5
C9—C10—C13121.42 (16)H22B—C22—H22C109.5
C10—C11—C12120.56 (19)O5—C23—C24126.94 (19)
C10—C11—H11119.7O5—C23—C16125.32 (18)
C12—C11—H11119.7C24—C23—C16107.73 (16)
C7—C12—C11121.34 (18)C25—C24—C27121.33 (19)
C7—C12—H12119.3C25—C24—C23109.44 (17)
C11—C12—H12119.3C27—C24—C23129.2 (2)
N1—C13—C10114.30 (16)C24—C25—C30120.31 (19)
N1—C13—C14102.25 (13)C24—C25—C26110.15 (17)
C10—C13—C14114.83 (14)C30—C25—C26129.5 (2)
N1—C13—H13108.4O4—C26—C25126.06 (19)
C10—C13—H13108.4O4—C26—C16126.25 (18)
C14—C13—H13108.4C25—C26—C16107.70 (17)
C20—C14—C18112.55 (15)C28—C27—C24118.1 (2)
C20—C14—C15113.10 (17)C28—C27—H27121.0
C18—C14—C15110.57 (17)C24—C27—H27121.0
C20—C14—C13106.53 (15)C27—C28—C29120.7 (2)
C18—C14—C13109.90 (14)C27—C28—H28119.6
C15—C14—C13103.70 (14)C29—C28—H28119.6
C14—C15—C16106.35 (15)C28—C29—C30121.9 (2)
C14—C15—H15A110.5C28—C29—H29119.1
C16—C15—H15A110.5C30—C29—H29119.1
C14—C15—H15B110.5C29—C30—C25117.6 (2)
C16—C15—H15B110.5C29—C30—H30121.2
H15A—C15—H15B108.6C25—C30—H30121.2
N1—C16—C26113.59 (16)C13—N1—C16107.79 (15)
N1—C16—C23117.38 (16)C13—N1—C17114.45 (15)
C26—C16—C23102.07 (15)C16—N1—C17115.16 (15)
N1—C16—C15103.94 (14)C19—N2—C18124.42 (16)
C26—C16—C15110.39 (16)C19—N2—C21117.36 (18)
C23—C16—C15109.53 (17)C18—N2—C21118.21 (18)
N1—C17—H17A109.5C20—N3—C19124.08 (17)
N1—C17—H17B109.5C20—N3—C22118.9 (2)
H17A—C17—H17B109.5C19—N3—C22117.0 (2)
C6—C1—C2—C31.4 (6)C15—C16—C23—O581.1 (3)
C1—C2—C3—C40.2 (6)N1—C16—C23—C24141.44 (17)
C2—C3—C4—C50.9 (5)C26—C16—C23—C2416.6 (2)
C3—C4—C5—C60.9 (5)C15—C16—C23—C24100.42 (18)
C2—C1—C6—C51.4 (5)O5—C23—C24—C25166.7 (2)
C2—C1—C6—C7179.0 (3)C16—C23—C24—C2511.8 (2)
C4—C5—C6—C10.3 (4)O5—C23—C24—C2711.6 (4)
C4—C5—C6—C7179.9 (2)C16—C23—C24—C27170.0 (2)
C1—C6—C7—C8135.1 (3)C27—C24—C25—C300.4 (3)
C5—C6—C7—C845.3 (3)C23—C24—C25—C30177.99 (19)
C1—C6—C7—C1245.2 (3)C27—C24—C25—C26179.8 (2)
C5—C6—C7—C12134.4 (2)C23—C24—C25—C261.4 (2)
C12—C7—C8—C92.4 (3)C24—C25—C26—O4170.6 (2)
C6—C7—C8—C9177.90 (19)C30—C25—C26—O48.7 (4)
C7—C8—C9—C101.4 (3)C24—C25—C26—C169.7 (2)
C8—C9—C10—C111.2 (3)C30—C25—C26—C16171.1 (2)
C8—C9—C10—C13174.45 (18)N1—C16—C26—O437.2 (3)
C9—C10—C11—C122.8 (3)C23—C16—C26—O4164.5 (2)
C13—C10—C11—C12172.88 (18)C15—C16—C26—O479.1 (3)
C8—C7—C12—C110.7 (3)N1—C16—C26—C25143.08 (16)
C6—C7—C12—C11179.55 (19)C23—C16—C26—C2515.7 (2)
C10—C11—C12—C71.9 (3)C15—C16—C26—C25100.64 (19)
C11—C10—C13—N1150.00 (17)C25—C24—C27—C280.6 (3)
C9—C10—C13—N134.4 (2)C23—C24—C27—C28177.5 (2)
C11—C10—C13—C1492.3 (2)C24—C27—C28—C290.2 (4)
C9—C10—C13—C1483.3 (2)C27—C28—C29—C301.1 (4)
N1—C13—C14—C20146.11 (15)C28—C29—C30—C251.2 (4)
C10—C13—C14—C2089.53 (19)C24—C25—C30—C290.4 (3)
N1—C13—C14—C1891.69 (16)C26—C25—C30—C29178.8 (2)
C10—C13—C14—C1832.7 (2)C10—C13—N1—C16165.27 (15)
N1—C13—C14—C1526.53 (19)C14—C13—N1—C1640.56 (18)
C10—C13—C14—C15150.89 (18)C10—C13—N1—C1765.2 (2)
C20—C14—C15—C16119.70 (19)C14—C13—N1—C17170.09 (17)
C18—C14—C15—C16113.04 (19)C26—C16—N1—C13158.00 (15)
C13—C14—C15—C164.7 (2)C23—C16—N1—C1383.10 (19)
C14—C15—C16—N118.8 (2)C15—C16—N1—C1338.0 (2)
C14—C15—C16—C26140.95 (18)C26—C16—N1—C1772.9 (2)
C14—C15—C16—C23107.42 (19)C23—C16—N1—C1746.0 (2)
C20—C14—C18—O3153.04 (19)C15—C16—N1—C17167.13 (19)
C15—C14—C18—O325.5 (3)O2—C19—N2—C18175.49 (19)
C13—C14—C18—O388.4 (2)N3—C19—N2—C187.5 (3)
C20—C14—C18—O3153.04 (19)O2—C19—N2—C213.4 (3)
C15—C14—C18—O325.5 (3)N3—C19—N2—C21173.70 (18)
C13—C14—C18—O388.4 (2)O3—C18—N2—C19171.66 (18)
C20—C14—C18—O3153.04 (19)O3—C18—N2—C19171.66 (18)
C15—C14—C18—O325.5 (3)O3—C18—N2—C19171.66 (18)
C13—C14—C18—O388.4 (2)C14—C18—N2—C1911.5 (3)
C20—C14—C18—N230.2 (2)O3—C18—N2—C219.5 (3)
C15—C14—C18—N2157.77 (16)O3—C18—N2—C219.5 (3)
C13—C14—C18—N288.34 (19)O3—C18—N2—C219.5 (3)
C18—C14—C20—O1153.4 (2)C14—C18—N2—C21167.33 (18)
C15—C14—C20—O127.2 (3)O1—C20—N3—C19170.2 (2)
C13—C14—C20—O186.1 (2)O1—C20—N3—C19170.2 (2)
C18—C14—C20—O1153.4 (2)C14—C20—N3—C1915.0 (3)
C15—C14—C20—O127.2 (3)O1—C20—N3—C228.2 (3)
C13—C14—C20—O186.1 (2)O1—C20—N3—C228.2 (3)
C18—C14—C20—N331.9 (2)C14—C20—N3—C22166.6 (2)
C15—C14—C20—N3158.10 (18)O2—C19—N3—C20177.30 (19)
C13—C14—C20—N388.62 (19)N2—C19—N3—C205.6 (3)
N1—C16—C23—O537.1 (3)O2—C19—N3—C224.3 (3)
C26—C16—C23—O5161.9 (2)N2—C19—N3—C22172.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O2i0.932.443.269 (3)149
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O2i0.932.443.269 (3)149
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his help with the data collection.

References

First citationBruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunce, R. A. (2007). Tetrahedron, 63, 5341–5378.  PubMed Google Scholar
First citationDuan, X. H., Liu, X. Y., Guo, L. N., Liao, M. C., Liu, W. M. & Liang, Y. M. (2005). J. Org. Chem. 70, 6980–6983.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhno, H., Ohta, Y., Oishi, S. & Fujii, N. (2007). Angew. Chem. Int. Ed. 46, 2295–2298.  Web of Science CrossRef CAS Google Scholar
First citationPache, S. & Lautens, M. (2003). Org. Lett. 5, 4827–4830.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds