organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{3-(4-Chloro­phen­yl)-5-[4-(propan-2-yl)phen­yl]-4,5-di­hydro-1H-pyrazol-1-yl}ethanone

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Studies in Chemistry, Industrial Chemistry Section, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 26 May 2014; accepted 7 June 2014; online 14 June 2014)

In the title compound, C20H21ClN2O, the dihedral angles between the pyrazole ring (r.m.s. deviation = 0.049 Å) and the benzene and chloro­benzene rings are 84.65 (10) and 3.35 (10)°, respectively. In the crystal, inversion dimers linked by pairs of weak C—H⋯O inter­actions generate R22(16) loops. Weak ππ stacking inter­actions [centroid–centroid distance = 3.8490 (11) Å] are also observed.

Related literature

For background to pyrazolines, see: Manna et al. (2005[Manna, F., Chimenti, F., Fioravanti, F., Bolasco, A., Seecci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632-4635.]); Samshuddin et al. (2012[Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Darsan Raj, C. G. & Ragavendra, R. (2012). Med. Chem. Res. 21, 2012-2022.]). For a related structure, see: Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21ClN2O

  • Mr = 340.84

  • Triclinic, [P \overline 1]

  • a = 6.4836 (6) Å

  • b = 9.6524 (9) Å

  • c = 14.439 (1) Å

  • α = 81.178 (7)°

  • β = 89.720 (7)°

  • γ = 77.488 (8)°

  • V = 871.35 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.00 mm−1

  • T = 173 K

  • 0.44 × 0.22 × 0.12 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.552, Tmax = 1.000

  • 5081 measured reflections

  • 3287 independent reflections

  • 2770 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.142

  • S = 1.03

  • 3287 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.95 2.44 3.364 (2) 165
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Pyrazoline derivatives possess many biological activities such as anticancer (Manna et al., 2005) and antioxidant properties (Samshuddin et al., 2012). As part of our ongoing studies in this area (Jasinski et al., 2010), we now describe the structure of the title compound, C20H21ClN2O.

The dihedral angle between the mean planes of the phenyl rings is 81.3 (0)° while the pyrazole ring is separated from each of the phenyl rings by 3.3 (5)° (C5–C10) and 84.6 (5)° (C11–C16), respectively (Fig. 1). In the crystal, a weak C—H···O intermolecular interaction between the phenyl ring and the ethanone group is observed forming dimers in an R22(16) ring-set motif stacked along the ab plane (Fig. 2). In addition, weak ππ intermolecular stacking interactions (Cg1–Cg3 = 3.8490 (11)Å, x, y, z, Cg1: N1/N2/C2/C3/C4; Cg3: C11–C16) are present.

Related literature top

For background to pyrazolines, see: Manna et al. (2005); Samshuddin et al. (2012). For a related structure, see: Jasinski et al. (2010).

Experimental top

To a mixture of (2E)-1-(4-chlorophenyl)-3-[4-(propan-2-yl) phenyl] prop-2-en-1-one (2.85g, 0.01 mol) and hydrazine hydrate (0.5mL, 0.01 mol) in 25 mL acetic acid was refluxed for 9h (Fig. 3). The reaction mixture was cooled and poured into ice-cold water. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Colourless, irregular, crystals were grown from ethanol solution by the slow evaporation method (m.p.: 389–391 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95 - 1.00Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as a rotating group.

Structure description top

Pyrazoline derivatives possess many biological activities such as anticancer (Manna et al., 2005) and antioxidant properties (Samshuddin et al., 2012). As part of our ongoing studies in this area (Jasinski et al., 2010), we now describe the structure of the title compound, C20H21ClN2O.

The dihedral angle between the mean planes of the phenyl rings is 81.3 (0)° while the pyrazole ring is separated from each of the phenyl rings by 3.3 (5)° (C5–C10) and 84.6 (5)° (C11–C16), respectively (Fig. 1). In the crystal, a weak C—H···O intermolecular interaction between the phenyl ring and the ethanone group is observed forming dimers in an R22(16) ring-set motif stacked along the ab plane (Fig. 2). In addition, weak ππ intermolecular stacking interactions (Cg1–Cg3 = 3.8490 (11)Å, x, y, z, Cg1: N1/N2/C2/C3/C4; Cg3: C11–C16) are present.

For background to pyrazolines, see: Manna et al. (2005); Samshuddin et al. (2012). For a related structure, see: Jasinski et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I), C20H21ClN2O, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the c axis. Dashed lines indicate weak C—H···O interactions between the phenyl ring and the ethanone group forming dimers in an R22(16) ring motif stacked along the ab plane. H atoms not involved with these weak interactions have been removed for clarity.
[Figure 3] Fig. 3. Synthesis of (I), C20H21ClN2O.
1-{3-(4-Chlorophenyl)-5-[4-(propan-2-yl)phenyl]-4,5-dihydro-1H-pyrazol-1-yl}ethanone top
Crystal data top
C20H21ClN2OZ = 2
Mr = 340.84F(000) = 360
Triclinic, P1Dx = 1.299 Mg m3
a = 6.4836 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.6524 (9) ÅCell parameters from 2061 reflections
c = 14.439 (1) Åθ = 4.7–71.3°
α = 81.178 (7)°µ = 2.00 mm1
β = 89.720 (7)°T = 173 K
γ = 77.488 (8)°Irregular, colourless
V = 871.35 (13) Å30.44 × 0.22 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
3287 independent reflections
Radiation source: Enhance (Cu) X-ray Source2770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 4.8°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1111
Tmin = 0.552, Tmax = 1.000l = 1713
5081 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.1082P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3287 reflectionsΔρmax = 0.39 e Å3
220 parametersΔρmin = 0.30 e Å3
0 restraints
Crystal data top
C20H21ClN2Oγ = 77.488 (8)°
Mr = 340.84V = 871.35 (13) Å3
Triclinic, P1Z = 2
a = 6.4836 (6) ÅCu Kα radiation
b = 9.6524 (9) ŵ = 2.00 mm1
c = 14.439 (1) ÅT = 173 K
α = 81.178 (7)°0.44 × 0.22 × 0.12 mm
β = 89.720 (7)°
Data collection top
Agilent Eos Gemini
diffractometer
3287 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2770 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 1.000Rint = 0.030
5081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
3287 reflectionsΔρmin = 0.30 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38093 (9)0.20917 (6)0.11269 (4)0.0519 (2)
O10.7663 (2)0.28686 (15)0.34910 (10)0.0410 (4)
N10.5281 (2)0.23124 (16)0.25819 (10)0.0274 (3)
N20.4029 (2)0.26002 (16)0.17744 (10)0.0281 (3)
C10.6681 (3)0.31158 (19)0.27431 (14)0.0312 (4)
C20.4721 (3)0.11838 (19)0.33008 (12)0.0270 (4)
H20.43400.15870.38920.032*
C30.2714 (3)0.0933 (2)0.28392 (12)0.0296 (4)
H3A0.28470.00940.27890.036*
H3B0.14410.12620.31960.036*
C40.2629 (3)0.18369 (18)0.18828 (12)0.0270 (4)
C50.1068 (3)0.18983 (19)0.11335 (12)0.0286 (4)
C60.0992 (3)0.2857 (2)0.02914 (13)0.0367 (4)
H60.19830.34560.01930.044*
C70.0529 (3)0.2928 (2)0.03959 (14)0.0398 (5)
H70.06020.35860.09620.048*
C80.1938 (3)0.2031 (2)0.02500 (14)0.0357 (4)
C90.1890 (3)0.1079 (2)0.05667 (14)0.0353 (4)
H90.28750.04740.06570.042*
C100.0374 (3)0.1018 (2)0.12568 (13)0.0310 (4)
H100.03250.03620.18230.037*
C110.6507 (3)0.01311 (17)0.35070 (11)0.0238 (4)
C120.7114 (3)0.10535 (19)0.28520 (12)0.0281 (4)
H120.63880.08600.22610.034*
C130.8759 (3)0.22467 (19)0.30517 (13)0.0291 (4)
H130.91450.28560.25920.035*
C140.9860 (3)0.25741 (18)0.39120 (12)0.0264 (4)
C150.9230 (3)0.16548 (19)0.45676 (12)0.0294 (4)
H150.99340.18590.51640.035*
C160.7603 (3)0.04536 (19)0.43676 (12)0.0281 (4)
H160.72270.01620.48240.034*
C171.1712 (3)0.38433 (19)0.41496 (13)0.0310 (4)
H171.16400.42240.48310.037*
C181.3796 (3)0.3346 (2)0.40136 (17)0.0429 (5)
H18A1.38550.26300.44200.064*
H18B1.38850.29190.33580.064*
H18C1.49820.41720.41760.064*
C191.1692 (3)0.5078 (2)0.36083 (17)0.0432 (5)
H19A1.19300.47750.29440.065*
H19B1.03190.53470.36720.065*
H19C1.28130.59050.38610.065*
C200.6915 (3)0.4311 (2)0.19747 (15)0.0405 (5)
H20A0.82790.45660.20550.061*
H20B0.57700.51510.20040.061*
H20C0.68470.39930.13650.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0532 (4)0.0469 (3)0.0508 (3)0.0024 (3)0.0251 (3)0.0103 (2)
O10.0397 (8)0.0346 (8)0.0482 (8)0.0092 (6)0.0126 (7)0.0028 (6)
N10.0275 (8)0.0219 (7)0.0303 (8)0.0028 (6)0.0031 (6)0.0005 (6)
N20.0270 (8)0.0227 (7)0.0318 (8)0.0004 (6)0.0019 (6)0.0023 (6)
C10.0268 (9)0.0221 (8)0.0428 (11)0.0001 (7)0.0004 (8)0.0062 (7)
C20.0247 (9)0.0246 (8)0.0295 (9)0.0022 (7)0.0013 (7)0.0014 (7)
C30.0219 (8)0.0311 (9)0.0320 (9)0.0020 (7)0.0002 (7)0.0018 (7)
C40.0231 (8)0.0231 (8)0.0311 (9)0.0024 (7)0.0025 (7)0.0035 (7)
C50.0262 (9)0.0262 (9)0.0301 (9)0.0014 (7)0.0005 (7)0.0050 (7)
C60.0410 (11)0.0344 (10)0.0332 (10)0.0085 (9)0.0002 (8)0.0009 (8)
C70.0470 (12)0.0364 (10)0.0313 (10)0.0023 (9)0.0053 (9)0.0002 (8)
C80.0330 (10)0.0325 (10)0.0377 (10)0.0050 (8)0.0082 (8)0.0108 (8)
C90.0310 (10)0.0327 (10)0.0410 (10)0.0025 (8)0.0024 (8)0.0082 (8)
C100.0274 (9)0.0281 (9)0.0343 (9)0.0005 (7)0.0002 (7)0.0030 (7)
C110.0220 (8)0.0203 (8)0.0282 (8)0.0037 (7)0.0006 (7)0.0022 (6)
C120.0288 (9)0.0278 (9)0.0268 (8)0.0050 (7)0.0029 (7)0.0033 (7)
C130.0313 (9)0.0254 (9)0.0313 (9)0.0039 (7)0.0037 (7)0.0094 (7)
C140.0237 (8)0.0206 (8)0.0340 (9)0.0041 (7)0.0025 (7)0.0026 (7)
C150.0305 (9)0.0277 (9)0.0277 (9)0.0026 (7)0.0054 (7)0.0028 (7)
C160.0305 (9)0.0245 (8)0.0283 (9)0.0027 (7)0.0004 (7)0.0061 (7)
C170.0279 (9)0.0246 (9)0.0371 (10)0.0006 (7)0.0026 (8)0.0019 (7)
C180.0279 (10)0.0339 (10)0.0636 (14)0.0024 (8)0.0021 (9)0.0036 (10)
C190.0379 (11)0.0246 (9)0.0647 (14)0.0023 (8)0.0018 (10)0.0126 (9)
C200.0400 (11)0.0263 (9)0.0536 (13)0.0074 (8)0.0014 (9)0.0006 (9)
Geometric parameters (Å, º) top
Cl1—C81.744 (2)C11—C121.395 (2)
O1—C11.221 (2)C11—C161.393 (2)
N1—N21.381 (2)C12—H120.9500
N1—C11.357 (2)C12—C131.384 (2)
N1—C21.489 (2)C13—H130.9500
N2—C41.282 (2)C13—C141.394 (3)
C1—C201.505 (3)C14—C151.395 (2)
C2—H21.0000C14—C171.516 (2)
C2—C31.546 (2)C15—H150.9500
C2—C111.514 (2)C15—C161.382 (2)
C3—H3A0.9900C16—H160.9500
C3—H3B0.9900C17—H171.0000
C3—C41.510 (2)C17—C181.531 (3)
C4—C51.471 (3)C17—C191.524 (3)
C5—C61.405 (3)C18—H18A0.9800
C5—C101.387 (3)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C6—C71.386 (3)C19—H19A0.9800
C7—H70.9500C19—H19B0.9800
C7—C81.383 (3)C19—H19C0.9800
C8—C91.376 (3)C20—H20A0.9800
C9—H90.9500C20—H20B0.9800
C9—C101.389 (3)C20—H20C0.9800
C10—H100.9500
N2—N1—C2113.23 (13)C16—C11—C2120.39 (15)
C1—N1—N2122.58 (15)C16—C11—C12117.85 (15)
C1—N1—C2123.64 (15)C11—C12—H12119.5
C4—N2—N1108.69 (14)C13—C12—C11120.92 (16)
O1—C1—N1120.05 (17)C13—C12—H12119.5
O1—C1—C20122.85 (18)C12—C13—H13119.3
N1—C1—C20117.09 (17)C12—C13—C14121.44 (16)
N1—C2—H2109.5C14—C13—H13119.3
N1—C2—C3100.98 (14)C13—C14—C15117.33 (16)
N1—C2—C11112.19 (14)C13—C14—C17123.21 (16)
C3—C2—H2109.5C15—C14—C17119.44 (16)
C11—C2—H2109.5C14—C15—H15119.3
C11—C2—C3114.97 (15)C16—C15—C14121.43 (16)
C2—C3—H3A111.2C16—C15—H15119.3
C2—C3—H3B111.2C11—C16—H16119.5
H3A—C3—H3B109.2C15—C16—C11121.02 (16)
C4—C3—C2102.59 (15)C15—C16—H16119.5
C4—C3—H3A111.2C14—C17—H17107.3
C4—C3—H3B111.2C14—C17—C18110.08 (15)
N2—C4—C3114.03 (16)C14—C17—C19114.25 (16)
N2—C4—C5121.42 (16)C18—C17—H17107.3
C5—C4—C3124.53 (16)C19—C17—H17107.3
C6—C5—C4120.82 (17)C19—C17—C18110.38 (16)
C10—C5—C4120.14 (16)C17—C18—H18A109.5
C10—C5—C6119.03 (17)C17—C18—H18B109.5
C5—C6—H6120.0C17—C18—H18C109.5
C7—C6—C5119.98 (19)H18A—C18—H18B109.5
C7—C6—H6120.0H18A—C18—H18C109.5
C6—C7—H7120.3H18B—C18—H18C109.5
C8—C7—C6119.40 (19)C17—C19—H19A109.5
C8—C7—H7120.3C17—C19—H19B109.5
C7—C8—Cl1119.34 (16)C17—C19—H19C109.5
C9—C8—Cl1118.93 (17)H19A—C19—H19B109.5
C9—C8—C7121.73 (18)H19A—C19—H19C109.5
C8—C9—H9120.6H19B—C19—H19C109.5
C8—C9—C10118.71 (19)C1—C20—H20A109.5
C10—C9—H9120.6C1—C20—H20B109.5
C5—C10—C9121.13 (18)C1—C20—H20C109.5
C5—C10—H10119.4H20A—C20—H20B109.5
C9—C10—H10119.4H20A—C20—H20C109.5
C12—C11—C2121.76 (15)H20B—C20—H20C109.5
Cl1—C8—C9—C10178.96 (14)C3—C4—C5—C6174.73 (17)
N1—N2—C4—C32.3 (2)C3—C4—C5—C104.4 (3)
N1—N2—C4—C5179.36 (14)C4—C5—C6—C7178.18 (17)
N1—C2—C3—C46.52 (17)C4—C5—C10—C9178.66 (16)
N1—C2—C11—C1269.6 (2)C5—C6—C7—C81.1 (3)
N1—C2—C11—C16110.32 (18)C6—C5—C10—C90.5 (3)
N2—N1—C1—O1175.76 (16)C6—C7—C8—Cl1178.48 (15)
N2—N1—C1—C203.2 (3)C6—C7—C8—C90.8 (3)
N2—N1—C2—C36.06 (18)C7—C8—C9—C100.3 (3)
N2—N1—C2—C11116.86 (15)C8—C9—C10—C50.2 (3)
N2—C4—C5—C63.5 (3)C10—C5—C6—C70.9 (3)
N2—C4—C5—C10177.42 (16)C11—C2—C3—C4114.46 (16)
C1—N1—N2—C4169.07 (16)C11—C12—C13—C140.3 (3)
C1—N1—C2—C3165.62 (16)C12—C11—C16—C150.5 (3)
C1—N1—C2—C1171.5 (2)C12—C13—C14—C150.4 (3)
C2—N1—N2—C42.71 (19)C12—C13—C14—C17178.11 (16)
C2—N1—C1—O14.8 (3)C13—C14—C15—C161.1 (3)
C2—N1—C1—C20174.12 (16)C13—C14—C17—C1898.9 (2)
C2—C3—C4—N25.9 (2)C13—C14—C17—C1926.0 (2)
C2—C3—C4—C5175.76 (15)C14—C15—C16—C111.1 (3)
C2—C11—C12—C13179.65 (16)C15—C14—C17—C1879.6 (2)
C2—C11—C16—C15179.65 (16)C15—C14—C17—C19155.55 (18)
C3—C2—C11—C1245.1 (2)C16—C11—C12—C130.2 (3)
C3—C2—C11—C16135.05 (17)C17—C14—C15—C16177.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.443.364 (2)165
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.443.364 (2)165
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. VVS thanks the DST for financial assistance through a PURSE grant. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManna, F., Chimenti, F., Fioravanti, F., Bolasco, A., Seecci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632–4635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Darsan Raj, C. G. & Ragavendra, R. (2012). Med. Chem. Res. 21, 2012–2022.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds