metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa-μ2-chlorido-μ4-oxido-tetra­kis[(morpholine-κN)copper(II)] methanol disolvate

aDepartment of Inorganic Chemistry, Kiev National Taras Shevchenko University, Vladimirskaya St. 64/13, Kiev 01601, Ukraine
*Correspondence e-mail: gubina@agrotest.com

(Received 10 June 2014; accepted 16 June 2014; online 21 June 2014)

In the title solvate, [Cu4(μ2-Cl)6(μ4-O)(C4H9NO)4]·2CH3OH, each Cu2+ ion in the tetra­nuclear complex has a trigonal–bipyramidal coordination arising from three bridging chloride ions in equatorial positions and the central μ4-O2− ion and morpholine N atom in axial positions. The morpholine rings adopt chair conformations, with the N—Cu bonds in equatorial orientations. In the crystal, the components are linked by N—H⋯O and O—H⋯O and O—H⋯Cl hydrogen bonds, which generate a three-dimensional network. One methanol mol­ecule is disordered over two sets of sites in a 0.642 (9):0.358 (9) ratio.

Related literature

For the chemistry and properties of polynuclear copper(II) complexes, see: Bertrand & Kelley (1966[Bertrand, J. A. & Kelley, J. A. (1966). J. Am. Chem. Soc. 88, 4746-4747.]); Pavlenko et al. (1993[Pavlenko, V., Kokozay, V. & Babich, O. (1993). Z. Naturforsch. Teil B, 48, 1321-1324.]); Linert et al. (1993[Linert, W., Weinberger, P., Ondrejovic, G. & Makanova, D. (1993). Vib. Spectrosc. 5, 101-108.]); Bowmaker et al. (2011[Bowmaker, G., Di Nicola, C., Marchetti, F., Pettinari, C., Skelton, B., Somers, N. & White, A. (2011). Inorg. Chim. Acta, 375, 31-40.]). For their role in the redox processes of biological systems, see: Erecinska & Wilson (1978[Erecinska, M. & Wilson, D. F. (1978). Arch. Biochem. Biophys. 188, 1-14.]). For details of the synthesis and structure of bis­(N,N′-morpholido)-[(N"-morpholido)-carboxamido]phosphate, see: Gubina et al. (1999[Gubina, K. E., Ovchynnikov, V. A., Amirkhanov, V. M., Sliva, T. Yu., Skopenko, V. V., Glowiak, T. & Kozlowski, H. (1999). Z. Naturforsch. Teil B, 54, 1357-1359.]). For the synthesis and structural investigation of copper–oxygen clusters and related materials, see: Weinberger et al. (1998[Weinberger, P., Schamshule, R., Mereiter, K., Dlhan, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115-126.]); Roy & Manassero (2010[Roy, P. & Manassero, M. (2010). Dalton Trans. 39, 1539-1545.]); Bowmaker et al. (2011[Bowmaker, G., Di Nicola, C., Marchetti, F., Pettinari, C., Skelton, B., Somers, N. & White, A. (2011). Inorg. Chim. Acta, 375, 31-40.]); Chivers et al. (2005[Chivers, T., Fu, Z. & Thompson, L. K. (2005). Chem. Commun. pp. 2339-2341.]); Li et al. (2011[Li, H., Jiang, H. & Sun, H. (2011). Acta Cryst. E67, m1372.]); Willett (1991[Willett, R. D. (1991). Coord. Chem. Rev. 109, 181-205.]). For standard copper–copper bond lengths, see: van Niekerk & Schoening (1953[Niekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4Cl6O(C4H9NO)4]·2CH4O

  • Mr = 895.43

  • Monoclinic, P 21 /n

  • a = 11.149 (2) Å

  • b = 15.753 (3) Å

  • c = 18.905 (4) Å

  • β = 92.50 (3)°

  • V = 3317.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.05 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Kuma/Oxford Instruments KM4 diffractometer

  • Absorption correction: analytical (CrysAlis RED; UNILIC & Kuma Diffraction, 2000[UNILIC & Kuma Diffraction (2000). KM-4-CCD Software and CrysAlis CCD. UNILIC & Kuma Diffraction Instruments GmbH, Wrocław, Poland.]) Tmin = 0.516, Tmax = 0.580

  • 18695 measured reflections

  • 5761 independent reflections

  • 4330 reflections with I > 2σ(I)

  • Rint = 0.069

  • 5 standard reflections every 300 reflections intensity decay: 1.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.092

  • S = 1.05

  • 5761 reflections

  • 381 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.906 (3)
Cu1—N1 1.981 (5)
Cu1—Cl3 2.4159 (16)
Cu1—Cl1 2.4224 (16)
Cu1—Cl2 2.4339 (17)
Cu2—O1 1.906 (4)
Cu2—N2 1.971 (5)
Cu2—Cl5 2.3917 (17)
Cu2—Cl3 2.4386 (16)
Cu2—Cl4 2.4478 (17)
Cu3—O1 1.910 (4)
Cu3—N3 1.983 (5)
Cu3—Cl2 2.4011 (16)
Cu3—Cl6 2.4124 (16)
Cu3—Cl4 2.4888 (15)
Cu4—O1 1.907 (3)
Cu4—N4 1.985 (5)
Cu4—Cl5 2.3788 (16)
Cu4—Cl6 2.3962 (17)
Cu4—Cl1 2.4312 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.84 (3) 2.22 (3) 3.060 (6) 177 (5)
N2—H2⋯O6ii 0.84 (3) 2.18 (3) 2.987 (8) 161 (5)
N3—H3⋯O8iii 0.84 (3) 2.05 (3) 2.871 (6) 167 (5)
N4—H4⋯O7iv 0.84 (3) 2.30 (3) 3.121 (12) 165 (5)
O7—H7C⋯O4 0.82 1.92 2.531 (12) 130
O8—H8⋯O2 0.82 1.91 2.724 (6) 173
O6—H6C⋯Cl4v 0.82 2.39 3.209 (7) 177
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y, -z; (iv) x-1, y, z; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: KM-4-CCD Software (UNILIC & Kuma Diffraction, 2000[UNILIC & Kuma Diffraction (2000). KM-4-CCD Software and CrysAlis CCD. UNILIC & Kuma Diffraction Instruments GmbH, Wrocław, Poland.]); cell refinement: KM-4-CCD Software; data reduction: KM-4-CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Introduction top

Polynuclear copper (II) complexes have been known for a long time and studied comprehensively (Bertrand et al., 1966; Pavlenko et al., 1993; Linert et al., 1993; Bowmaker et al., 2011). On the one hand they play significant role in the redox processes of biological systems (Erecinska et al., 1978) and exhibit an inter­esting pattern of magnetic and electronic inter­actions in the copper-oxygen cluster (Willett et al., 1991, Chivers et al., 2005, Li et al., 2011). On the other hand in the case of systems involving copper (II) salts and nitro­gen bases the presence of air and moisture leads to formation of occasionally crystallizing copper (II) substances. (Weinberger et al., 1998, Roy et al., 2010). They are inter­esting in their own right, providing some important model compounds, subjected to subsequent 'rational' synthesis (Bowmaker et al., 2011). Herein we describe the structure of such kind complex of the general composition [Cu4OCl6(C4H9NO)4]·2CH3OH and compare with the similar acetone containing coordination compound, that was published by Weinberger et al., 1998.

Experimental top

All chemicals were commercial products of reagent grade and were used without further purification. Solvents were used as supplied or were distilled using standard methods.

Elemental analysis (C, H, N) was carried out on an Elementar Vario Micro Cube elemental analyzer. Cu ion was determined using of Perkin–Elmer AAS Analyst 400.

IR spectra were recorded using KBr pellets on a Perkin–Elmer Spectrum BX FTIR spectrophotometer in the range of 4000 to 400 cm-1.

Initial ligand (HL= OC4H8NC(O)NHP(O)(C4H8NO)2) (Scheme, Fig.3) for the synthesis of (I) was prepared according to the method of (Gubina et al., 1999). The sodium salt NaL was obtained from a methanol solution by inter­action of HL with sodium methoxide in equimolar ratio. An expected complex with the composition [Cu(L)2], has to be obtained by an exchange reaction according Scheme (a). Solutions of NaL (2mmol) in methanol (10ml) with a solution of hydrated copper(II) chloride (1mmol) in methanol (15ml) were mixed. The resulted light green solution turned brown after a while. The composition of the precipitated substance was significantly different from the calculated for the complex [Cu(L)2]. Theoretically calculated for [Cu(L)2], C26H48N8O10P2Cu: C, 41.19%; H, 6.38%; N,14.78%; Cu, 8.38%.Found: C, 21.95%; H, 4.07%; N, 5.17 %; Cu, 25.5%. Theoretically calculated for [Cu4OCl6(C4H9NO)4]· 2CH3OH, C18H44Cl6Cu4N4O7: C, 21.58%; H, 4.43%; N,5.59 %; Cu, 25.37%.

Most likely the phospho­rylated carbamide ligand was destruct under catalytic influence of a copper ion and moisture of air. The released morpholine molecules formed the new copper (II) coordination compound of the general formula [Cu4OCl6(C4H9NO)4]·2CH3OH (Scheme b). The product was filtered out, washed with cold methanol and dried in desiccator under CaCl2 (yield 67%). The compound was recrystallised from methanol yielding brown blocks of an methanol solvate [Cu4OCl6(C4H9NO)4]·2CH3OH. The crystals slowly lost the solvent at room temperature. IR spectra of obtained compound (I) show the absence of C=O and P=O bands. IR (KBr): δs(CH2) 1400 vs, δas(CH2) 1245s, ν(CN) 1040 vs, δs(CNC) 600 vs, ν(Cu4O) 580s, ν(CuN) 443m, cm-1.

Synthesis and crystallization top

Slow crystallization from methanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms of methyl methanol molecules and methyl­ene groups of morpholine rings were calculated geometrically and subsequently treated as riding model, with C—H = 0.98 (methyl) C—H = 0.98 (methyl­ene), Uiso(H) = 1.5Ueq(C) Uiso(H) = 1.2Ueq(C) respectively. H atoms of OH group of methanol molecules were detected in a difference Fourier and further refined with O—H = 0.82Å and subsequently treated as riding model with Uiso(H) = 1.2Ueq(O). H atoms of the amine group were located in a difference Fourier map and further refined with similarity restraints for d(N—H) and Uiso(H) = 1.2Ueq(N). One methanol molecule is disordered, with occupancies of 0.642 (9) and 0.358 (9).

Results and discussion top

Cu4(µ4-O)(µ2-Cl)6(C4H9NO)4]·2CH3OH (1) crystallizes in the centrosymmetric space group P2(1)/n with unit cell containing one independent molecule of tetra­nuclear Cu complex and two methanol solvent molecules (Fig.1). All copper ions have trigonal bipyramidal coordination figures with three Cl atoms in equatorial positions and µ4-O and N in axial positions. This complex displays the difference with many other Cu4(µ4-O)(µ2-halogen)6L4 complexes reported in CCDC and also described in (Weinberger et al., 1998). The presently investigated hexa-chloro morpholine species can be expected to have a similar molecular structure like in published earlier Cu4(µ4-O)(µ2-Cl)6(C4H9NO)4]·1/3(CH3)2CO (2) (Weinberger et al., 1998); however the unit cell of (1) containing one independent molecule of complex against in (2). Structure (1) has two molecules of methanol, one of them is disordered over two positions with degree of filling 0.64. Unlike the title compound (2) the structure (1) has the OH protons of methanol connected by hydrogen bonds with oxygen atoms of morpholine rings (Fig.2). Important bond lengths for (1) are shown in the Table 2. The distances Cu—O are 1.907Å in average and metal-metal inter­atomic contacts are approximately 3.110 (1)Å, which is longer than the value for standard copper-copper bonds (2.64Å) (van Niekerk et al., 1953). The angles values Cu—O—Cu 109.82 (18)Å suggest sp3-hybridization of the oxygen orbital.

The values of inter­atomic distances Cu—N, Cu—O and Cu—Cl agree well with reported ones for known complexes (Weinberger et al., 1998).

A packing diagram of the compound (see Fig.2) reveals that due to various types of hydrogen bonds the 3D polymer is formed. All four hydrogen atoms of the NH groups of the morpholine rings form straight N—H···O (Cl) hydrogen bonds (Table 3). In addition each of desorded OH group of methanol also involved in the formation of hydrogen bonds system. The morpholine residues exhibit orientations relative to the [Cu4(µ4-O)(µ2-Cl)6] cores by which the Cu-bonded morpholine NH groups point with their N—H vectors halfway between two neighboring Cl ions. The methanol molecules do not inter­act directly with one of the copper coordination centers of the halide bridges.

We have noticed that the losses of methanol cause a decrease in crystalline of the substanstance as well as in (2) (Weinberger et al., 1998, Roy et al., 2010) .

Solvate formation is relatively common in the family of the tetra­nuclear Cu—O-hal complexes and has been reported for more than 50 of the known crystal structures included in CCDC. At the end it must be noted that the [Cu4(µ4-O)(µ2-Cl)6] core is quiet stable and is formed both as in the target synthesis, so as a side product of the various type reactions.

Related literature top

For the chemistry and properties of polynuclear copper(II) complexes, see: Bertrand & Kelley (1966); Pavlenko et al. (1993); Linert et al. (1993); Bowmaker et al. (2011). For their role in the redox processes of biological systems, see: Erecinska & Wilson (1978). For details of the synthesis and structure of bis(N,N'-morpholido)-[(N"-morpholido)-carboxampidho]phosphate, see: Gubina et al. (1999). For the synthesis and structural investigation of copper–oxygen clusters and related materials, see: Weinberger et al. (1998); Roy & Manassero (2010); Bowmaker et al. (2011); Chivers et al. (2005); Li et al. (2011); Willett (1991). For standard copper–copper bond lengths, see: van Niekerk & Schoening (1953).

Structure description top

Polynuclear copper (II) complexes have been known for a long time and studied comprehensively (Bertrand et al., 1966; Pavlenko et al., 1993; Linert et al., 1993; Bowmaker et al., 2011). On the one hand they play significant role in the redox processes of biological systems (Erecinska et al., 1978) and exhibit an inter­esting pattern of magnetic and electronic inter­actions in the copper-oxygen cluster (Willett et al., 1991, Chivers et al., 2005, Li et al., 2011). On the other hand in the case of systems involving copper (II) salts and nitro­gen bases the presence of air and moisture leads to formation of occasionally crystallizing copper (II) substances. (Weinberger et al., 1998, Roy et al., 2010). They are inter­esting in their own right, providing some important model compounds, subjected to subsequent 'rational' synthesis (Bowmaker et al., 2011). Herein we describe the structure of such kind complex of the general composition [Cu4OCl6(C4H9NO)4]·2CH3OH and compare with the similar acetone containing coordination compound, that was published by Weinberger et al., 1998.

All chemicals were commercial products of reagent grade and were used without further purification. Solvents were used as supplied or were distilled using standard methods.

Elemental analysis (C, H, N) was carried out on an Elementar Vario Micro Cube elemental analyzer. Cu ion was determined using of Perkin–Elmer AAS Analyst 400.

IR spectra were recorded using KBr pellets on a Perkin–Elmer Spectrum BX FTIR spectrophotometer in the range of 4000 to 400 cm-1.

Initial ligand (HL= OC4H8NC(O)NHP(O)(C4H8NO)2) (Scheme, Fig.3) for the synthesis of (I) was prepared according to the method of (Gubina et al., 1999). The sodium salt NaL was obtained from a methanol solution by inter­action of HL with sodium methoxide in equimolar ratio. An expected complex with the composition [Cu(L)2], has to be obtained by an exchange reaction according Scheme (a). Solutions of NaL (2mmol) in methanol (10ml) with a solution of hydrated copper(II) chloride (1mmol) in methanol (15ml) were mixed. The resulted light green solution turned brown after a while. The composition of the precipitated substance was significantly different from the calculated for the complex [Cu(L)2]. Theoretically calculated for [Cu(L)2], C26H48N8O10P2Cu: C, 41.19%; H, 6.38%; N,14.78%; Cu, 8.38%.Found: C, 21.95%; H, 4.07%; N, 5.17 %; Cu, 25.5%. Theoretically calculated for [Cu4OCl6(C4H9NO)4]· 2CH3OH, C18H44Cl6Cu4N4O7: C, 21.58%; H, 4.43%; N,5.59 %; Cu, 25.37%.

Most likely the phospho­rylated carbamide ligand was destruct under catalytic influence of a copper ion and moisture of air. The released morpholine molecules formed the new copper (II) coordination compound of the general formula [Cu4OCl6(C4H9NO)4]·2CH3OH (Scheme b). The product was filtered out, washed with cold methanol and dried in desiccator under CaCl2 (yield 67%). The compound was recrystallised from methanol yielding brown blocks of an methanol solvate [Cu4OCl6(C4H9NO)4]·2CH3OH. The crystals slowly lost the solvent at room temperature. IR spectra of obtained compound (I) show the absence of C=O and P=O bands. IR (KBr): δs(CH2) 1400 vs, δas(CH2) 1245s, ν(CN) 1040 vs, δs(CNC) 600 vs, ν(Cu4O) 580s, ν(CuN) 443m, cm-1.

Cu4(µ4-O)(µ2-Cl)6(C4H9NO)4]·2CH3OH (1) crystallizes in the centrosymmetric space group P2(1)/n with unit cell containing one independent molecule of tetra­nuclear Cu complex and two methanol solvent molecules (Fig.1). All copper ions have trigonal bipyramidal coordination figures with three Cl atoms in equatorial positions and µ4-O and N in axial positions. This complex displays the difference with many other Cu4(µ4-O)(µ2-halogen)6L4 complexes reported in CCDC and also described in (Weinberger et al., 1998). The presently investigated hexa-chloro morpholine species can be expected to have a similar molecular structure like in published earlier Cu4(µ4-O)(µ2-Cl)6(C4H9NO)4]·1/3(CH3)2CO (2) (Weinberger et al., 1998); however the unit cell of (1) containing one independent molecule of complex against in (2). Structure (1) has two molecules of methanol, one of them is disordered over two positions with degree of filling 0.64. Unlike the title compound (2) the structure (1) has the OH protons of methanol connected by hydrogen bonds with oxygen atoms of morpholine rings (Fig.2). Important bond lengths for (1) are shown in the Table 2. The distances Cu—O are 1.907Å in average and metal-metal inter­atomic contacts are approximately 3.110 (1)Å, which is longer than the value for standard copper-copper bonds (2.64Å) (van Niekerk et al., 1953). The angles values Cu—O—Cu 109.82 (18)Å suggest sp3-hybridization of the oxygen orbital.

The values of inter­atomic distances Cu—N, Cu—O and Cu—Cl agree well with reported ones for known complexes (Weinberger et al., 1998).

A packing diagram of the compound (see Fig.2) reveals that due to various types of hydrogen bonds the 3D polymer is formed. All four hydrogen atoms of the NH groups of the morpholine rings form straight N—H···O (Cl) hydrogen bonds (Table 3). In addition each of desorded OH group of methanol also involved in the formation of hydrogen bonds system. The morpholine residues exhibit orientations relative to the [Cu4(µ4-O)(µ2-Cl)6] cores by which the Cu-bonded morpholine NH groups point with their N—H vectors halfway between two neighboring Cl ions. The methanol molecules do not inter­act directly with one of the copper coordination centers of the halide bridges.

We have noticed that the losses of methanol cause a decrease in crystalline of the substanstance as well as in (2) (Weinberger et al., 1998, Roy et al., 2010) .

Solvate formation is relatively common in the family of the tetra­nuclear Cu—O-hal complexes and has been reported for more than 50 of the known crystal structures included in CCDC. At the end it must be noted that the [Cu4(µ4-O)(µ2-Cl)6] core is quiet stable and is formed both as in the target synthesis, so as a side product of the various type reactions.

For the chemistry and properties of polynuclear copper(II) complexes, see: Bertrand & Kelley (1966); Pavlenko et al. (1993); Linert et al. (1993); Bowmaker et al. (2011). For their role in the redox processes of biological systems, see: Erecinska & Wilson (1978). For details of the synthesis and structure of bis(N,N'-morpholido)-[(N"-morpholido)-carboxampidho]phosphate, see: Gubina et al. (1999). For the synthesis and structural investigation of copper–oxygen clusters and related materials, see: Weinberger et al. (1998); Roy & Manassero (2010); Bowmaker et al. (2011); Chivers et al. (2005); Li et al. (2011); Willett (1991). For standard copper–copper bond lengths, see: van Niekerk & Schoening (1953).

Synthesis and crystallization top

Slow crystallization from methanol.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms of methyl methanol molecules and methyl­ene groups of morpholine rings were calculated geometrically and subsequently treated as riding model, with C—H = 0.98 (methyl) C—H = 0.98 (methyl­ene), Uiso(H) = 1.5Ueq(C) Uiso(H) = 1.2Ueq(C) respectively. H atoms of OH group of methanol molecules were detected in a difference Fourier and further refined with O—H = 0.82Å and subsequently treated as riding model with Uiso(H) = 1.2Ueq(O). H atoms of the amine group were located in a difference Fourier map and further refined with similarity restraints for d(N—H) and Uiso(H) = 1.2Ueq(N). One methanol molecule is disordered, with occupancies of 0.642 (9) and 0.358 (9).

Computing details top

Data collection: KM-4-CCD Software (UNILIC & Kuma Diffraction, 2000); cell refinement: KM-4-CCD Software (UNILIC & Kuma Diffraction, 2000); data reduction: KM-4-CCD Software (UNILIC & Kuma Diffraction, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of molecule [Cu44-O)(µ2-Cl)6(C4H9NO)4]·2CH3OH]. All H atoms have been omitted.
[Figure 2] Fig. 2. Packing view diagram of (1).
[Figure 3] Fig. 3. Scheme of the reaction.
Hexa-µ2-chlorido-µ4-oxido-tetrakis[(morpholine-κN)copper(II)] methanol disolvate top
Crystal data top
[Cu4Cl6O(C4H9NO)4]·2CH4OF(000) = 1816
Mr = 895.43Dx = 1.793 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 23105 reflections
a = 11.149 (2) Åθ = 3.4–25.0°
b = 15.753 (3) ŵ = 3.05 mm1
c = 18.905 (4) ÅT = 100 K
β = 92.50 (3)°Block, brown
V = 3317.1 (11) Å30.25 × 0.25 × 0.20 mm
Z = 4
Data collection top
Kuma/Oxford Instruments KM4
diffractometer
4330 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 25.0°, θmin = 3.4°
ω scansh = 138
Absorption correction: analytical
(CrysAlis RED; UNILIC & Kuma Diffraction, 2000)
k = 1818
Tmin = 0.516, Tmax = 0.580l = 2222
18695 measured reflections5 standard reflections every 300 reflections
5761 independent reflections intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0306P)2]
where P = (Fo2 + 2Fc2)/3
5761 reflections(Δ/σ)max < 0.001
381 parametersΔρmax = 0.45 e Å3
6 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu4Cl6O(C4H9NO)4]·2CH4OV = 3317.1 (11) Å3
Mr = 895.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.149 (2) ŵ = 3.05 mm1
b = 15.753 (3) ÅT = 100 K
c = 18.905 (4) Å0.25 × 0.25 × 0.20 mm
β = 92.50 (3)°
Data collection top
Kuma/Oxford Instruments KM4
diffractometer
4330 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; UNILIC & Kuma Diffraction, 2000)
Rint = 0.069
Tmin = 0.516, Tmax = 0.5805 standard reflections every 300 reflections
18695 measured reflections intensity decay: 1.2%
5761 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0546 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
5761 reflectionsΔρmin = 0.55 e Å3
381 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.11029 (6)0.20266 (4)0.00488 (3)0.01943 (18)
Cl10.06439 (12)0.16905 (9)0.06165 (7)0.0231 (3)
O10.1733 (3)0.2528 (2)0.08065 (17)0.0182 (8)
N10.0461 (4)0.1520 (3)0.0946 (2)0.0202 (11)
H10.105 (4)0.153 (4)0.120 (3)0.024*
C10.0588 (5)0.1985 (4)0.1265 (3)0.0243 (14)
H1B0.03580.25690.13500.029*
H1A0.12240.19910.09310.029*
Cu20.21716 (6)0.36779 (4)0.06401 (3)0.01899 (18)
Cl20.27880 (14)0.10492 (9)0.00872 (7)0.0281 (4)
O20.1338 (4)0.0715 (2)0.18659 (19)0.0304 (10)
N20.2632 (4)0.4869 (3)0.0481 (2)0.0204 (11)
H20.317 (4)0.485 (4)0.018 (2)0.025*
C20.1063 (5)0.1598 (4)0.1953 (3)0.0254 (15)
H2B0.17820.18990.21170.030*
H2A0.04690.16600.23090.030*
Cu30.30689 (6)0.18666 (4)0.11536 (3)0.02035 (18)
Cl30.15197 (14)0.33820 (9)0.05832 (7)0.0301 (4)
N30.4437 (4)0.1155 (3)0.1505 (2)0.0192 (11)
H30.416 (5)0.067 (2)0.142 (3)0.023*
O30.2561 (4)0.6693 (3)0.0666 (2)0.0381 (11)
C30.0162 (5)0.0602 (4)0.0896 (3)0.0265 (15)
H3B0.04420.05230.05480.032*
H3A0.08740.02880.07390.032*
Cu40.05148 (6)0.25276 (4)0.14837 (3)0.01961 (18)
Cl40.41882 (12)0.32233 (9)0.10401 (8)0.0244 (3)
N40.0769 (5)0.2534 (3)0.2179 (3)0.0274 (12)
H40.096 (5)0.203 (2)0.228 (3)0.033*
O40.6864 (3)0.0843 (2)0.2060 (2)0.0274 (10)
C40.0305 (6)0.0258 (4)0.1606 (3)0.0339 (17)
H4B0.03200.02990.19460.041*
H4A0.05100.03370.15560.041*
Cl50.05980 (14)0.40336 (9)0.14077 (8)0.0308 (4)
O50.2421 (4)0.3385 (3)0.3081 (2)0.0302 (10)
C50.1673 (6)0.5418 (4)0.0141 (3)0.0340 (17)
H5B0.09880.54350.04390.041*
H5A0.14110.51750.03110.041*
Cl60.18960 (13)0.16776 (9)0.21846 (7)0.0247 (3)
C60.2130 (6)0.6318 (4)0.0027 (4)0.046 (2)
H6B0.27700.63040.03040.055*
H6A0.14840.66620.01790.055*
C70.3103 (5)0.5307 (4)0.1141 (3)0.0256 (14)
H7B0.37700.49860.13500.031*
H7A0.24780.53320.14810.031*
C80.3514 (5)0.6196 (4)0.0976 (3)0.0265 (15)
H8B0.38170.64660.14080.032*
H8A0.41650.61680.06520.032*
O80.3635 (4)0.0576 (3)0.1444 (2)0.0350 (11)
H80.29660.06120.16060.042*
C90.4804 (5)0.1266 (4)0.2268 (3)0.0256 (15)
H9B0.41290.11340.25560.031*
H9A0.50240.18540.23550.031*
C100.5853 (5)0.0699 (4)0.2485 (3)0.0272 (15)
H10B0.60850.08040.29780.033*
H10A0.56070.01100.24410.033*
C110.5512 (5)0.1222 (4)0.1067 (3)0.0237 (14)
H11B0.57880.18060.10680.028*
H11A0.52900.10680.05820.028*
C120.6530 (5)0.0652 (4)0.1339 (3)0.0277 (15)
H12B0.62810.00640.13010.033*
H12A0.72190.07300.10490.033*
C130.1891 (5)0.2937 (4)0.1901 (3)0.0332 (16)
H13B0.22010.26240.14910.040*
H13A0.17220.35120.17510.040*
C140.2840 (5)0.2957 (5)0.2465 (4)0.0435 (19)
H14B0.35570.32380.22720.052*
H14A0.30550.23800.25860.052*
C150.0377 (6)0.2934 (4)0.2863 (3)0.0327 (16)
H15B0.01160.35110.27780.039*
H15A0.02990.26210.30720.039*
C160.1405 (6)0.2944 (4)0.3381 (3)0.0400 (18)
H16B0.16310.23650.34910.048*
H16A0.11350.32180.38180.048*
C180.3645 (6)0.1021 (4)0.0787 (3)0.0436 (19)
H18C0.35010.16130.08660.065*
H18B0.30280.07980.04690.052*
H18A0.44130.09500.05830.052*
C170.871 (3)0.0241 (16)0.3535 (18)0.036 (4)0.642 (9)
H17A0.78520.02100.35010.054*0.642 (9)
H17B0.90390.00700.31520.054*0.642 (9)
H17C0.89590.08240.35110.054*0.642 (9)
O60.9179 (6)0.0147 (4)0.4251 (3)0.036 (2)0.642 (9)
H6C0.96220.05490.41750.053*0.642 (9)
C17A0.852 (6)0.003 (3)0.349 (4)0.036 (4)0.358 (9)
H17D0.76760.00050.35500.054*0.358 (9)
H17E0.89200.02270.39190.054*0.358 (9)
H17F0.88290.05140.33650.054*0.358 (9)
O70.8786 (10)0.0741 (8)0.2819 (7)0.038 (4)0.358 (9)
H7C0.81810.10260.27340.045*0.358 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0277 (4)0.0189 (4)0.0118 (4)0.0113 (3)0.0023 (3)0.0033 (3)
Cl10.0271 (8)0.0264 (8)0.0159 (7)0.0160 (7)0.0033 (6)0.0031 (6)
O10.023 (2)0.020 (2)0.012 (2)0.0105 (18)0.0032 (16)0.0037 (16)
N10.026 (3)0.023 (3)0.013 (3)0.009 (2)0.001 (2)0.001 (2)
C10.033 (4)0.021 (3)0.019 (3)0.013 (3)0.001 (3)0.003 (3)
Cu20.0236 (4)0.0188 (4)0.0150 (4)0.0094 (3)0.0043 (3)0.0024 (3)
Cl20.0393 (9)0.0273 (9)0.0175 (8)0.0001 (7)0.0012 (7)0.0093 (6)
O20.051 (3)0.019 (2)0.020 (2)0.018 (2)0.008 (2)0.0024 (18)
N20.024 (3)0.022 (3)0.016 (3)0.014 (2)0.000 (2)0.005 (2)
C20.037 (4)0.022 (3)0.016 (3)0.013 (3)0.004 (3)0.001 (3)
Cu30.0214 (4)0.0258 (4)0.0142 (4)0.0092 (3)0.0039 (3)0.0043 (3)
Cl30.0488 (10)0.0272 (9)0.0140 (8)0.0230 (8)0.0028 (7)0.0018 (6)
N30.018 (3)0.023 (3)0.017 (3)0.015 (2)0.007 (2)0.005 (2)
O30.042 (3)0.018 (2)0.054 (3)0.002 (2)0.001 (2)0.000 (2)
C30.036 (4)0.022 (4)0.021 (3)0.009 (3)0.000 (3)0.005 (3)
Cu40.0234 (4)0.0209 (4)0.0150 (4)0.0086 (3)0.0061 (3)0.0023 (3)
Cl40.0237 (8)0.0180 (8)0.0314 (9)0.0071 (6)0.0004 (7)0.0023 (6)
N40.035 (3)0.020 (3)0.028 (3)0.010 (3)0.011 (2)0.002 (2)
O40.029 (2)0.027 (2)0.026 (2)0.002 (2)0.004 (2)0.0033 (19)
C40.063 (5)0.017 (3)0.021 (4)0.012 (3)0.008 (3)0.002 (3)
Cl50.0355 (9)0.0200 (8)0.0385 (9)0.0065 (7)0.0196 (8)0.0009 (7)
O50.037 (3)0.029 (2)0.026 (2)0.002 (2)0.010 (2)0.002 (2)
C50.039 (4)0.025 (4)0.037 (4)0.007 (3)0.012 (3)0.008 (3)
Cl60.0299 (8)0.0292 (9)0.0156 (7)0.0014 (7)0.0085 (6)0.0040 (6)
C60.053 (5)0.028 (4)0.054 (5)0.016 (4)0.023 (4)0.014 (4)
C70.038 (4)0.022 (3)0.017 (3)0.010 (3)0.002 (3)0.006 (3)
C80.030 (4)0.020 (4)0.029 (4)0.010 (3)0.001 (3)0.009 (3)
O80.046 (3)0.034 (3)0.025 (2)0.022 (2)0.002 (2)0.005 (2)
C90.023 (3)0.045 (4)0.010 (3)0.010 (3)0.007 (3)0.014 (3)
C100.033 (4)0.031 (4)0.018 (3)0.004 (3)0.005 (3)0.003 (3)
C110.024 (3)0.027 (4)0.021 (3)0.002 (3)0.010 (3)0.003 (3)
C120.036 (4)0.020 (3)0.028 (4)0.002 (3)0.012 (3)0.001 (3)
C130.025 (4)0.052 (4)0.023 (4)0.006 (3)0.003 (3)0.015 (3)
C140.025 (4)0.051 (5)0.056 (5)0.015 (3)0.016 (3)0.024 (4)
C150.043 (4)0.036 (4)0.020 (3)0.020 (3)0.008 (3)0.002 (3)
C160.057 (5)0.041 (4)0.023 (4)0.023 (4)0.020 (3)0.013 (3)
C180.059 (5)0.044 (5)0.028 (4)0.019 (4)0.006 (4)0.006 (3)
C170.024 (11)0.015 (13)0.069 (7)0.009 (8)0.001 (7)0.009 (11)
O60.034 (4)0.038 (5)0.035 (5)0.012 (3)0.013 (3)0.001 (3)
C17A0.024 (11)0.015 (13)0.069 (7)0.009 (8)0.001 (7)0.009 (11)
O70.035 (8)0.032 (8)0.044 (9)0.004 (6)0.004 (6)0.013 (6)
Geometric parameters (Å, º) top
Cu1—Cu33.0984 (13)C4—H4B0.9700
Cu1—Cu43.1002 (11)C4—H4A0.9700
Cu2—Cu43.0816 (11)O5—C141.408 (7)
Cu2—Cu33.1623 (11)O5—C161.425 (7)
Cu1—O11.906 (3)C5—C61.525 (8)
Cu1—N11.981 (5)C5—H5B0.9700
Cu1—Cl32.4159 (16)C5—H5A0.9700
Cu1—Cl12.4224 (16)C6—H6B0.9700
Cu1—Cl22.4339 (17)C6—H6A0.9700
Cu2—O11.906 (4)C7—C81.510 (8)
Cu2—N21.971 (5)C7—H7B0.9700
Cu2—Cl52.3917 (17)C7—H7A0.9700
Cu2—Cl32.4386 (16)C8—H8B0.9700
Cu2—Cl42.4478 (17)C8—H8A0.9700
Cu3—O11.910 (4)O8—C181.427 (7)
Cu3—N31.983 (5)O8—H80.8200
Cu3—Cl22.4011 (16)C9—C101.514 (8)
Cu3—Cl62.4124 (16)C9—H9B0.9700
Cu3—Cl42.4888 (15)C9—H9A0.9700
Cu4—O11.907 (3)C10—H10B0.9700
Cu4—N41.985 (5)C10—H10A0.9700
Cu4—Cl52.3788 (16)C11—C121.519 (7)
Cu4—Cl62.3962 (17)C11—H11B0.9700
Cu4—Cl12.4312 (16)C11—H11A0.9700
N1—C11.486 (7)C12—H12B0.9700
N1—C31.488 (7)C12—H12A0.9700
N1—H10.84 (3)C13—C141.535 (8)
C1—C21.511 (7)C13—H13B0.9700
C1—H1B0.9700C13—H13A0.9700
C1—H1A0.9700C14—H14B0.9700
O2—C41.427 (7)C14—H14A0.9700
O2—C21.437 (6)C15—C161.540 (8)
N2—C51.499 (7)C15—H15B0.9700
N2—C71.500 (6)C15—H15A0.9700
N2—H20.84 (3)C16—H16B0.9700
C2—H2B0.9700C16—H16A0.9700
C2—H2A0.9700C18—H18C0.9600
N3—C111.490 (6)C18—H18B0.9600
N3—C91.494 (7)C18—H18A0.9600
N3—H30.84 (3)C17—O61.55 (4)
O3—C61.410 (7)C17—H17A0.9600
O3—C81.425 (7)C17—H17B0.9600
C3—C41.520 (7)C17—H17C0.9600
C3—H3B0.9700O6—H6C0.8200
C3—H3A0.9700C17A—O71.72 (6)
N4—C131.479 (8)C17A—H17D0.9600
N4—C151.485 (7)C17A—H17E0.9600
N4—H40.84 (3)C17A—H17F0.9600
O4—C121.429 (6)O7—H7C0.8200
O4—C101.430 (6)
O1—Cu1—N1179.09 (17)O1—Cu4—Cu236.08 (11)
O1—Cu1—Cl385.30 (11)N4—Cu4—Cu2143.64 (15)
N1—Cu1—Cl393.84 (14)Cl5—Cu4—Cu249.94 (4)
O1—Cu1—Cl185.71 (11)Cl6—Cu4—Cu2103.27 (4)
N1—Cu1—Cl195.05 (14)Cl1—Cu4—Cu2106.43 (4)
Cl3—Cu1—Cl1125.72 (6)O1—Cu4—Cu135.59 (10)
O1—Cu1—Cl285.30 (12)N4—Cu4—Cu1143.93 (15)
N1—Cu1—Cl294.80 (15)Cl5—Cu4—Cu1100.78 (4)
Cl3—Cu1—Cl2116.21 (6)Cl6—Cu4—Cu1102.56 (5)
Cl1—Cu1—Cl2116.18 (6)Cl1—Cu4—Cu150.18 (4)
O1—Cu1—Cu335.75 (11)Cu2—Cu4—Cu160.67 (3)
N1—Cu1—Cu3144.42 (15)Cu2—Cl4—Cu379.67 (5)
Cl3—Cu1—Cu3103.64 (4)C13—N4—C15109.9 (5)
Cl1—Cu1—Cu399.23 (4)C13—N4—Cu4112.9 (4)
Cl2—Cu1—Cu349.68 (4)C15—N4—Cu4112.7 (4)
O1—Cu1—Cu435.61 (10)C13—N4—H4105 (4)
N1—Cu1—Cu4145.08 (14)C15—N4—H4106 (4)
Cl3—Cu1—Cu4102.60 (4)Cu4—N4—H4110 (4)
Cl1—Cu1—Cu450.43 (4)C12—O4—C10108.9 (4)
Cl2—Cu1—Cu4104.84 (5)O2—C4—C3111.4 (5)
Cu3—Cu1—Cu460.45 (3)O2—C4—H4B109.4
Cu1—Cl1—Cu479.40 (5)C3—C4—H4B109.4
Cu1—O1—Cu2109.96 (17)O2—C4—H4A109.4
Cu1—O1—Cu4108.80 (16)C3—C4—H4A109.4
Cu2—O1—Cu4107.83 (18)H4B—C4—H4A108.0
Cu1—O1—Cu3108.59 (18)Cu4—Cl5—Cu280.48 (5)
Cu2—O1—Cu3111.93 (17)C14—O5—C16109.0 (5)
Cu4—O1—Cu3109.68 (17)N2—C5—C6111.1 (5)
C1—N1—C3109.3 (4)N2—C5—H5B109.4
C1—N1—Cu1113.4 (3)C6—C5—H5B109.4
C3—N1—Cu1114.2 (3)N2—C5—H5A109.4
C1—N1—H1112 (4)C6—C5—H5A109.4
C3—N1—H1104 (4)H5B—C5—H5A108.0
Cu1—N1—H1103 (4)Cu4—Cl6—Cu380.92 (5)
N1—C1—C2113.0 (5)O3—C6—C5111.9 (5)
N1—C1—H1B109.0O3—C6—H6B109.2
C2—C1—H1B109.0C5—C6—H6B109.2
N1—C1—H1A109.0O3—C6—H6A109.2
C2—C1—H1A109.0C5—C6—H6A109.2
H1B—C1—H1A107.8H6B—C6—H6A107.9
O1—Cu2—N2179.25 (17)N2—C7—C8110.7 (5)
O1—Cu2—Cl585.55 (11)N2—C7—H7B109.5
N2—Cu2—Cl594.16 (15)C8—C7—H7B109.5
O1—Cu2—Cl384.66 (11)N2—C7—H7A109.5
N2—Cu2—Cl396.09 (14)C8—C7—H7A109.5
Cl5—Cu2—Cl3115.09 (6)H7B—C7—H7A108.1
O1—Cu2—Cl484.81 (11)O3—C8—C7111.6 (5)
N2—Cu2—Cl494.80 (14)O3—C8—H8B109.3
Cl5—Cu2—Cl4124.70 (6)C7—C8—H8B109.3
Cl3—Cu2—Cl4117.96 (6)O3—C8—H8A109.3
O1—Cu2—Cu436.09 (10)C7—C8—H8A109.3
N2—Cu2—Cu4143.56 (14)H8B—C8—H8A108.0
Cl5—Cu2—Cu449.58 (4)C18—O8—H8109.5
Cl3—Cu2—Cu4102.58 (4)N3—C9—C10111.6 (5)
Cl4—Cu2—Cu4103.37 (4)N3—C9—H9B109.3
O1—Cu2—Cu334.07 (10)C10—C9—H9B109.3
N2—Cu2—Cu3145.52 (14)N3—C9—H9A109.3
Cl5—Cu2—Cu3104.81 (4)C10—C9—H9A109.3
Cl3—Cu2—Cu3101.29 (5)H9B—C9—H9A108.0
Cl4—Cu2—Cu350.74 (4)O4—C10—C9111.9 (5)
Cu4—Cu2—Cu359.95 (2)O4—C10—H10B109.2
Cu3—Cl2—Cu179.70 (5)C9—C10—H10B109.2
C4—O2—C2110.8 (4)O4—C10—H10A109.2
C5—N2—C7107.9 (5)C9—C10—H10A109.2
C5—N2—Cu2115.4 (3)H10B—C10—H10A107.9
C7—N2—Cu2113.3 (3)N3—C11—C12112.2 (5)
C5—N2—H2104 (4)N3—C11—H11B109.2
C7—N2—H2110 (4)C12—C11—H11B109.2
Cu2—N2—H2106 (4)N3—C11—H11A109.2
O2—C2—C1111.1 (4)C12—C11—H11A109.2
O2—C2—H2B109.4H11B—C11—H11A107.9
C1—C2—H2B109.4O4—C12—C11111.0 (5)
O2—C2—H2A109.4O4—C12—H12B109.4
C1—C2—H2A109.4C11—C12—H12B109.4
H2B—C2—H2A108.0O4—C12—H12A109.4
O1—Cu3—N3178.62 (17)C11—C12—H12A109.4
O1—Cu3—Cl286.15 (11)H12B—C12—H12A108.0
N3—Cu3—Cl292.75 (14)N4—C13—C14111.1 (5)
O1—Cu3—Cl684.43 (11)N4—C13—H13B109.4
N3—Cu3—Cl695.50 (14)C14—C13—H13B109.4
Cl2—Cu3—Cl6123.83 (6)N4—C13—H13A109.4
O1—Cu3—Cl483.60 (11)C14—C13—H13A109.4
N3—Cu3—Cl497.65 (13)H13B—C13—H13A108.0
Cl2—Cu3—Cl4115.83 (6)O5—C14—C13111.7 (5)
Cl6—Cu3—Cl4117.85 (6)O5—C14—H14B109.3
O1—Cu3—Cu135.66 (10)C13—C14—H14B109.3
N3—Cu3—Cu1143.16 (13)O5—C14—H14A109.3
Cl2—Cu3—Cu150.61 (4)C13—C14—H14A109.3
Cl6—Cu3—Cu1102.22 (5)H14B—C14—H14A107.9
Cl4—Cu3—Cu1102.02 (4)N4—C15—C16111.0 (5)
O1—Cu3—Cu234.00 (10)N4—C15—H15B109.4
N3—Cu3—Cu2147.24 (13)C16—C15—H15B109.4
Cl2—Cu3—Cu2101.43 (5)N4—C15—H15A109.4
Cl6—Cu3—Cu2100.61 (4)C16—C15—H15A109.4
Cl4—Cu3—Cu249.60 (4)H15B—C15—H15A108.0
Cu1—Cu3—Cu259.82 (2)O5—C16—C15110.6 (5)
Cu1—Cl3—Cu280.05 (5)O5—C16—H16B109.5
C11—N3—C9109.6 (4)C15—C16—H16B109.5
C11—N3—Cu3113.6 (3)O5—C16—H16A109.5
C9—N3—Cu3115.6 (4)C15—C16—H16A109.5
C11—N3—H3105 (4)H16B—C16—H16A108.1
C9—N3—H3112 (4)O8—C18—H18C109.5
Cu3—N3—H3100 (4)O8—C18—H18B109.5
C6—O3—C8109.9 (5)H18C—C18—H18B109.5
N1—C3—C4111.0 (5)O8—C18—H18A109.5
N1—C3—H3B109.4H18C—C18—H18A109.5
C4—C3—H3B109.4H18B—C18—H18A109.5
N1—C3—H3A109.4O6—C17—H17A109.5
C4—C3—H3A109.4O6—C17—H17B109.5
H3B—C3—H3A108.0H17A—C17—H17B109.5
O1—Cu4—N4179.2 (2)O6—C17—H17C109.5
O1—Cu4—Cl585.90 (12)H17A—C17—H17C109.5
N4—Cu4—Cl593.77 (15)H17B—C17—H17C109.5
O1—Cu4—Cl684.94 (11)O7—C17A—H17D109.5
N4—Cu4—Cl695.81 (16)O7—C17A—H17E109.5
Cl5—Cu4—Cl6124.39 (6)H17D—C17A—H17E109.5
O1—Cu4—Cl185.44 (11)O7—C17A—H17F109.5
N4—Cu4—Cl194.15 (15)H17D—C17A—H17F109.5
Cl5—Cu4—Cl1121.41 (6)H17E—C17A—H17F109.5
Cl6—Cu4—Cl1112.31 (6)C17A—O7—H7C109.5
O1—Cu1—Cl1—Cu45.31 (12)Cl2—Cu3—N3—C1166.2 (3)
N1—Cu1—Cl1—Cu4174.19 (15)Cl6—Cu3—N3—C11169.4 (3)
Cl3—Cu1—Cl1—Cu475.77 (7)Cl4—Cu3—N3—C1150.3 (4)
Cl2—Cu1—Cl1—Cu487.93 (6)Cu1—Cu3—N3—C1171.7 (4)
Cu3—Cu1—Cl1—Cu438.51 (4)Cu2—Cu3—N3—C1149.9 (5)
N1—Cu1—O1—Cu222 (12)O1—Cu3—N3—C9129 (7)
Cl3—Cu1—O1—Cu21.49 (15)Cl2—Cu3—N3—C9165.9 (4)
Cl1—Cu1—O1—Cu2124.93 (16)Cl6—Cu3—N3—C941.5 (4)
Cl2—Cu1—O1—Cu2118.32 (16)Cl4—Cu3—N3—C977.6 (4)
Cu3—Cu1—O1—Cu2122.8 (2)Cu1—Cu3—N3—C9160.4 (3)
Cu4—Cu1—O1—Cu2117.9 (3)Cu2—Cu3—N3—C977.9 (4)
N1—Cu1—O1—Cu4140 (12)C1—N1—C3—C452.6 (6)
Cl3—Cu1—O1—Cu4119.39 (17)Cu1—N1—C3—C4179.1 (4)
Cl1—Cu1—O1—Cu47.03 (15)Cu1—O1—Cu4—N451 (14)
Cl2—Cu1—O1—Cu4123.79 (16)Cu2—O1—Cu4—N468 (14)
Cu3—Cu1—O1—Cu4119.3 (3)Cu3—O1—Cu4—N4170 (64)
N1—Cu1—O1—Cu3101 (12)Cu1—O1—Cu4—Cl5114.99 (16)
Cl3—Cu1—O1—Cu3121.28 (15)Cu2—O1—Cu4—Cl54.25 (14)
Cl1—Cu1—O1—Cu3112.30 (15)Cu3—O1—Cu4—Cl5126.36 (16)
Cl2—Cu1—O1—Cu34.45 (14)Cu1—O1—Cu4—Cl6119.92 (17)
Cu4—Cu1—O1—Cu3119.3 (3)Cu2—O1—Cu4—Cl6120.84 (15)
O1—Cu1—N1—C179 (12)Cu3—O1—Cu4—Cl61.28 (14)
Cl3—Cu1—N1—C159.1 (4)Cu1—O1—Cu4—Cl17.01 (15)
Cl1—Cu1—N1—C167.3 (3)Cu2—O1—Cu4—Cl1126.25 (15)
Cl2—Cu1—N1—C1175.8 (3)Cu3—O1—Cu4—Cl1111.64 (16)
Cu3—Cu1—N1—C1179.1 (2)Cu1—O1—Cu4—Cu2119.2 (3)
Cu4—Cu1—N1—C159.5 (5)Cu3—O1—Cu4—Cu2122.1 (2)
O1—Cu1—N1—C3154 (12)Cu2—O1—Cu4—Cu1119.2 (3)
Cl3—Cu1—N1—C3174.7 (4)Cu3—O1—Cu4—Cu1118.6 (3)
Cl1—Cu1—N1—C358.9 (4)Cu1—Cl1—Cu4—O15.31 (11)
Cl2—Cu1—N1—C358.0 (4)Cu1—Cl1—Cu4—N4174.05 (16)
Cu3—Cu1—N1—C354.7 (5)Cu1—Cl1—Cu4—Cl577.07 (7)
Cu4—Cu1—N1—C366.7 (5)Cu1—Cl1—Cu4—Cl687.93 (5)
C3—N1—C1—C251.8 (6)Cu1—Cl1—Cu4—Cu224.37 (5)
Cu1—N1—C1—C2179.4 (3)N2—Cu2—Cu4—O1178.9 (3)
Cu1—O1—Cu2—N2179 (100)Cl5—Cu2—Cu4—O1174.46 (18)
Cu4—O1—Cu2—N263 (14)Cl3—Cu2—Cu4—O162.09 (18)
Cu3—O1—Cu2—N258 (14)Cl4—Cu2—Cu4—O161.05 (17)
Cu1—O1—Cu2—Cl5114.27 (16)Cu3—Cu2—Cu4—O133.81 (17)
Cu4—O1—Cu2—Cl54.22 (14)O1—Cu2—Cu4—N4178.8 (3)
Cu3—O1—Cu2—Cl5124.95 (16)N2—Cu2—Cu4—N42.3 (3)
Cu1—O1—Cu2—Cl31.48 (14)Cl5—Cu2—Cu4—N44.3 (3)
Cu4—O1—Cu2—Cl3119.97 (15)Cl3—Cu2—Cu4—N4116.7 (3)
Cu3—O1—Cu2—Cl3119.30 (16)Cl4—Cu2—Cu4—N4120.1 (3)
Cu1—O1—Cu2—Cl4120.25 (16)Cu3—Cu2—Cu4—N4147.4 (3)
Cu4—O1—Cu2—Cl4121.25 (15)O1—Cu2—Cu4—Cl5174.46 (18)
Cu3—O1—Cu2—Cl40.53 (14)N2—Cu2—Cu4—Cl56.7 (2)
Cu1—O1—Cu2—Cu4118.5 (2)Cl3—Cu2—Cu4—Cl5112.37 (7)
Cu3—O1—Cu2—Cu4120.7 (2)Cl4—Cu2—Cu4—Cl5124.48 (7)
Cu1—O1—Cu2—Cu3120.8 (3)Cu3—Cu2—Cu4—Cl5151.73 (6)
Cu4—O1—Cu2—Cu3120.7 (2)O1—Cu2—Cu4—Cl661.48 (17)
O1—Cu1—Cl2—Cu33.41 (11)N2—Cu2—Cu4—Cl6117.4 (2)
N1—Cu1—Cl2—Cu3177.50 (13)Cl5—Cu2—Cu4—Cl6124.05 (7)
Cl3—Cu1—Cl2—Cu385.82 (6)Cl3—Cu2—Cu4—Cl6123.58 (6)
Cl1—Cu1—Cl2—Cu379.46 (6)Cl4—Cu2—Cu4—Cl60.43 (6)
Cu4—Cu1—Cl2—Cu326.63 (5)Cu3—Cu2—Cu4—Cl627.68 (4)
O1—Cu2—N2—C5128 (14)O1—Cu2—Cu4—Cl156.95 (18)
Cl5—Cu2—N2—C561.2 (4)N2—Cu2—Cu4—Cl1124.2 (2)
Cl3—Cu2—N2—C554.6 (4)Cl5—Cu2—Cu4—Cl1117.52 (7)
Cl4—Cu2—N2—C5173.5 (4)Cl3—Cu2—Cu4—Cl15.14 (6)
Cu4—Cu2—N2—C566.2 (5)Cl4—Cu2—Cu4—Cl1118.00 (6)
Cu3—Cu2—N2—C5174.9 (3)Cu3—Cu2—Cu4—Cl190.75 (5)
O1—Cu2—N2—C73 (14)O1—Cu2—Cu4—Cu135.63 (17)
Cl5—Cu2—N2—C764.0 (4)N2—Cu2—Cu4—Cu1145.5 (2)
Cl3—Cu2—N2—C7179.8 (4)Cl5—Cu2—Cu4—Cu1138.84 (6)
Cl4—Cu2—N2—C761.4 (4)Cl3—Cu2—Cu4—Cu126.47 (5)
Cu4—Cu2—N2—C758.9 (5)Cl4—Cu2—Cu4—Cu196.68 (5)
Cu3—Cu2—N2—C760.0 (5)Cu3—Cu2—Cu4—Cu169.43 (3)
C4—O2—C2—C157.5 (6)N1—Cu1—Cu4—O1179.0 (3)
N1—C1—C2—O254.6 (6)Cl3—Cu1—Cu4—O162.9 (2)
Cu1—O1—Cu3—N333 (7)Cl1—Cu1—Cu4—O1170.9 (2)
Cu2—O1—Cu3—N3154 (7)Cl2—Cu1—Cu4—O158.97 (19)
Cu4—O1—Cu3—N386 (7)Cu3—Cu1—Cu4—O135.84 (19)
Cu1—O1—Cu3—Cl24.51 (14)O1—Cu1—Cu4—N4179.0 (3)
Cu2—O1—Cu3—Cl2117.07 (16)N1—Cu1—Cu4—N40.0 (4)
Cu4—O1—Cu3—Cl2123.29 (16)Cl3—Cu1—Cu4—N4116.1 (3)
Cu1—O1—Cu3—Cl6120.05 (15)Cl1—Cu1—Cu4—N410.1 (3)
Cu2—O1—Cu3—Cl6118.37 (16)Cl2—Cu1—Cu4—N4122.0 (3)
Cu4—O1—Cu3—Cl61.27 (14)Cu3—Cu1—Cu4—N4145.2 (3)
Cu1—O1—Cu3—Cl4121.06 (15)O1—Cu1—Cu4—Cl566.97 (19)
Cu2—O1—Cu3—Cl40.52 (14)N1—Cu1—Cu4—Cl5112.0 (3)
Cu4—O1—Cu3—Cl4120.16 (16)Cl3—Cu1—Cu4—Cl54.12 (6)
Cu2—O1—Cu3—Cu1121.6 (2)Cl1—Cu1—Cu4—Cl5122.14 (7)
Cu4—O1—Cu3—Cu1118.8 (2)Cl2—Cu1—Cu4—Cl5125.94 (6)
Cu1—O1—Cu3—Cu2121.6 (2)Cu3—Cu1—Cu4—Cl5102.81 (5)
Cu4—O1—Cu3—Cu2119.6 (3)O1—Cu1—Cu4—Cl662.19 (19)
Cu1—Cl2—Cu3—O13.40 (11)N1—Cu1—Cu4—Cl6118.8 (3)
Cu1—Cl2—Cu3—N3175.76 (13)Cl3—Cu1—Cu4—Cl6125.04 (6)
Cu1—Cl2—Cu3—Cl677.27 (7)Cl1—Cu1—Cu4—Cl6108.70 (6)
Cu1—Cl2—Cu3—Cl484.38 (6)Cl2—Cu1—Cu4—Cl63.22 (6)
Cu1—Cl2—Cu3—Cu233.93 (5)Cu3—Cu1—Cu4—Cl626.35 (4)
N1—Cu1—Cu3—O1178.5 (3)O1—Cu1—Cu4—Cl1170.9 (2)
Cl3—Cu1—Cu3—O161.22 (18)N1—Cu1—Cu4—Cl110.1 (3)
Cl1—Cu1—Cu3—O169.18 (18)Cl3—Cu1—Cu4—Cl1126.26 (7)
Cl2—Cu1—Cu3—O1174.18 (18)Cl2—Cu1—Cu4—Cl1111.92 (7)
Cu4—Cu1—Cu3—O135.70 (17)Cu3—Cu1—Cu4—Cl1135.05 (5)
O1—Cu1—Cu3—N3178.8 (3)O1—Cu1—Cu4—Cu236.12 (19)
N1—Cu1—Cu3—N32.8 (3)N1—Cu1—Cu4—Cu2142.8 (2)
Cl3—Cu1—Cu3—N3120.0 (2)Cl3—Cu1—Cu4—Cu226.74 (4)
Cl1—Cu1—Cu3—N3109.6 (2)Cl1—Cu1—Cu4—Cu2153.00 (5)
Cl2—Cu1—Cu3—N37.1 (2)Cl2—Cu1—Cu4—Cu295.09 (5)
Cu4—Cu1—Cu3—N3143.1 (2)Cu3—Cu1—Cu4—Cu271.95 (3)
O1—Cu1—Cu3—Cl2174.18 (18)O1—Cu2—Cl4—Cu30.38 (10)
N1—Cu1—Cu3—Cl24.3 (2)N2—Cu2—Cl4—Cu3178.98 (14)
Cl3—Cu1—Cu3—Cl2112.96 (7)Cl5—Cu2—Cl4—Cu380.54 (7)
Cl1—Cu1—Cu3—Cl2116.64 (7)Cl3—Cu2—Cl4—Cu381.52 (6)
Cu4—Cu1—Cu3—Cl2150.13 (6)Cu4—Cu2—Cl4—Cu330.79 (4)
O1—Cu1—Cu3—Cl661.82 (18)O1—Cu3—Cl4—Cu20.38 (10)
N1—Cu1—Cu3—Cl6119.7 (2)N3—Cu3—Cl4—Cu2179.77 (14)
Cl3—Cu1—Cu3—Cl6123.05 (6)Cl2—Cu3—Cl4—Cu282.95 (7)
Cl1—Cu1—Cu3—Cl67.36 (6)Cl6—Cu3—Cl4—Cu279.84 (6)
Cl2—Cu1—Cu3—Cl6124.00 (7)Cu1—Cu3—Cl4—Cu231.09 (4)
Cu4—Cu1—Cu3—Cl626.13 (4)O1—Cu4—N4—C133 (14)
O1—Cu1—Cu3—Cl460.51 (18)Cl5—Cu4—N4—C1361.4 (4)
N1—Cu1—Cu3—Cl4118.0 (2)Cl6—Cu4—N4—C13173.5 (4)
Cl3—Cu1—Cu3—Cl40.72 (6)Cl1—Cu4—N4—C1360.5 (4)
Cl1—Cu1—Cu3—Cl4129.69 (5)Cu2—Cu4—N4—C1364.7 (5)
Cl2—Cu1—Cu3—Cl4113.67 (7)Cu1—Cu4—N4—C1352.8 (5)
Cu4—Cu1—Cu3—Cl496.20 (5)O1—Cu4—N4—C15128 (14)
O1—Cu1—Cu3—Cu233.44 (17)Cl5—Cu4—N4—C1563.8 (4)
N1—Cu1—Cu3—Cu2145.0 (2)Cl6—Cu4—N4—C1561.3 (4)
Cl3—Cu1—Cu3—Cu227.78 (5)Cl1—Cu4—N4—C15174.3 (4)
Cl1—Cu1—Cu3—Cu2102.63 (4)Cu2—Cu4—N4—C1560.5 (5)
Cl2—Cu1—Cu3—Cu2140.73 (6)Cu1—Cu4—N4—C15178.0 (3)
Cu4—Cu1—Cu3—Cu269.14 (2)C2—O2—C4—C359.6 (6)
N2—Cu2—Cu3—O1178.9 (3)N1—C3—C4—O257.8 (6)
Cl5—Cu2—Cu3—O157.70 (18)O1—Cu4—Cl5—Cu23.26 (11)
Cl3—Cu2—Cu3—O162.30 (18)N4—Cu4—Cl5—Cu2177.42 (15)
Cl4—Cu2—Cu3—O1179.32 (18)Cl6—Cu4—Cl5—Cu277.75 (7)
Cu4—Cu2—Cu3—O135.81 (18)Cl1—Cu4—Cl5—Cu285.38 (7)
O1—Cu2—Cu3—N3178.9 (3)Cu1—Cu4—Cl5—Cu235.74 (5)
N2—Cu2—Cu3—N32.2 (3)O1—Cu2—Cl5—Cu43.27 (11)
Cl5—Cu2—Cu3—N3123.4 (2)N2—Cu2—Cl5—Cu4176.04 (14)
Cl3—Cu2—Cu3—N3116.6 (2)Cl3—Cu2—Cl5—Cu485.24 (6)
Cl4—Cu2—Cu3—N30.4 (2)Cl4—Cu2—Cl5—Cu477.28 (7)
Cu4—Cu2—Cu3—N3145.3 (2)Cu3—Cu2—Cl5—Cu425.09 (5)
O1—Cu2—Cu3—Cl265.01 (18)C7—N2—C5—C653.4 (7)
N2—Cu2—Cu3—Cl2116.1 (2)Cu2—N2—C5—C6178.7 (4)
Cl5—Cu2—Cu3—Cl2122.72 (6)O1—Cu4—Cl6—Cu30.96 (11)
Cl3—Cu2—Cu3—Cl22.71 (6)N4—Cu4—Cl6—Cu3178.91 (15)
Cl4—Cu2—Cu3—Cl2114.30 (7)Cl5—Cu4—Cl6—Cu382.48 (7)
Cu4—Cu2—Cu3—Cl2100.82 (5)Cl1—Cu4—Cl6—Cu382.00 (6)
O1—Cu2—Cu3—Cl662.99 (18)Cu2—Cu4—Cl6—Cu332.26 (5)
N2—Cu2—Cu3—Cl6115.9 (2)Cu1—Cu4—Cl6—Cu330.15 (4)
Cl5—Cu2—Cu3—Cl65.29 (6)O1—Cu3—Cl6—Cu40.96 (11)
Cl3—Cu2—Cu3—Cl6125.29 (6)N3—Cu3—Cl6—Cu4177.65 (13)
Cl4—Cu2—Cu3—Cl6117.69 (6)Cl2—Cu3—Cl6—Cu480.61 (7)
Cu4—Cu2—Cu3—Cl627.19 (4)Cl4—Cu3—Cl6—Cu480.69 (6)
O1—Cu2—Cu3—Cl4179.32 (18)Cu1—Cu3—Cl6—Cu430.13 (4)
N2—Cu2—Cu3—Cl41.8 (2)Cu2—Cu3—Cl6—Cu431.00 (4)
Cl5—Cu2—Cu3—Cl4122.98 (7)C8—O3—C6—C559.0 (7)
Cl3—Cu2—Cu3—Cl4117.02 (7)N2—C5—C6—O357.1 (8)
Cu4—Cu2—Cu3—Cl4144.88 (5)C5—N2—C7—C854.6 (6)
O1—Cu2—Cu3—Cu135.07 (18)Cu2—N2—C7—C8176.3 (4)
N2—Cu2—Cu3—Cu1146.0 (2)C6—O3—C8—C760.3 (6)
Cl5—Cu2—Cu3—Cu192.78 (5)N2—C7—C8—O359.2 (6)
Cl3—Cu2—Cu3—Cu127.23 (4)C11—N3—C9—C1050.0 (6)
Cl4—Cu2—Cu3—Cu1144.24 (5)Cu3—N3—C9—C10179.9 (4)
Cu4—Cu2—Cu3—Cu170.88 (3)C12—O4—C10—C961.3 (6)
O1—Cu1—Cl3—Cu21.11 (11)N3—C9—C10—O456.8 (6)
N1—Cu1—Cl3—Cu2179.20 (14)C9—N3—C11—C1250.6 (6)
Cl1—Cu1—Cl3—Cu280.17 (7)Cu3—N3—C11—C12178.5 (4)
Cl2—Cu1—Cl3—Cu283.52 (6)C10—O4—C12—C1161.0 (6)
Cu3—Cu1—Cl3—Cu232.03 (5)N3—C11—C12—O457.2 (6)
Cu4—Cu1—Cl3—Cu230.21 (5)C15—N4—C13—C1451.3 (6)
O1—Cu2—Cl3—Cu11.11 (11)Cu4—N4—C13—C14178.0 (4)
N2—Cu2—Cl3—Cu1178.92 (15)C16—O5—C14—C1361.9 (7)
Cl5—Cu2—Cl3—Cu181.42 (6)N4—C13—C14—O557.4 (7)
Cl4—Cu2—Cl3—Cu182.34 (6)C13—N4—C15—C1652.0 (6)
Cu4—Cu2—Cl3—Cu130.41 (5)Cu4—N4—C15—C16178.8 (4)
Cu3—Cu2—Cl3—Cu130.99 (5)C14—O5—C16—C1562.0 (7)
O1—Cu3—N3—C11103 (7)N4—C15—C16—O557.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.84 (3)2.22 (3)3.060 (6)177 (5)
N2—H2···O6ii0.84 (3)2.18 (3)2.987 (8)161 (5)
N3—H3···O8iii0.84 (3)2.05 (3)2.871 (6)167 (5)
N4—H4···O7iv0.84 (3)2.30 (3)3.121 (12)165 (5)
O7—H7C···O40.821.922.531 (12)130
O8—H8···O20.821.912.724 (6)173
O6—H6C···Cl4v0.822.393.209 (7)177
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z; (iv) x1, y, z; (v) x+3/2, y1/2, z+1/2.
Selected bond lengths (Å) top
Cu1—O11.906 (3)Cu3—O11.910 (4)
Cu1—N11.981 (5)Cu3—N31.983 (5)
Cu1—Cl32.4159 (16)Cu3—Cl22.4011 (16)
Cu1—Cl12.4224 (16)Cu3—Cl62.4124 (16)
Cu1—Cl22.4339 (17)Cu3—Cl42.4888 (15)
Cu2—O11.906 (4)Cu4—O11.907 (3)
Cu2—N21.971 (5)Cu4—N41.985 (5)
Cu2—Cl52.3917 (17)Cu4—Cl52.3788 (16)
Cu2—Cl32.4386 (16)Cu4—Cl62.3962 (17)
Cu2—Cl42.4478 (17)Cu4—Cl12.4312 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.84 (3)2.22 (3)3.060 (6)177 (5)
N2—H2···O6ii0.84 (3)2.18 (3)2.987 (8)161 (5)
N3—H3···O8iii0.84 (3)2.05 (3)2.871 (6)167 (5)
N4—H4···O7iv0.84 (3)2.30 (3)3.121 (12)165 (5)
O7—H7C···O40.821.922.531 (12)130
O8—H8···O20.821.912.724 (6)173
O6—H6C···Cl4v0.822.393.209 (7)177
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z; (iv) x1, y, z; (v) x+3/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Kiev National Taras Shevchenko University.

References

First citationBertrand, J. A. & Kelley, J. A. (1966). J. Am. Chem. Soc. 88, 4746–4747.  CrossRef Web of Science Google Scholar
First citationBowmaker, G., Di Nicola, C., Marchetti, F., Pettinari, C., Skelton, B., Somers, N. & White, A. (2011). Inorg. Chim. Acta, 375, 31–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationChivers, T., Fu, Z. & Thompson, L. K. (2005). Chem. Commun. pp. 2339–2341.  Web of Science CSD CrossRef Google Scholar
First citationErecinska, M. & Wilson, D. F. (1978). Arch. Biochem. Biophys. 188, 1–14.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGubina, K. E., Ovchynnikov, V. A., Amirkhanov, V. M., Sliva, T. Yu., Skopenko, V. V., Glowiak, T. & Kozlowski, H. (1999). Z. Naturforsch. Teil B, 54, 1357–1359.  CAS Google Scholar
First citationLi, H., Jiang, H. & Sun, H. (2011). Acta Cryst. E67, m1372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLinert, W., Weinberger, P., Ondrejovic, G. & Makanova, D. (1993). Vib. Spectrosc. 5, 101–108.  CrossRef CAS Web of Science Google Scholar
First citationNiekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227–232.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPavlenko, V., Kokozay, V. & Babich, O. (1993). Z. Naturforsch. Teil B, 48, 1321-1324.  CAS Google Scholar
First citationRoy, P. & Manassero, M. (2010). Dalton Trans. 39, 1539–1545.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUNILIC & Kuma Diffraction (2000). KM-4-CCD Software and CrysAlis CCD. UNILIC & Kuma Diffraction Instruments GmbH, Wrocław, Poland.  Google Scholar
First citationWeinberger, P., Schamshule, R., Mereiter, K., Dlhan, L., Boca, R. & Linert, W. (1998). J. Mol. Struct. 446, 115–126.  Web of Science CSD CrossRef CAS Google Scholar
First citationWillett, R. D. (1991). Coord. Chem. Rev. 109, 181–205.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds