metal-organic compounds
(N-Phenylthiourea-κS)bis(triphenylphosphane-κP)silver(I) nitrate
aFaculty of Science and Technology, Princess of Naradhiwas University, Narathiwat, 96000, Thailand, and bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: chaveng.p@psu.ac.th
In the title salt, [Ag(C7H8N2S)(C18H15P)2]NO3, the coordination geometry about the AgI atom is shallow trigonal pyramidal, with the metal atom displaced by 0.372 (1) Å from the plane of the P and S atoms. In the crystal, the cations are linked to the anions by N—H⋯O hydrogen bonds, generating tetramers (two cations and two anions), which feature R22(8) and R44(8) loops. The cations are linked by weak C—H⋯π interactions, generating a three-dimensional network.
CCDC reference: 1008627
Related literature
For properties of mixed-ligand d10 metal(I) complexes, see: Oshio et al. (1996); Zheng et al. (2001); Sewead et al. (2003); Isab et al. (2010). For structural studies of mixed-ligand complexes of triphenylphosphane and thione ligands, see: Skoulika et al. (1991); Aslanidis et al. (1997); Ghassemzadeh et al.(2004); Nimthong et al. (2008); Isab et al. (2010).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1008627
https://doi.org/10.1107/S1600536814014147/hb7242sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536814014147/hb7242Isup2.hkl
Mixed-ligand complexes of group 11 metals dispaly many properties such as magnetism (Oshio et al., 1996); microporousity (Zheng et al., 2001); luminescence (Sewead et al., 2003) and antimicrobial activities (Isab et al.,2010). In our earlier work, we synthesized and characterized the neutral monomeric copper(I) complex containing mixed ligands of triphenylphosphane (PPh3: C18H15P) and N-phynylthiourea (ptu : C7H8N2S), [CuI(ptu)(PPh3)2] (Nimthong et al., 2008). As part of our continuing studies in this area, we now describe the synthesis and structure of the title compound, [Ag(ptu)(PPh3)2]NO3 (Scheme I).
Unlike the previous complex mentioned above (Nimthong et al., 2008), this complex is an ionic complex and it crystallizes in monoclinic system π(CH)···Ag interaction [3.314 Å] between the centriod of phenyl ring (C2—C7) of the N–phenylthiourea and metal atom, the silver centre atom deviates from idealized trigonal planar with this atom lying ca 0.372 (1) Å out of the P2S plane. For the anion, although the oxygen atoms of the nitrate have no influence on coordination, they have great influence on the crystal packing of the complex. It is nearly planar with the bond angles around the nitrogen atom ranging from 119.01 (1)-120.53 (1)° and N(3)–O bond distances are 1.231 (2) – 1.264 (2) Å.
P21/c. The structure consists of the discrete mononuclear [Ag(ptu)(PPh3)2]+cation and the NO3- anion which is similar to those [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997). A perspective view of the molecular structure of [Ag(ptu)(PPh3)2]NO3 with atomic labeling is given in Figure 1. The cation part contains silver(I) atom trigonally coordinated by two phosphorus atoms from two triphenylphosphane molecules and one sulfur atom from N–phenylthiourea molecule similar to found in those silver oxyanion complexes containing mixed PPh3/heterocyclic thione ligands (Aslanidis et al., 1997; Ghassemzadeh et al., 2004). The Ag–P bond lengths of 2.4645 (5) and 2.4693 (4)Å are similar to the values of 2.455 (1) and 2.447 (1) Å observed in [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997), however, these values are slightly different from the values of 2.458 (2) and 2.507 (2) Å compared to [Ag(TAMTTO)(PPh3)2]NO3.1.5THF (Ghassemzadeh et al., 2004) because of the massive and of TAMTTO heterocyclic ligand. The Ag–S bond length [2.5307 (7) Å] is shorter than in those complexes [Ag(PPh3)2(pymtH)]NO3 [2.573 (1)Å] and [Ag(TAMTTO)(PPh3)2]NO3.1.5 THF [2.592 (2) Å] (Aslanidis et al., 1997; Ghassemzadeh et al., 2004 ). The P(1)–Ag–P(2), P(1)–Ag–S(1) and P(2)–Ag–S(1) bond angles are 127.55 (1)° ,113.02 (1)° and 112.69 (1)°, respectively. Due to the steric crowding of six phenyl rings from two bulky triphenyl phosphane ligands and theFor the crystal packing, each [Ag(ptu)(PPh3)2]+ cation is connected to another adjacent cationic part via hydrogen bonding interactions, N–H···O, which are observed between amino and amide groups and nitrate oxygen atoms generate a cyclic hydrogen bond interactions, two R22(8) graph sets for cationic-anionic interactions and one R44(8) graph set for anionic-anionic interaction, [ N(1)–H(1A)···O(3)i : 2.877 (2)Å, N(1)–H(1B)···O(3)ii : 2.921 (2)Å, N(2)–H(2)···O(1) : 2.823 (2) Å and symmetry code : (i) x-1,y,z, (ii) -x+1,-y+1,-z+2] as depicted in Figure 2 and 3. In addition, the cationic parts are linked together by the CH···π interactions between the phenyl rings with the distance of 3.746 (2) Å for C35–H35···Cg2 and 3.531 (2) Å for C54–H54···Cg2 [Cg2 : C11–C16] generating the three dimensional supramolecular network. All interactions are depicted in Figure 4.
The mixture silver(I) nitrate and triphenylphosphane in ethanol was refluxed at the temperature ca 60-70 °C for 2 h. After that, N-phenylthiourea ligand was added to the clear mixture solution and then continued to reflux futher for 3 h. The clear filtration was kept and left to evaporate slowly at ambient temperature. After several days, colorless blocks were obtained. The melting point of the complex is 192-194 °C . Elemental analysis,calculated for [Ag(PPh3)2(ptu)]NO3 : C, 60.99;H, 4.52; N, 4.96; S, 3.78%, found: C, 65.16; H, 4.96; N, 5.16; S, 4.04%.
Crystal data, data collection and structure
details are summarized in Table 1. The structures were solved by and refined by a full-matrix least-squares procedure based on F2. All hydrogen atoms were placed in geometrically idealised positions and refined isotropically with a riding model for both of amine N [N—H = 0.86 Å and with Uiso(H) =1.2Ueq(N)] and phenyl ring C-sp2[C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C)]. ;Mixed-ligand complexes of group 11 metals dispaly many properties such as magnetism (Oshio et al., 1996); microporousity (Zheng et al., 2001); luminescence (Sewead et al., 2003) and antimicrobial activities (Isab et al.,2010). In our earlier work, we synthesized and characterized the neutral monomeric copper(I) complex containing mixed ligands of triphenylphosphane (PPh3: C18H15P) and N-phynylthiourea (ptu : C7H8N2S), [CuI(ptu)(PPh3)2] (Nimthong et al., 2008). As part of our continuing studies in this area, we now describe the synthesis and structure of the title compound, [Ag(ptu)(PPh3)2]NO3 (Scheme I).
Unlike the previous complex mentioned above (Nimthong et al., 2008), this complex is an ionic complex and it crystallizes in monoclinic system π(CH)···Ag interaction [3.314 Å] between the centriod of phenyl ring (C2—C7) of the N–phenylthiourea and metal atom, the silver centre atom deviates from idealized trigonal planar with this atom lying ca 0.372 (1) Å out of the P2S plane. For the anion, although the oxygen atoms of the nitrate have no influence on coordination, they have great influence on the crystal packing of the complex. It is nearly planar with the bond angles around the nitrogen atom ranging from 119.01 (1)-120.53 (1)° and N(3)–O bond distances are 1.231 (2) – 1.264 (2) Å.
P21/c. The structure consists of the discrete mononuclear [Ag(ptu)(PPh3)2]+cation and the NO3- anion which is similar to those [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997). A perspective view of the molecular structure of [Ag(ptu)(PPh3)2]NO3 with atomic labeling is given in Figure 1. The cation part contains silver(I) atom trigonally coordinated by two phosphorus atoms from two triphenylphosphane molecules and one sulfur atom from N–phenylthiourea molecule similar to found in those silver oxyanion complexes containing mixed PPh3/heterocyclic thione ligands (Aslanidis et al., 1997; Ghassemzadeh et al., 2004). The Ag–P bond lengths of 2.4645 (5) and 2.4693 (4)Å are similar to the values of 2.455 (1) and 2.447 (1) Å observed in [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997), however, these values are slightly different from the values of 2.458 (2) and 2.507 (2) Å compared to [Ag(TAMTTO)(PPh3)2]NO3.1.5THF (Ghassemzadeh et al., 2004) because of the massive and of TAMTTO heterocyclic ligand. The Ag–S bond length [2.5307 (7) Å] is shorter than in those complexes [Ag(PPh3)2(pymtH)]NO3 [2.573 (1)Å] and [Ag(TAMTTO)(PPh3)2]NO3.1.5 THF [2.592 (2) Å] (Aslanidis et al., 1997; Ghassemzadeh et al., 2004 ). The P(1)–Ag–P(2), P(1)–Ag–S(1) and P(2)–Ag–S(1) bond angles are 127.55 (1)° ,113.02 (1)° and 112.69 (1)°, respectively. Due to the steric crowding of six phenyl rings from two bulky triphenyl phosphane ligands and theFor the crystal packing, each [Ag(ptu)(PPh3)2]+ cation is connected to another adjacent cationic part via hydrogen bonding interactions, N–H···O, which are observed between amino and amide groups and nitrate oxygen atoms generate a cyclic hydrogen bond interactions, two R22(8) graph sets for cationic-anionic interactions and one R44(8) graph set for anionic-anionic interaction, [ N(1)–H(1A)···O(3)i : 2.877 (2)Å, N(1)–H(1B)···O(3)ii : 2.921 (2)Å, N(2)–H(2)···O(1) : 2.823 (2) Å and symmetry code : (i) x-1,y,z, (ii) -x+1,-y+1,-z+2] as depicted in Figure 2 and 3. In addition, the cationic parts are linked together by the CH···π interactions between the phenyl rings with the distance of 3.746 (2) Å for C35–H35···Cg2 and 3.531 (2) Å for C54–H54···Cg2 [Cg2 : C11–C16] generating the three dimensional supramolecular network. All interactions are depicted in Figure 4.
For properties of mixed-ligand d10 metal(I) complexes, see: Oshio et al. (1996); Zheng et al. (2001); Sewead et al. (2003); Isab et al. (2010). For structural studies of mixed-ligand complexes of triphenylphosphane and thione ligands, see: Skoulika et al. (1991); Aslanidis et al. (1997); Ghassemzadeh et al.(2004); Nimthong et al. (2008); Isab et al. (2010).
The mixture silver(I) nitrate and triphenylphosphane in ethanol was refluxed at the temperature ca 60-70 °C for 2 h. After that, N-phenylthiourea ligand was added to the clear mixture solution and then continued to reflux futher for 3 h. The clear filtration was kept and left to evaporate slowly at ambient temperature. After several days, colorless blocks were obtained. The melting point of the complex is 192-194 °C . Elemental analysis,calculated for [Ag(PPh3)2(ptu)]NO3 : C, 60.99;H, 4.52; N, 4.96; S, 3.78%, found: C, 65.16; H, 4.96; N, 5.16; S, 4.04%.
detailsCrystal data, data collection and structure
details are summarized in Table 1. The structures were solved by and refined by a full-matrix least-squares procedure based on F2. All hydrogen atoms were placed in geometrically idealised positions and refined isotropically with a riding model for both of amine N [N—H = 0.86 Å and with Uiso(H) =1.2Ueq(N)] and phenyl ring C-sp2[C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C)]. ;Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of [Ag(ptu)(PPh3)2]NO3 complex. Displacement ellipsoids are shown at 50% probability level. | |
Fig. 2. The hydrogen bonding interactions of [Ag(ptu)(PPh3)2]NO3 complex (#i: x - 1, y, z, #ii: 1 - x, 1 - y, 2 - z, #iii: -x, 1 - y,2 - z). | |
Fig. 3. The cyclic of hydrogen bonding interactions containing two R22(8) and one R44(8). | |
Fig. 4. The three-dimensional supramolecular interactions in crystal packing. |
[Ag(C7H8N2S)(C18H15P)2]NO3 | F(000) = 1736 |
Mr = 846.63 | Dx = 1.477 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.6113 (5) Å | Cell parameters from 13930 reflections |
b = 10.6431 (4) Å | θ = 2.3–28.0° |
c = 26.4365 (10) Å | µ = 0.71 mm−1 |
β = 96.068 (1)° | T = 173 K |
V = 3808.3 (2) Å3 | Block, colourless |
Z = 4 | 0.27 × 0.14 × 0.08 mm |
Bruker SMART CCD diffractometer | 8261 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
Frames each covering 0.3 ° in ω scans | θmax = 28.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −17→17 |
Tmin = 0.863, Tmax = 1.000 | k = −14→14 |
44417 measured reflections | l = −34→34 |
9196 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0264P)2 + 2.6456P] where P = (Fo2 + 2Fc2)/3 |
9196 reflections | (Δ/σ)max = 0.003 |
478 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
[Ag(C7H8N2S)(C18H15P)2]NO3 | V = 3808.3 (2) Å3 |
Mr = 846.63 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.6113 (5) Å | µ = 0.71 mm−1 |
b = 10.6431 (4) Å | T = 173 K |
c = 26.4365 (10) Å | 0.27 × 0.14 × 0.08 mm |
β = 96.068 (1)° |
Bruker SMART CCD diffractometer | 9196 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 8261 reflections with I > 2σ(I) |
Tmin = 0.863, Tmax = 1.000 | Rint = 0.033 |
44417 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.55 e Å−3 |
9196 reflections | Δρmin = −0.26 e Å−3 |
478 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.30947 (2) | 0.80538 (2) | 0.87530 (2) | 0.01346 (4) | |
S1 | 0.27373 (3) | 0.65461 (4) | 0.94508 (2) | 0.01679 (9) | |
P1 | 0.48557 (3) | 0.81150 (4) | 0.86130 (2) | 0.01253 (8) | |
P2 | 0.18820 (3) | 0.97824 (4) | 0.86365 (2) | 0.01356 (9) | |
N1 | 0.10876 (11) | 0.54151 (15) | 0.96207 (6) | 0.0205 (3) | |
H1A | 0.0553 | 0.5001 | 0.9535 | 0.025* | |
H1B | 0.1249 | 0.5609 | 0.9934 | 0.025* | |
N2 | 0.13553 (11) | 0.54123 (15) | 0.87904 (6) | 0.0195 (3) | |
H2 | 0.0848 | 0.4926 | 0.8754 | 0.023* | |
N3 | 0.91546 (11) | 0.35396 (14) | 0.88996 (6) | 0.0200 (3) | |
O1 | 0.98030 (10) | 0.36618 (14) | 0.85981 (5) | 0.0285 (3) | |
O2 | 0.83834 (11) | 0.29694 (14) | 0.87678 (6) | 0.0339 (4) | |
O3 | 0.92984 (10) | 0.40319 (15) | 0.93362 (5) | 0.0320 (3) | |
C1 | 0.16649 (13) | 0.57551 (16) | 0.92682 (6) | 0.0166 (3) | |
C2 | 0.17639 (13) | 0.57559 (16) | 0.83349 (6) | 0.0165 (3) | |
C3 | 0.27222 (13) | 0.54423 (18) | 0.82506 (7) | 0.0203 (4) | |
H3 | 0.3129 | 0.5015 | 0.8498 | 0.024* | |
C4 | 0.30689 (14) | 0.57740 (19) | 0.77919 (7) | 0.0246 (4) | |
H4 | 0.3714 | 0.5580 | 0.7735 | 0.030* | |
C5 | 0.24611 (15) | 0.63894 (18) | 0.74210 (7) | 0.0244 (4) | |
H5 | 0.2700 | 0.6612 | 0.7117 | 0.029* | |
C6 | 0.14981 (15) | 0.66765 (17) | 0.75003 (7) | 0.0233 (4) | |
H6 | 0.1086 | 0.7080 | 0.7248 | 0.028* | |
C7 | 0.11484 (14) | 0.63599 (18) | 0.79586 (7) | 0.0212 (4) | |
H7 | 0.0502 | 0.6553 | 0.8013 | 0.025* | |
C11 | 0.56534 (12) | 0.68448 (15) | 0.88711 (6) | 0.0142 (3) | |
C12 | 0.66839 (13) | 0.69391 (16) | 0.88805 (6) | 0.0160 (3) | |
H12 | 0.6962 | 0.7659 | 0.8756 | 0.019* | |
C13 | 0.72891 (13) | 0.59703 (17) | 0.90730 (6) | 0.0168 (3) | |
H13 | 0.7970 | 0.6032 | 0.9070 | 0.020* | |
C14 | 0.68800 (13) | 0.49043 (16) | 0.92701 (6) | 0.0178 (3) | |
H14 | 0.7285 | 0.4246 | 0.9394 | 0.021* | |
C15 | 0.58661 (13) | 0.48238 (16) | 0.92812 (6) | 0.0178 (3) | |
H15 | 0.5596 | 0.4123 | 0.9425 | 0.021* | |
C16 | 0.52496 (13) | 0.57825 (16) | 0.90794 (6) | 0.0154 (3) | |
H16 | 0.4569 | 0.5716 | 0.9083 | 0.018* | |
C21 | 0.55372 (12) | 0.94570 (15) | 0.89023 (6) | 0.0136 (3) | |
C22 | 0.59006 (12) | 1.04369 (16) | 0.86294 (6) | 0.0161 (3) | |
H22 | 0.5778 | 1.0452 | 0.8277 | 0.019* | |
C23 | 0.64480 (13) | 1.13972 (17) | 0.88827 (7) | 0.0182 (3) | |
H23 | 0.6684 | 1.2056 | 0.8698 | 0.022* | |
C24 | 0.66425 (13) | 1.13752 (17) | 0.94081 (7) | 0.0195 (4) | |
H24 | 0.7028 | 1.2001 | 0.9575 | 0.023* | |
C25 | 0.62590 (14) | 1.04144 (17) | 0.96837 (7) | 0.0211 (4) | |
H25 | 0.6374 | 1.0408 | 1.0037 | 0.025* | |
C26 | 0.57049 (13) | 0.94653 (17) | 0.94329 (6) | 0.0187 (4) | |
H26 | 0.5443 | 0.8829 | 0.9619 | 0.022* | |
C31 | 0.50225 (12) | 0.81928 (15) | 0.79374 (6) | 0.0135 (3) | |
C32 | 0.57450 (13) | 0.75263 (17) | 0.77151 (7) | 0.0183 (3) | |
H32 | 0.6192 | 0.7031 | 0.7917 | 0.022* | |
C33 | 0.58030 (14) | 0.75957 (18) | 0.71953 (7) | 0.0213 (4) | |
H33 | 0.6288 | 0.7147 | 0.7050 | 0.026* | |
C34 | 0.51386 (14) | 0.83325 (17) | 0.68905 (7) | 0.0211 (4) | |
H34 | 0.5178 | 0.8377 | 0.6542 | 0.025* | |
C35 | 0.44182 (14) | 0.90008 (17) | 0.71074 (7) | 0.0208 (4) | |
H35 | 0.3974 | 0.9498 | 0.6904 | 0.025* | |
C36 | 0.43562 (13) | 0.89312 (17) | 0.76278 (7) | 0.0181 (3) | |
H36 | 0.3868 | 0.9379 | 0.7771 | 0.022* | |
C41 | 0.06641 (13) | 0.94975 (16) | 0.88407 (7) | 0.0166 (3) | |
C42 | −0.01987 (14) | 0.99999 (19) | 0.85980 (8) | 0.0263 (4) | |
H42 | −0.0179 | 1.0465 | 0.8301 | 0.032* | |
C43 | −0.10945 (14) | 0.9812 (2) | 0.87964 (9) | 0.0314 (5) | |
H43 | −0.1670 | 1.0157 | 0.8633 | 0.038* | |
C44 | −0.11355 (14) | 0.91173 (19) | 0.92340 (8) | 0.0270 (4) | |
H44 | −0.1735 | 0.8999 | 0.9367 | 0.032* | |
C45 | −0.02773 (15) | 0.8597 (2) | 0.94747 (8) | 0.0288 (4) | |
H45 | −0.0301 | 0.8124 | 0.9769 | 0.035* | |
C46 | 0.06196 (14) | 0.87786 (19) | 0.92784 (7) | 0.0242 (4) | |
H46 | 0.1192 | 0.8419 | 0.9440 | 0.029* | |
C51 | 0.23925 (12) | 1.10092 (15) | 0.90686 (6) | 0.0149 (3) | |
C52 | 0.33905 (13) | 1.12973 (16) | 0.90577 (7) | 0.0178 (3) | |
H52 | 0.3765 | 1.0845 | 0.8846 | 0.021* | |
C53 | 0.38268 (14) | 1.22486 (17) | 0.93583 (7) | 0.0216 (4) | |
H53 | 0.4492 | 1.2435 | 0.9347 | 0.026* | |
C54 | 0.32787 (15) | 1.29242 (17) | 0.96757 (7) | 0.0237 (4) | |
H54 | 0.3572 | 1.3568 | 0.9876 | 0.028* | |
C55 | 0.22880 (15) | 1.26367 (18) | 0.96936 (7) | 0.0237 (4) | |
H55 | 0.1920 | 1.3084 | 0.9910 | 0.028* | |
C56 | 0.18420 (14) | 1.16877 (17) | 0.93912 (7) | 0.0206 (4) | |
H56 | 0.1177 | 1.1504 | 0.9404 | 0.025* | |
C61 | 0.16834 (12) | 1.06410 (16) | 0.80372 (6) | 0.0153 (3) | |
C62 | 0.14519 (14) | 1.19195 (17) | 0.80202 (7) | 0.0200 (4) | |
H62 | 0.1353 | 1.2345 | 0.8318 | 0.024* | |
C63 | 0.13683 (14) | 1.25589 (18) | 0.75580 (7) | 0.0233 (4) | |
H63 | 0.1217 | 1.3411 | 0.7548 | 0.028* | |
C64 | 0.15107 (14) | 1.19286 (19) | 0.71128 (7) | 0.0230 (4) | |
H64 | 0.1459 | 1.2358 | 0.6805 | 0.028* | |
C65 | 0.17304 (14) | 1.06573 (19) | 0.71274 (7) | 0.0237 (4) | |
H65 | 0.1819 | 1.0231 | 0.6828 | 0.028* | |
C66 | 0.18175 (13) | 1.00199 (18) | 0.75869 (7) | 0.0192 (4) | |
H66 | 0.1967 | 0.9167 | 0.7594 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.01252 (7) | 0.01365 (6) | 0.01457 (6) | −0.00079 (4) | 0.00304 (4) | 0.00008 (5) |
S1 | 0.0166 (2) | 0.0204 (2) | 0.01331 (19) | −0.00489 (16) | 0.00144 (15) | 0.00208 (16) |
P1 | 0.01206 (19) | 0.01232 (19) | 0.01342 (19) | −0.00013 (15) | 0.00226 (15) | 0.00091 (15) |
P2 | 0.0125 (2) | 0.0139 (2) | 0.0147 (2) | 0.00012 (15) | 0.00337 (16) | 0.00002 (16) |
N1 | 0.0186 (7) | 0.0264 (8) | 0.0170 (7) | −0.0071 (6) | 0.0043 (6) | 0.0003 (6) |
N2 | 0.0160 (7) | 0.0250 (8) | 0.0178 (7) | −0.0085 (6) | 0.0036 (6) | −0.0010 (6) |
N3 | 0.0158 (7) | 0.0192 (7) | 0.0258 (8) | −0.0008 (6) | 0.0057 (6) | −0.0009 (6) |
O1 | 0.0226 (7) | 0.0375 (8) | 0.0274 (7) | −0.0110 (6) | 0.0122 (6) | −0.0076 (6) |
O2 | 0.0222 (7) | 0.0362 (8) | 0.0449 (9) | −0.0150 (6) | 0.0110 (6) | −0.0154 (7) |
O3 | 0.0241 (7) | 0.0499 (9) | 0.0235 (7) | −0.0120 (7) | 0.0093 (6) | −0.0110 (7) |
C1 | 0.0168 (8) | 0.0157 (8) | 0.0175 (8) | −0.0003 (6) | 0.0033 (6) | 0.0020 (6) |
C2 | 0.0171 (8) | 0.0184 (8) | 0.0142 (8) | −0.0059 (7) | 0.0033 (6) | −0.0021 (6) |
C3 | 0.0192 (9) | 0.0233 (9) | 0.0179 (8) | −0.0016 (7) | 0.0004 (7) | −0.0015 (7) |
C4 | 0.0212 (9) | 0.0318 (10) | 0.0221 (9) | −0.0022 (8) | 0.0086 (7) | −0.0056 (8) |
C5 | 0.0331 (11) | 0.0249 (10) | 0.0161 (9) | −0.0078 (8) | 0.0076 (8) | −0.0037 (7) |
C6 | 0.0300 (10) | 0.0204 (9) | 0.0183 (9) | −0.0027 (8) | −0.0032 (7) | −0.0008 (7) |
C7 | 0.0168 (9) | 0.0253 (9) | 0.0214 (9) | −0.0018 (7) | 0.0007 (7) | −0.0029 (7) |
C11 | 0.0164 (8) | 0.0131 (7) | 0.0129 (7) | 0.0005 (6) | 0.0013 (6) | −0.0007 (6) |
C12 | 0.0174 (8) | 0.0162 (8) | 0.0150 (8) | −0.0011 (6) | 0.0037 (6) | 0.0011 (6) |
C13 | 0.0144 (8) | 0.0223 (9) | 0.0134 (8) | 0.0021 (7) | 0.0010 (6) | −0.0021 (7) |
C14 | 0.0231 (9) | 0.0159 (8) | 0.0136 (8) | 0.0049 (7) | −0.0012 (7) | −0.0013 (6) |
C15 | 0.0244 (9) | 0.0123 (8) | 0.0164 (8) | −0.0021 (7) | 0.0010 (7) | 0.0011 (6) |
C16 | 0.0159 (8) | 0.0159 (8) | 0.0144 (8) | −0.0018 (6) | 0.0020 (6) | −0.0010 (6) |
C21 | 0.0114 (7) | 0.0135 (8) | 0.0161 (8) | 0.0015 (6) | 0.0022 (6) | −0.0014 (6) |
C22 | 0.0169 (8) | 0.0187 (8) | 0.0128 (8) | −0.0017 (7) | 0.0027 (6) | −0.0001 (6) |
C23 | 0.0183 (8) | 0.0175 (8) | 0.0194 (8) | −0.0029 (7) | 0.0051 (7) | 0.0014 (7) |
C24 | 0.0186 (9) | 0.0173 (8) | 0.0220 (9) | −0.0014 (7) | −0.0009 (7) | −0.0050 (7) |
C25 | 0.0288 (10) | 0.0213 (9) | 0.0127 (8) | 0.0016 (7) | −0.0007 (7) | −0.0005 (7) |
C26 | 0.0244 (9) | 0.0168 (8) | 0.0155 (8) | 0.0005 (7) | 0.0043 (7) | 0.0027 (7) |
C31 | 0.0139 (8) | 0.0137 (8) | 0.0127 (7) | −0.0033 (6) | 0.0012 (6) | −0.0001 (6) |
C32 | 0.0187 (9) | 0.0188 (8) | 0.0172 (8) | 0.0037 (7) | 0.0010 (7) | 0.0002 (7) |
C33 | 0.0233 (9) | 0.0237 (9) | 0.0177 (8) | 0.0033 (7) | 0.0064 (7) | −0.0028 (7) |
C34 | 0.0273 (10) | 0.0220 (9) | 0.0139 (8) | −0.0034 (7) | 0.0022 (7) | −0.0007 (7) |
C35 | 0.0234 (9) | 0.0203 (9) | 0.0177 (8) | 0.0018 (7) | −0.0023 (7) | 0.0026 (7) |
C36 | 0.0163 (8) | 0.0194 (8) | 0.0187 (8) | 0.0023 (7) | 0.0024 (7) | 0.0001 (7) |
C41 | 0.0157 (8) | 0.0154 (8) | 0.0195 (8) | −0.0010 (6) | 0.0052 (7) | −0.0014 (7) |
C42 | 0.0187 (9) | 0.0299 (10) | 0.0304 (10) | 0.0013 (8) | 0.0036 (8) | 0.0087 (8) |
C43 | 0.0140 (9) | 0.0384 (12) | 0.0419 (12) | 0.0027 (8) | 0.0038 (8) | 0.0075 (10) |
C44 | 0.0184 (9) | 0.0279 (10) | 0.0370 (11) | −0.0036 (8) | 0.0127 (8) | −0.0025 (9) |
C45 | 0.0280 (10) | 0.0315 (11) | 0.0292 (10) | 0.0013 (8) | 0.0134 (8) | 0.0067 (9) |
C46 | 0.0187 (9) | 0.0277 (10) | 0.0273 (10) | 0.0044 (7) | 0.0074 (7) | 0.0059 (8) |
C51 | 0.0166 (8) | 0.0140 (8) | 0.0140 (8) | 0.0008 (6) | 0.0014 (6) | 0.0021 (6) |
C52 | 0.0204 (9) | 0.0167 (8) | 0.0169 (8) | 0.0002 (7) | 0.0042 (7) | 0.0001 (7) |
C53 | 0.0221 (9) | 0.0205 (9) | 0.0219 (9) | −0.0063 (7) | 0.0012 (7) | 0.0018 (7) |
C54 | 0.0344 (11) | 0.0175 (9) | 0.0181 (9) | −0.0032 (8) | −0.0020 (8) | −0.0022 (7) |
C55 | 0.0294 (10) | 0.0224 (9) | 0.0199 (9) | 0.0038 (8) | 0.0055 (8) | −0.0043 (7) |
C56 | 0.0202 (9) | 0.0229 (9) | 0.0192 (9) | 0.0020 (7) | 0.0042 (7) | −0.0015 (7) |
C61 | 0.0117 (8) | 0.0179 (8) | 0.0165 (8) | −0.0014 (6) | 0.0027 (6) | 0.0017 (6) |
C62 | 0.0212 (9) | 0.0206 (9) | 0.0184 (8) | 0.0013 (7) | 0.0033 (7) | 0.0000 (7) |
C63 | 0.0243 (10) | 0.0200 (9) | 0.0253 (9) | −0.0001 (7) | 0.0007 (8) | 0.0057 (8) |
C64 | 0.0176 (9) | 0.0336 (10) | 0.0180 (9) | −0.0039 (8) | 0.0021 (7) | 0.0077 (8) |
C65 | 0.0208 (9) | 0.0346 (11) | 0.0162 (8) | −0.0033 (8) | 0.0041 (7) | −0.0027 (8) |
C66 | 0.0174 (8) | 0.0211 (9) | 0.0194 (8) | −0.0014 (7) | 0.0028 (7) | −0.0024 (7) |
Ag1—P1 | 2.4645 (5) | C24—H24 | 0.9300 |
Ag1—P2 | 2.4693 (4) | C25—C26 | 1.387 (3) |
Ag1—S1 | 2.5307 (4) | C25—H25 | 0.9300 |
S1—C1 | 1.7098 (18) | C26—H26 | 0.9300 |
P1—C11 | 1.8208 (17) | C31—C32 | 1.392 (2) |
P1—C31 | 1.8260 (17) | C31—C36 | 1.398 (2) |
P1—C21 | 1.8262 (17) | C32—C33 | 1.387 (2) |
P2—C41 | 1.8222 (18) | C32—H32 | 0.9300 |
P2—C51 | 1.8235 (17) | C33—C34 | 1.389 (3) |
P2—C61 | 1.8241 (17) | C33—H33 | 0.9300 |
N1—C1 | 1.331 (2) | C34—C35 | 1.384 (3) |
N1—H1A | 0.8600 | C34—H34 | 0.9300 |
N1—H1B | 0.8600 | C35—C36 | 1.389 (2) |
N2—C1 | 1.339 (2) | C35—H35 | 0.9300 |
N2—C2 | 1.426 (2) | C36—H36 | 0.9300 |
N2—H2 | 0.8600 | C41—C42 | 1.385 (3) |
N3—O2 | 1.231 (2) | C41—C46 | 1.394 (3) |
N3—O1 | 1.2568 (19) | C42—C43 | 1.392 (3) |
N3—O3 | 1.264 (2) | C42—H42 | 0.9300 |
C2—C3 | 1.387 (2) | C43—C44 | 1.379 (3) |
C2—C7 | 1.389 (2) | C43—H43 | 0.9300 |
C3—C4 | 1.392 (3) | C44—C45 | 1.385 (3) |
C3—H3 | 0.9300 | C44—H44 | 0.9300 |
C4—C5 | 1.380 (3) | C45—C46 | 1.390 (3) |
C4—H4 | 0.9300 | C45—H45 | 0.9300 |
C5—C6 | 1.383 (3) | C46—H46 | 0.9300 |
C5—H5 | 0.9300 | C51—C56 | 1.395 (2) |
C6—C7 | 1.389 (3) | C51—C52 | 1.396 (2) |
C6—H6 | 0.9300 | C52—C53 | 1.382 (2) |
C7—H7 | 0.9300 | C52—H52 | 0.9300 |
C11—C16 | 1.396 (2) | C53—C54 | 1.382 (3) |
C11—C12 | 1.404 (2) | C53—H53 | 0.9300 |
C12—C13 | 1.383 (2) | C54—C55 | 1.388 (3) |
C12—H12 | 0.9300 | C54—H54 | 0.9300 |
C13—C14 | 1.389 (2) | C55—C56 | 1.387 (3) |
C13—H13 | 0.9300 | C55—H55 | 0.9300 |
C14—C15 | 1.386 (3) | C56—H56 | 0.9300 |
C14—H14 | 0.9300 | C61—C66 | 1.391 (2) |
C15—C16 | 1.391 (2) | C61—C62 | 1.396 (2) |
C15—H15 | 0.9300 | C62—C63 | 1.393 (3) |
C16—H16 | 0.9300 | C62—H62 | 0.9300 |
C21—C22 | 1.389 (2) | C63—C64 | 1.386 (3) |
C21—C26 | 1.397 (2) | C63—H63 | 0.9300 |
C22—C23 | 1.394 (2) | C64—C65 | 1.385 (3) |
C22—H22 | 0.9300 | C64—H64 | 0.9300 |
C23—C24 | 1.387 (2) | C65—C66 | 1.386 (3) |
C23—H23 | 0.9300 | C65—H65 | 0.9300 |
C24—C25 | 1.389 (3) | C66—H66 | 0.9300 |
P1—Ag1—P2 | 127.556 (15) | C26—C25—H25 | 120.0 |
P1—Ag1—S1 | 113.029 (15) | C24—C25—H25 | 120.0 |
P2—Ag1—S1 | 112.694 (15) | C25—C26—C21 | 120.50 (16) |
C1—S1—Ag1 | 109.30 (6) | C25—C26—H26 | 119.7 |
C11—P1—C31 | 105.62 (8) | C21—C26—H26 | 119.7 |
C11—P1—C21 | 99.64 (8) | C32—C31—C36 | 118.88 (15) |
C31—P1—C21 | 105.30 (8) | C32—C31—P1 | 123.80 (13) |
C11—P1—Ag1 | 118.36 (6) | C36—C31—P1 | 117.27 (13) |
C31—P1—Ag1 | 111.81 (6) | C33—C32—C31 | 120.52 (16) |
C21—P1—Ag1 | 114.63 (5) | C33—C32—H32 | 119.7 |
C41—P2—C51 | 103.41 (8) | C31—C32—H32 | 119.7 |
C41—P2—C61 | 106.55 (8) | C32—C33—C34 | 120.23 (17) |
C51—P2—C61 | 101.36 (8) | C32—C33—H33 | 119.9 |
C41—P2—Ag1 | 117.14 (6) | C34—C33—H33 | 119.9 |
C51—P2—Ag1 | 104.48 (6) | C35—C34—C33 | 119.75 (17) |
C61—P2—Ag1 | 121.15 (6) | C35—C34—H34 | 120.1 |
C1—N1—H1A | 120.0 | C33—C34—H34 | 120.1 |
C1—N1—H1B | 120.0 | C34—C35—C36 | 120.19 (17) |
H1A—N1—H1B | 120.0 | C34—C35—H35 | 119.9 |
C1—N2—C2 | 127.91 (15) | C36—C35—H35 | 119.9 |
C1—N2—H2 | 116.0 | C35—C36—C31 | 120.42 (16) |
C2—N2—H2 | 116.0 | C35—C36—H36 | 119.8 |
O2—N3—O1 | 120.45 (16) | C31—C36—H36 | 119.8 |
O2—N3—O3 | 120.53 (15) | C42—C41—C46 | 119.18 (17) |
O1—N3—O3 | 119.01 (15) | C42—C41—P2 | 123.50 (14) |
N1—C1—N2 | 115.86 (16) | C46—C41—P2 | 117.26 (13) |
N1—C1—S1 | 119.06 (13) | C41—C42—C43 | 120.24 (18) |
N2—C1—S1 | 125.06 (13) | C41—C42—H42 | 119.9 |
C3—C2—C7 | 120.16 (16) | C43—C42—H42 | 119.9 |
C3—C2—N2 | 122.09 (16) | C44—C43—C42 | 120.54 (19) |
C7—C2—N2 | 117.64 (16) | C44—C43—H43 | 119.7 |
C2—C3—C4 | 119.35 (17) | C42—C43—H43 | 119.7 |
C2—C3—H3 | 120.3 | C43—C44—C45 | 119.52 (18) |
C4—C3—H3 | 120.3 | C43—C44—H44 | 120.2 |
C5—C4—C3 | 120.43 (18) | C45—C44—H44 | 120.2 |
C5—C4—H4 | 119.8 | C44—C45—C46 | 120.28 (19) |
C3—C4—H4 | 119.8 | C44—C45—H45 | 119.9 |
C4—C5—C6 | 120.25 (18) | C46—C45—H45 | 119.9 |
C4—C5—H5 | 119.9 | C45—C46—C41 | 120.23 (18) |
C6—C5—H5 | 119.9 | C45—C46—H46 | 119.9 |
C5—C6—C7 | 119.74 (18) | C41—C46—H46 | 119.9 |
C5—C6—H6 | 120.1 | C56—C51—C52 | 119.07 (16) |
C7—C6—H6 | 120.1 | C56—C51—P2 | 124.06 (13) |
C2—C7—C6 | 120.05 (17) | C52—C51—P2 | 116.84 (13) |
C2—C7—H7 | 120.0 | C53—C52—C51 | 120.60 (17) |
C6—C7—H7 | 120.0 | C53—C52—H52 | 119.7 |
C16—C11—C12 | 119.03 (15) | C51—C52—H52 | 119.7 |
C16—C11—P1 | 120.35 (13) | C52—C53—C54 | 120.24 (18) |
C12—C11—P1 | 120.58 (13) | C52—C53—H53 | 119.9 |
C13—C12—C11 | 120.56 (16) | C54—C53—H53 | 119.9 |
C13—C12—H12 | 119.7 | C53—C54—C55 | 119.64 (17) |
C11—C12—H12 | 119.7 | C53—C54—H54 | 120.2 |
C12—C13—C14 | 120.01 (16) | C55—C54—H54 | 120.2 |
C12—C13—H13 | 120.0 | C56—C55—C54 | 120.54 (18) |
C14—C13—H13 | 120.0 | C56—C55—H55 | 119.7 |
C15—C14—C13 | 119.86 (16) | C54—C55—H55 | 119.7 |
C15—C14—H14 | 120.1 | C55—C56—C51 | 119.91 (17) |
C13—C14—H14 | 120.1 | C55—C56—H56 | 120.0 |
C14—C15—C16 | 120.54 (16) | C51—C56—H56 | 120.0 |
C14—C15—H15 | 119.7 | C66—C61—C62 | 119.03 (16) |
C16—C15—H15 | 119.7 | C66—C61—P2 | 118.99 (13) |
C15—C16—C11 | 119.92 (16) | C62—C61—P2 | 121.89 (13) |
C15—C16—H16 | 120.0 | C63—C62—C61 | 120.10 (17) |
C11—C16—H16 | 120.0 | C63—C62—H62 | 119.9 |
C22—C21—C26 | 119.17 (15) | C61—C62—H62 | 119.9 |
C22—C21—P1 | 124.26 (13) | C64—C63—C62 | 120.18 (18) |
C26—C21—P1 | 116.56 (13) | C64—C63—H63 | 119.9 |
C21—C22—C23 | 120.20 (16) | C62—C63—H63 | 119.9 |
C21—C22—H22 | 119.9 | C65—C64—C63 | 119.90 (17) |
C23—C22—H22 | 119.9 | C65—C64—H64 | 120.1 |
C24—C23—C22 | 120.30 (16) | C63—C64—H64 | 120.1 |
C24—C23—H23 | 119.9 | C64—C65—C66 | 120.05 (18) |
C22—C23—H23 | 119.8 | C64—C65—H65 | 120.0 |
C23—C24—C25 | 119.70 (16) | C66—C65—H65 | 120.0 |
C23—C24—H24 | 120.2 | C65—C66—C61 | 120.74 (17) |
C25—C24—H24 | 120.2 | C65—C66—H66 | 119.6 |
C26—C25—C24 | 120.06 (16) | C61—C66—H66 | 119.6 |
C2—N2—C1—N1 | 172.88 (17) | P1—C31—C32—C33 | 177.53 (14) |
C2—N2—C1—S1 | −8.7 (3) | C31—C32—C33—C34 | 0.0 (3) |
Ag1—S1—C1—N1 | −147.45 (13) | C32—C33—C34—C35 | 0.1 (3) |
Ag1—S1—C1—N2 | 34.16 (17) | C33—C34—C35—C36 | −0.3 (3) |
C1—N2—C2—C3 | 61.7 (3) | C34—C35—C36—C31 | 0.4 (3) |
C1—N2—C2—C7 | −122.0 (2) | C32—C31—C36—C35 | −0.3 (3) |
C7—C2—C3—C4 | 2.0 (3) | P1—C31—C36—C35 | −177.86 (14) |
N2—C2—C3—C4 | 178.19 (17) | C51—P2—C41—C42 | 99.52 (17) |
C2—C3—C4—C5 | −1.1 (3) | C61—P2—C41—C42 | −6.87 (18) |
C3—C4—C5—C6 | −0.4 (3) | Ag1—P2—C41—C42 | −146.22 (15) |
C4—C5—C6—C7 | 1.0 (3) | C51—P2—C41—C46 | −77.57 (15) |
C3—C2—C7—C6 | −1.4 (3) | C61—P2—C41—C46 | 176.04 (14) |
N2—C2—C7—C6 | −177.76 (16) | Ag1—P2—C41—C46 | 36.69 (16) |
C5—C6—C7—C2 | −0.1 (3) | C46—C41—C42—C43 | 1.5 (3) |
C31—P1—C11—C16 | −117.34 (14) | P2—C41—C42—C43 | −175.56 (16) |
C21—P1—C11—C16 | 133.67 (14) | C41—C42—C43—C44 | −0.4 (3) |
Ag1—P1—C11—C16 | 8.77 (16) | C42—C43—C44—C45 | −0.5 (3) |
C31—P1—C11—C12 | 65.03 (15) | C43—C44—C45—C46 | 0.3 (3) |
C21—P1—C11—C12 | −43.97 (15) | C44—C45—C46—C41 | 0.7 (3) |
Ag1—P1—C11—C12 | −168.87 (11) | C42—C41—C46—C45 | −1.6 (3) |
C16—C11—C12—C13 | 2.8 (2) | P2—C41—C46—C45 | 175.61 (16) |
P1—C11—C12—C13 | −179.50 (13) | C41—P2—C51—C56 | −11.67 (17) |
C11—C12—C13—C14 | −1.5 (3) | C61—P2—C51—C56 | 98.60 (16) |
C12—C13—C14—C15 | −1.1 (3) | Ag1—P2—C51—C56 | −134.76 (14) |
C13—C14—C15—C16 | 2.4 (3) | C41—P2—C51—C52 | 170.39 (13) |
C14—C15—C16—C11 | −1.0 (3) | C61—P2—C51—C52 | −79.34 (14) |
C12—C11—C16—C15 | −1.6 (2) | Ag1—P2—C51—C52 | 47.30 (14) |
P1—C11—C16—C15 | −179.23 (13) | C56—C51—C52—C53 | −0.6 (3) |
C11—P1—C21—C22 | 121.60 (15) | P2—C51—C52—C53 | 177.44 (14) |
C31—P1—C21—C22 | 12.36 (16) | C51—C52—C53—C54 | 0.3 (3) |
Ag1—P1—C21—C22 | −110.96 (14) | C52—C53—C54—C55 | 0.4 (3) |
C11—P1—C21—C26 | −57.49 (14) | C53—C54—C55—C56 | −0.8 (3) |
C31—P1—C21—C26 | −166.73 (13) | C54—C55—C56—C51 | 0.4 (3) |
Ag1—P1—C21—C26 | 69.95 (14) | C52—C51—C56—C55 | 0.2 (3) |
C26—C21—C22—C23 | 1.7 (3) | P2—C51—C56—C55 | −177.65 (14) |
P1—C21—C22—C23 | −177.36 (13) | C41—P2—C61—C66 | −106.80 (14) |
C21—C22—C23—C24 | 0.7 (3) | C51—P2—C61—C66 | 145.35 (14) |
C22—C23—C24—C25 | −2.3 (3) | Ag1—P2—C61—C66 | 30.55 (16) |
C23—C24—C25—C26 | 1.6 (3) | C41—P2—C61—C62 | 76.64 (16) |
C24—C25—C26—C21 | 0.8 (3) | C51—P2—C61—C62 | −31.20 (16) |
C22—C21—C26—C25 | −2.4 (3) | Ag1—P2—C61—C62 | −146.00 (13) |
P1—C21—C26—C25 | 176.72 (14) | C66—C61—C62—C63 | −0.7 (3) |
C11—P1—C31—C32 | −9.27 (17) | P2—C61—C62—C63 | 175.88 (14) |
C21—P1—C31—C32 | 95.60 (15) | C61—C62—C63—C64 | 0.2 (3) |
Ag1—P1—C31—C32 | −139.30 (13) | C62—C63—C64—C65 | 0.4 (3) |
C11—P1—C31—C36 | 168.20 (13) | C63—C64—C65—C66 | −0.7 (3) |
C21—P1—C31—C36 | −86.92 (14) | C64—C65—C66—C61 | 0.2 (3) |
Ag1—P1—C31—C36 | 38.18 (14) | C62—C61—C66—C65 | 0.4 (3) |
C36—C31—C32—C33 | 0.1 (3) | P2—C61—C66—C65 | −176.21 (14) |
Cg2 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.86 | 2.02 | 2.877 (2) | 180 |
N1—H1B···O3ii | 0.86 | 2.17 | 2.921 (2) | 145 |
N2—H2···O1i | 0.86 | 1.97 | 2.823 (2) | 171 |
C35—H35···Cg2iii | 0.93 | 2.97 | 3.746 (2) | 142 |
C54—H54···Cg2iv | 0.93 | 2.82 | 3.531 (2) | 134 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y+2, −z+2. |
Cg2 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.86 | 2.02 | 2.877 (2) | 180 |
N1—H1B···O3ii | 0.86 | 2.17 | 2.921 (2) | 145 |
N2—H2···O1i | 0.86 | 1.97 | 2.823 (2) | 171 |
C35—H35···Cg2iii | 0.93 | 2.97 | 3.746 (2) | 142 |
C54—H54···Cg2iv | 0.93 | 2.82 | 3.531 (2) | 134 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y+2, −z+2. |
Acknowledgements
Financial support from the Center of Excellent for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education and Graduate School, Prince of Songkla University, are gratefully acknowledged.
References
Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). Inorg. Chim. Acta, 254, 277–284. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghassemzadeh, M., Sharifi, A., Malakootikhah, J., Neumuller, B. & Iravani, E. (2004). Inorg. Chim. Acta, 357, 2245–2252. Web of Science CSD CrossRef CAS Google Scholar
Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. (2010). Polyhedron, 29, 1251–1256. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472–479. CSD CrossRef PubMed CAS Web of Science Google Scholar
Sewead, C., Chan, J., Song, D. & Wang, S. (2003). Inorg. Chem. 42, 1112–1120. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skoulika, S., Aubry, A., Karagiannidis, P., Aslanidis, P. & Papastefanou, S. (1991). Inorg. Chim. Acta, 183, 207–211. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, S.-L., Tong, M.-L., Fu, R.-W., Chen, X.-M. & Ng, S.-W. (2001). Inorg. Chem. 40, 3562–3569. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.