metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N-Phenyl­thio­urea-κS)bis­­(tri­phenylphosphane-κP)silver(I) nitrate

aFaculty of Science and Technology, Princess of Naradhiwas University, Narathiwat, 96000, Thailand, and bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: chaveng.p@psu.ac.th

(Received 11 June 2014; accepted 17 June 2014; online 25 June 2014)

In the title salt, [Ag(C7H8N2S)(C18H15P)2]NO3, the coordination geometry about the AgI atom is shallow trigonal pyramidal, with the metal atom displaced by 0.372 (1) Å from the plane of the P and S atoms. In the crystal, the cations are linked to the anions by N—H⋯O hydrogen bonds, generating tetra­mers (two cations and two anions), which feature R22(8) and R44(8) loops. The cations are linked by weak C—H⋯π inter­actions, generating a three-dimensional network.

Related literature

For properties of mixed-ligand d10 metal(I) complexes, see: Oshio et al. (1996[Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472-479.]); Zheng et al. (2001[Zheng, S.-L., Tong, M.-L., Fu, R.-W., Chen, X.-M. & Ng, S.-W. (2001). Inorg. Chem. 40, 3562-3569.]); Sewead et al. (2003[Sewead, C., Chan, J., Song, D. & Wang, S. (2003). Inorg. Chem. 42, 1112-1120.]); Isab et al. (2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. (2010). Polyhedron, 29, 1251-1256.]). For structural studies of mixed-ligand complexes of tri­phenyl­phosphane and thione ligands, see: Skoulika et al. (1991[Skoulika, S., Aubry, A., Karagiannidis, P., Aslanidis, P. & Papastefanou, S. (1991). Inorg. Chim. Acta, 183, 207-211.]); Aslanidis et al. (1997[Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). Inorg. Chim. Acta, 254, 277-284.]); Ghassemzadeh et al.(2004[Ghassemzadeh, M., Sharifi, A., Malakootikhah, J., Neumuller, B. & Iravani, E. (2004). Inorg. Chim. Acta, 357, 2245-2252.]); Nimthong et al. (2008[Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.]); Isab et al. (2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. (2010). Polyhedron, 29, 1251-1256.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C7H8N2S)(C18H15P)2]NO3

  • Mr = 846.63

  • Monoclinic, P 21 /c

  • a = 13.6113 (5) Å

  • b = 10.6431 (4) Å

  • c = 26.4365 (10) Å

  • β = 96.068 (1)°

  • V = 3808.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 173 K

  • 0.27 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.863, Tmax = 1.000

  • 44417 measured reflections

  • 9196 independent reflections

  • 8261 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.05

  • 9196 reflections

  • 478 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.02 2.877 (2) 180
N1—H1B⋯O3ii 0.86 2.17 2.921 (2) 145
N2—H2⋯O1i 0.86 1.97 2.823 (2) 171
C35—H35⋯Cg2iii 0.93 2.97 3.746 (2) 142
C54—H54⋯Cg2iv 0.93 2.82 3.531 (2) 134
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.].

Supporting information


Chemical context top

Mixed-ligand complexes of group 11 metals dispaly many properties such as magnetism (Oshio et al., 1996); microporousity (Zheng et al., 2001); luminescence (Sewead et al., 2003) and anti­microbial activities (Isab et al.,2010). In our earlier work, we synthesized and characterized the neutral monomeric copper(I) complex containing mixed ligands of tri­phenyl­phosphane (PPh3: C18H15P) and N-phynyl­thio­urea (ptu : C7H8N2S), [CuI(ptu)(PPh3)2] (Nimthong et al., 2008). As part of our continuing studies in this area, we now describe the synthesis and structure of the title compound, [Ag(ptu)(PPh3)2]NO3 (Scheme I).

Structural commentary top

Unlike the previous complex mentioned above (Nimthong et al., 2008), this complex is an ionic complex and it crystallizes in monoclinic system space group P21/c. The structure consists of the discrete mononuclear [Ag(ptu)(PPh3)2]+cation and the NO3- anion which is similar to those [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997). A perspective view of the molecular structure of [Ag(ptu)(PPh3)2]NO3 with atomic labeling is given in Figure 1. The cation part contains silver(I) atom trigonally coordinated by two phospho­rus atoms from two tri­phenyl­phosphane molecules and one sulfur atom from N–phenyl­thio­urea molecule similar to found in those silver oxyanion complexes containing mixed PPh3/heterocyclic thione ligands (Aslanidis et al., 1997; Ghassemzadeh et al., 2004). The Ag–P bond lengths of 2.4645 (5) and 2.4693 (4)Å are similar to the values of 2.455 (1) and 2.447 (1) Å observed in [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997), however, these values are slightly different from the values of 2.458 (2) and 2.507 (2) Å compared to [Ag(TAMTTO)(PPh3)2]NO3.1.5THF (Ghassemzadeh et al., 2004) because of the massive and steric effect of TAMTTO heterocyclic ligand. The Ag–S bond length [2.5307 (7) Å] is shorter than in those complexes [Ag(PPh3)2(pymtH)]NO3 [2.573 (1)Å] and [Ag(TAMTTO)(PPh3)2]NO3.1.5 THF [2.592 (2) Å] (Aslanidis et al., 1997; Ghassemzadeh et al., 2004 ). The P(1)–Ag–P(2), P(1)–Ag–S(1) and P(2)–Ag–S(1) bond angles are 127.55 (1)° ,113.02 (1)° and 112.69 (1)°, respectively. Due to the steric crowding of six phenyl rings from two bulky tri­phenyl phosphane ligands and the π(CH)···Ag inter­action [3.314 Å] between the centriod of phenyl ring (C2—C7) of the N–phenyl­thio­urea and metal atom, the silver centre atom deviates from idealized trigonal planar with this atom lying ca 0.372 (1) Å out of the P2S plane. For the anion, although the oxygen atoms of the nitrate have no influence on coordination, they have great influence on the crystal packing of the complex. It is nearly planar with the bond angles around the nitro­gen atom ranging from 119.01 (1)-120.53 (1)° and N(3)–O bond distances are 1.231 (2) – 1.264 (2) Å.

Supra­molecular features top

For the crystal packing, each [Ag(ptu)(PPh3)2]+ cation is connected to another adjacent cationic part via hydrogen bonding inter­actions, N–H···O, which are observed between amino and amide groups and nitrate oxygen atoms generate a cyclic hydrogen bond inter­actions, two R22(8) graph sets for cationic-anionic inter­actions and one R44(8) graph set for anionic-anionic inter­action, [ N(1)–H(1A)···O(3)i : 2.877 (2)Å, N(1)–H(1B)···O(3)ii : 2.921 (2)Å, N(2)–H(2)···O(1) : 2.823 (2) Å and symmetry code : (i) x-1,y,z, (ii) -x+1,-y+1,-z+2] as depicted in Figure 2 and 3. In addition, the cationic parts are linked together by the CH···π inter­actions between the phenyl rings with the distance of 3.746 (2) Å for C35–H35···Cg2 and 3.531 (2) Å for C54–H54···Cg2 [Cg2 : C11–C16] generating the three dimensional supra­molecular network. All inter­actions are depicted in Figure 4.

Synthesis and crystallization top

The mixture silver(I) nitrate and tri­phenyl­phosphane in ethanol was refluxed at the temperature ca 60-70 °C for 2 h. After that, N-phenyl­thio­urea ligand was added to the clear mixture solution and then continued to reflux futher for 3 h. The clear filtration was kept and left to evaporate slowly at ambient temperature. After several days, colorless blocks were obtained. The melting point of the complex is 192-194 °C . Elemental analysis,calculated for [Ag(PPh3)2(ptu)]NO3 : C, 60.99;H, 4.52; N, 4.96; S, 3.78%, found: C, 65.16; H, 4.96; N, 5.16; S, 4.04%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The structures were solved by direct methods and refined by a full-matrix least-squares procedure based on F2. All hydrogen atoms were placed in geometrically idealised positions and refined isotropically with a riding model for both of amine N [N—H = 0.86 Å and with Uiso(H) =1.2Ueq(N)] and phenyl ring C-sp2[C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C)]. ;

Related literature top

For properties of mixed-ligand d10 metal(I) complexes, see: Oshio et al. (1996); Zheng et al. (2001); Sewead et al. (2003); Isab et al. (2010). For structural studies of mixed-ligand complexes of triphenylphosphane and thione ligands, see: Skoulika et al. (1991); Aslanidis et al. (1997); Ghassemzadeh et al.(2004); Nimthong et al. (2008); Isab et al. (2010).

Structure description top

Mixed-ligand complexes of group 11 metals dispaly many properties such as magnetism (Oshio et al., 1996); microporousity (Zheng et al., 2001); luminescence (Sewead et al., 2003) and anti­microbial activities (Isab et al.,2010). In our earlier work, we synthesized and characterized the neutral monomeric copper(I) complex containing mixed ligands of tri­phenyl­phosphane (PPh3: C18H15P) and N-phynyl­thio­urea (ptu : C7H8N2S), [CuI(ptu)(PPh3)2] (Nimthong et al., 2008). As part of our continuing studies in this area, we now describe the synthesis and structure of the title compound, [Ag(ptu)(PPh3)2]NO3 (Scheme I).

Unlike the previous complex mentioned above (Nimthong et al., 2008), this complex is an ionic complex and it crystallizes in monoclinic system space group P21/c. The structure consists of the discrete mononuclear [Ag(ptu)(PPh3)2]+cation and the NO3- anion which is similar to those [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997). A perspective view of the molecular structure of [Ag(ptu)(PPh3)2]NO3 with atomic labeling is given in Figure 1. The cation part contains silver(I) atom trigonally coordinated by two phospho­rus atoms from two tri­phenyl­phosphane molecules and one sulfur atom from N–phenyl­thio­urea molecule similar to found in those silver oxyanion complexes containing mixed PPh3/heterocyclic thione ligands (Aslanidis et al., 1997; Ghassemzadeh et al., 2004). The Ag–P bond lengths of 2.4645 (5) and 2.4693 (4)Å are similar to the values of 2.455 (1) and 2.447 (1) Å observed in [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997), however, these values are slightly different from the values of 2.458 (2) and 2.507 (2) Å compared to [Ag(TAMTTO)(PPh3)2]NO3.1.5THF (Ghassemzadeh et al., 2004) because of the massive and steric effect of TAMTTO heterocyclic ligand. The Ag–S bond length [2.5307 (7) Å] is shorter than in those complexes [Ag(PPh3)2(pymtH)]NO3 [2.573 (1)Å] and [Ag(TAMTTO)(PPh3)2]NO3.1.5 THF [2.592 (2) Å] (Aslanidis et al., 1997; Ghassemzadeh et al., 2004 ). The P(1)–Ag–P(2), P(1)–Ag–S(1) and P(2)–Ag–S(1) bond angles are 127.55 (1)° ,113.02 (1)° and 112.69 (1)°, respectively. Due to the steric crowding of six phenyl rings from two bulky tri­phenyl phosphane ligands and the π(CH)···Ag inter­action [3.314 Å] between the centriod of phenyl ring (C2—C7) of the N–phenyl­thio­urea and metal atom, the silver centre atom deviates from idealized trigonal planar with this atom lying ca 0.372 (1) Å out of the P2S plane. For the anion, although the oxygen atoms of the nitrate have no influence on coordination, they have great influence on the crystal packing of the complex. It is nearly planar with the bond angles around the nitro­gen atom ranging from 119.01 (1)-120.53 (1)° and N(3)–O bond distances are 1.231 (2) – 1.264 (2) Å.

For the crystal packing, each [Ag(ptu)(PPh3)2]+ cation is connected to another adjacent cationic part via hydrogen bonding inter­actions, N–H···O, which are observed between amino and amide groups and nitrate oxygen atoms generate a cyclic hydrogen bond inter­actions, two R22(8) graph sets for cationic-anionic inter­actions and one R44(8) graph set for anionic-anionic inter­action, [ N(1)–H(1A)···O(3)i : 2.877 (2)Å, N(1)–H(1B)···O(3)ii : 2.921 (2)Å, N(2)–H(2)···O(1) : 2.823 (2) Å and symmetry code : (i) x-1,y,z, (ii) -x+1,-y+1,-z+2] as depicted in Figure 2 and 3. In addition, the cationic parts are linked together by the CH···π inter­actions between the phenyl rings with the distance of 3.746 (2) Å for C35–H35···Cg2 and 3.531 (2) Å for C54–H54···Cg2 [Cg2 : C11–C16] generating the three dimensional supra­molecular network. All inter­actions are depicted in Figure 4.

For properties of mixed-ligand d10 metal(I) complexes, see: Oshio et al. (1996); Zheng et al. (2001); Sewead et al. (2003); Isab et al. (2010). For structural studies of mixed-ligand complexes of triphenylphosphane and thione ligands, see: Skoulika et al. (1991); Aslanidis et al. (1997); Ghassemzadeh et al.(2004); Nimthong et al. (2008); Isab et al. (2010).

Synthesis and crystallization top

The mixture silver(I) nitrate and tri­phenyl­phosphane in ethanol was refluxed at the temperature ca 60-70 °C for 2 h. After that, N-phenyl­thio­urea ligand was added to the clear mixture solution and then continued to reflux futher for 3 h. The clear filtration was kept and left to evaporate slowly at ambient temperature. After several days, colorless blocks were obtained. The melting point of the complex is 192-194 °C . Elemental analysis,calculated for [Ag(PPh3)2(ptu)]NO3 : C, 60.99;H, 4.52; N, 4.96; S, 3.78%, found: C, 65.16; H, 4.96; N, 5.16; S, 4.04%.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The structures were solved by direct methods and refined by a full-matrix least-squares procedure based on F2. All hydrogen atoms were placed in geometrically idealised positions and refined isotropically with a riding model for both of amine N [N—H = 0.86 Å and with Uiso(H) =1.2Ueq(N)] and phenyl ring C-sp2[C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C)]. ;

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Ag(ptu)(PPh3)2]NO3 complex. Displacement ellipsoids are shown at 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonding interactions of [Ag(ptu)(PPh3)2]NO3 complex (#i: x - 1, y, z, #ii: 1 - x, 1 - y, 2 - z, #iii: -x, 1 - y,2 - z).
[Figure 3] Fig. 3. The cyclic of hydrogen bonding interactions containing two R22(8) and one R44(8).
[Figure 4] Fig. 4. The three-dimensional supramolecular interactions in crystal packing.
(N-Phenylthiourea-κS)bis(triphenylphosphane-κP)silver(I) nitrate top
Crystal data top
[Ag(C7H8N2S)(C18H15P)2]NO3F(000) = 1736
Mr = 846.63Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.6113 (5) ÅCell parameters from 13930 reflections
b = 10.6431 (4) Åθ = 2.3–28.0°
c = 26.4365 (10) ŵ = 0.71 mm1
β = 96.068 (1)°T = 173 K
V = 3808.3 (2) Å3Block, colourless
Z = 40.27 × 0.14 × 0.08 mm
Data collection top
Bruker SMART CCD
diffractometer
8261 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Frames each covering 0.3 ° in ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1717
Tmin = 0.863, Tmax = 1.000k = 1414
44417 measured reflectionsl = 3434
9196 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0264P)2 + 2.6456P]
where P = (Fo2 + 2Fc2)/3
9196 reflections(Δ/σ)max = 0.003
478 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ag(C7H8N2S)(C18H15P)2]NO3V = 3808.3 (2) Å3
Mr = 846.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6113 (5) ŵ = 0.71 mm1
b = 10.6431 (4) ÅT = 173 K
c = 26.4365 (10) Å0.27 × 0.14 × 0.08 mm
β = 96.068 (1)°
Data collection top
Bruker SMART CCD
diffractometer
9196 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
8261 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.033
44417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
9196 reflectionsΔρmin = 0.26 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.30947 (2)0.80538 (2)0.87530 (2)0.01346 (4)
S10.27373 (3)0.65461 (4)0.94508 (2)0.01679 (9)
P10.48557 (3)0.81150 (4)0.86130 (2)0.01253 (8)
P20.18820 (3)0.97824 (4)0.86365 (2)0.01356 (9)
N10.10876 (11)0.54151 (15)0.96207 (6)0.0205 (3)
H1A0.05530.50010.95350.025*
H1B0.12490.56090.99340.025*
N20.13553 (11)0.54123 (15)0.87904 (6)0.0195 (3)
H20.08480.49260.87540.023*
N30.91546 (11)0.35396 (14)0.88996 (6)0.0200 (3)
O10.98030 (10)0.36618 (14)0.85981 (5)0.0285 (3)
O20.83834 (11)0.29694 (14)0.87678 (6)0.0339 (4)
O30.92984 (10)0.40319 (15)0.93362 (5)0.0320 (3)
C10.16649 (13)0.57551 (16)0.92682 (6)0.0166 (3)
C20.17639 (13)0.57559 (16)0.83349 (6)0.0165 (3)
C30.27222 (13)0.54423 (18)0.82506 (7)0.0203 (4)
H30.31290.50150.84980.024*
C40.30689 (14)0.57740 (19)0.77919 (7)0.0246 (4)
H40.37140.55800.77350.030*
C50.24611 (15)0.63894 (18)0.74210 (7)0.0244 (4)
H50.27000.66120.71170.029*
C60.14981 (15)0.66765 (17)0.75003 (7)0.0233 (4)
H60.10860.70800.72480.028*
C70.11484 (14)0.63599 (18)0.79586 (7)0.0212 (4)
H70.05020.65530.80130.025*
C110.56534 (12)0.68448 (15)0.88711 (6)0.0142 (3)
C120.66839 (13)0.69391 (16)0.88805 (6)0.0160 (3)
H120.69620.76590.87560.019*
C130.72891 (13)0.59703 (17)0.90730 (6)0.0168 (3)
H130.79700.60320.90700.020*
C140.68800 (13)0.49043 (16)0.92701 (6)0.0178 (3)
H140.72850.42460.93940.021*
C150.58661 (13)0.48238 (16)0.92812 (6)0.0178 (3)
H150.55960.41230.94250.021*
C160.52496 (13)0.57825 (16)0.90794 (6)0.0154 (3)
H160.45690.57160.90830.018*
C210.55372 (12)0.94570 (15)0.89023 (6)0.0136 (3)
C220.59006 (12)1.04369 (16)0.86294 (6)0.0161 (3)
H220.57781.04520.82770.019*
C230.64480 (13)1.13972 (17)0.88827 (7)0.0182 (3)
H230.66841.20560.86980.022*
C240.66425 (13)1.13752 (17)0.94081 (7)0.0195 (4)
H240.70281.20010.95750.023*
C250.62590 (14)1.04144 (17)0.96837 (7)0.0211 (4)
H250.63741.04081.00370.025*
C260.57049 (13)0.94653 (17)0.94329 (6)0.0187 (4)
H260.54430.88290.96190.022*
C310.50225 (12)0.81928 (15)0.79374 (6)0.0135 (3)
C320.57450 (13)0.75263 (17)0.77151 (7)0.0183 (3)
H320.61920.70310.79170.022*
C330.58030 (14)0.75957 (18)0.71953 (7)0.0213 (4)
H330.62880.71470.70500.026*
C340.51386 (14)0.83325 (17)0.68905 (7)0.0211 (4)
H340.51780.83770.65420.025*
C350.44182 (14)0.90008 (17)0.71074 (7)0.0208 (4)
H350.39740.94980.69040.025*
C360.43562 (13)0.89312 (17)0.76278 (7)0.0181 (3)
H360.38680.93790.77710.022*
C410.06641 (13)0.94975 (16)0.88407 (7)0.0166 (3)
C420.01987 (14)0.99999 (19)0.85980 (8)0.0263 (4)
H420.01791.04650.83010.032*
C430.10945 (14)0.9812 (2)0.87964 (9)0.0314 (5)
H430.16701.01570.86330.038*
C440.11355 (14)0.91173 (19)0.92340 (8)0.0270 (4)
H440.17350.89990.93670.032*
C450.02773 (15)0.8597 (2)0.94747 (8)0.0288 (4)
H450.03010.81240.97690.035*
C460.06196 (14)0.87786 (19)0.92784 (7)0.0242 (4)
H460.11920.84190.94400.029*
C510.23925 (12)1.10092 (15)0.90686 (6)0.0149 (3)
C520.33905 (13)1.12973 (16)0.90577 (7)0.0178 (3)
H520.37651.08450.88460.021*
C530.38268 (14)1.22486 (17)0.93583 (7)0.0216 (4)
H530.44921.24350.93470.026*
C540.32787 (15)1.29242 (17)0.96757 (7)0.0237 (4)
H540.35721.35680.98760.028*
C550.22880 (15)1.26367 (18)0.96936 (7)0.0237 (4)
H550.19201.30840.99100.028*
C560.18420 (14)1.16877 (17)0.93912 (7)0.0206 (4)
H560.11771.15040.94040.025*
C610.16834 (12)1.06410 (16)0.80372 (6)0.0153 (3)
C620.14519 (14)1.19195 (17)0.80202 (7)0.0200 (4)
H620.13531.23450.83180.024*
C630.13683 (14)1.25589 (18)0.75580 (7)0.0233 (4)
H630.12171.34110.75480.028*
C640.15107 (14)1.19286 (19)0.71128 (7)0.0230 (4)
H640.14591.23580.68050.028*
C650.17304 (14)1.06573 (19)0.71274 (7)0.0237 (4)
H650.18191.02310.68280.028*
C660.18175 (13)1.00199 (18)0.75869 (7)0.0192 (4)
H660.19670.91670.75940.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01252 (7)0.01365 (6)0.01457 (6)0.00079 (4)0.00304 (4)0.00008 (5)
S10.0166 (2)0.0204 (2)0.01331 (19)0.00489 (16)0.00144 (15)0.00208 (16)
P10.01206 (19)0.01232 (19)0.01342 (19)0.00013 (15)0.00226 (15)0.00091 (15)
P20.0125 (2)0.0139 (2)0.0147 (2)0.00012 (15)0.00337 (16)0.00002 (16)
N10.0186 (7)0.0264 (8)0.0170 (7)0.0071 (6)0.0043 (6)0.0003 (6)
N20.0160 (7)0.0250 (8)0.0178 (7)0.0085 (6)0.0036 (6)0.0010 (6)
N30.0158 (7)0.0192 (7)0.0258 (8)0.0008 (6)0.0057 (6)0.0009 (6)
O10.0226 (7)0.0375 (8)0.0274 (7)0.0110 (6)0.0122 (6)0.0076 (6)
O20.0222 (7)0.0362 (8)0.0449 (9)0.0150 (6)0.0110 (6)0.0154 (7)
O30.0241 (7)0.0499 (9)0.0235 (7)0.0120 (7)0.0093 (6)0.0110 (7)
C10.0168 (8)0.0157 (8)0.0175 (8)0.0003 (6)0.0033 (6)0.0020 (6)
C20.0171 (8)0.0184 (8)0.0142 (8)0.0059 (7)0.0033 (6)0.0021 (6)
C30.0192 (9)0.0233 (9)0.0179 (8)0.0016 (7)0.0004 (7)0.0015 (7)
C40.0212 (9)0.0318 (10)0.0221 (9)0.0022 (8)0.0086 (7)0.0056 (8)
C50.0331 (11)0.0249 (10)0.0161 (9)0.0078 (8)0.0076 (8)0.0037 (7)
C60.0300 (10)0.0204 (9)0.0183 (9)0.0027 (8)0.0032 (7)0.0008 (7)
C70.0168 (9)0.0253 (9)0.0214 (9)0.0018 (7)0.0007 (7)0.0029 (7)
C110.0164 (8)0.0131 (7)0.0129 (7)0.0005 (6)0.0013 (6)0.0007 (6)
C120.0174 (8)0.0162 (8)0.0150 (8)0.0011 (6)0.0037 (6)0.0011 (6)
C130.0144 (8)0.0223 (9)0.0134 (8)0.0021 (7)0.0010 (6)0.0021 (7)
C140.0231 (9)0.0159 (8)0.0136 (8)0.0049 (7)0.0012 (7)0.0013 (6)
C150.0244 (9)0.0123 (8)0.0164 (8)0.0021 (7)0.0010 (7)0.0011 (6)
C160.0159 (8)0.0159 (8)0.0144 (8)0.0018 (6)0.0020 (6)0.0010 (6)
C210.0114 (7)0.0135 (8)0.0161 (8)0.0015 (6)0.0022 (6)0.0014 (6)
C220.0169 (8)0.0187 (8)0.0128 (8)0.0017 (7)0.0027 (6)0.0001 (6)
C230.0183 (8)0.0175 (8)0.0194 (8)0.0029 (7)0.0051 (7)0.0014 (7)
C240.0186 (9)0.0173 (8)0.0220 (9)0.0014 (7)0.0009 (7)0.0050 (7)
C250.0288 (10)0.0213 (9)0.0127 (8)0.0016 (7)0.0007 (7)0.0005 (7)
C260.0244 (9)0.0168 (8)0.0155 (8)0.0005 (7)0.0043 (7)0.0027 (7)
C310.0139 (8)0.0137 (8)0.0127 (7)0.0033 (6)0.0012 (6)0.0001 (6)
C320.0187 (9)0.0188 (8)0.0172 (8)0.0037 (7)0.0010 (7)0.0002 (7)
C330.0233 (9)0.0237 (9)0.0177 (8)0.0033 (7)0.0064 (7)0.0028 (7)
C340.0273 (10)0.0220 (9)0.0139 (8)0.0034 (7)0.0022 (7)0.0007 (7)
C350.0234 (9)0.0203 (9)0.0177 (8)0.0018 (7)0.0023 (7)0.0026 (7)
C360.0163 (8)0.0194 (8)0.0187 (8)0.0023 (7)0.0024 (7)0.0001 (7)
C410.0157 (8)0.0154 (8)0.0195 (8)0.0010 (6)0.0052 (7)0.0014 (7)
C420.0187 (9)0.0299 (10)0.0304 (10)0.0013 (8)0.0036 (8)0.0087 (8)
C430.0140 (9)0.0384 (12)0.0419 (12)0.0027 (8)0.0038 (8)0.0075 (10)
C440.0184 (9)0.0279 (10)0.0370 (11)0.0036 (8)0.0127 (8)0.0025 (9)
C450.0280 (10)0.0315 (11)0.0292 (10)0.0013 (8)0.0134 (8)0.0067 (9)
C460.0187 (9)0.0277 (10)0.0273 (10)0.0044 (7)0.0074 (7)0.0059 (8)
C510.0166 (8)0.0140 (8)0.0140 (8)0.0008 (6)0.0014 (6)0.0021 (6)
C520.0204 (9)0.0167 (8)0.0169 (8)0.0002 (7)0.0042 (7)0.0001 (7)
C530.0221 (9)0.0205 (9)0.0219 (9)0.0063 (7)0.0012 (7)0.0018 (7)
C540.0344 (11)0.0175 (9)0.0181 (9)0.0032 (8)0.0020 (8)0.0022 (7)
C550.0294 (10)0.0224 (9)0.0199 (9)0.0038 (8)0.0055 (8)0.0043 (7)
C560.0202 (9)0.0229 (9)0.0192 (9)0.0020 (7)0.0042 (7)0.0015 (7)
C610.0117 (8)0.0179 (8)0.0165 (8)0.0014 (6)0.0027 (6)0.0017 (6)
C620.0212 (9)0.0206 (9)0.0184 (8)0.0013 (7)0.0033 (7)0.0000 (7)
C630.0243 (10)0.0200 (9)0.0253 (9)0.0001 (7)0.0007 (8)0.0057 (8)
C640.0176 (9)0.0336 (10)0.0180 (9)0.0039 (8)0.0021 (7)0.0077 (8)
C650.0208 (9)0.0346 (11)0.0162 (8)0.0033 (8)0.0041 (7)0.0027 (8)
C660.0174 (8)0.0211 (9)0.0194 (8)0.0014 (7)0.0028 (7)0.0024 (7)
Geometric parameters (Å, º) top
Ag1—P12.4645 (5)C24—H240.9300
Ag1—P22.4693 (4)C25—C261.387 (3)
Ag1—S12.5307 (4)C25—H250.9300
S1—C11.7098 (18)C26—H260.9300
P1—C111.8208 (17)C31—C321.392 (2)
P1—C311.8260 (17)C31—C361.398 (2)
P1—C211.8262 (17)C32—C331.387 (2)
P2—C411.8222 (18)C32—H320.9300
P2—C511.8235 (17)C33—C341.389 (3)
P2—C611.8241 (17)C33—H330.9300
N1—C11.331 (2)C34—C351.384 (3)
N1—H1A0.8600C34—H340.9300
N1—H1B0.8600C35—C361.389 (2)
N2—C11.339 (2)C35—H350.9300
N2—C21.426 (2)C36—H360.9300
N2—H20.8600C41—C421.385 (3)
N3—O21.231 (2)C41—C461.394 (3)
N3—O11.2568 (19)C42—C431.392 (3)
N3—O31.264 (2)C42—H420.9300
C2—C31.387 (2)C43—C441.379 (3)
C2—C71.389 (2)C43—H430.9300
C3—C41.392 (3)C44—C451.385 (3)
C3—H30.9300C44—H440.9300
C4—C51.380 (3)C45—C461.390 (3)
C4—H40.9300C45—H450.9300
C5—C61.383 (3)C46—H460.9300
C5—H50.9300C51—C561.395 (2)
C6—C71.389 (3)C51—C521.396 (2)
C6—H60.9300C52—C531.382 (2)
C7—H70.9300C52—H520.9300
C11—C161.396 (2)C53—C541.382 (3)
C11—C121.404 (2)C53—H530.9300
C12—C131.383 (2)C54—C551.388 (3)
C12—H120.9300C54—H540.9300
C13—C141.389 (2)C55—C561.387 (3)
C13—H130.9300C55—H550.9300
C14—C151.386 (3)C56—H560.9300
C14—H140.9300C61—C661.391 (2)
C15—C161.391 (2)C61—C621.396 (2)
C15—H150.9300C62—C631.393 (3)
C16—H160.9300C62—H620.9300
C21—C221.389 (2)C63—C641.386 (3)
C21—C261.397 (2)C63—H630.9300
C22—C231.394 (2)C64—C651.385 (3)
C22—H220.9300C64—H640.9300
C23—C241.387 (2)C65—C661.386 (3)
C23—H230.9300C65—H650.9300
C24—C251.389 (3)C66—H660.9300
P1—Ag1—P2127.556 (15)C26—C25—H25120.0
P1—Ag1—S1113.029 (15)C24—C25—H25120.0
P2—Ag1—S1112.694 (15)C25—C26—C21120.50 (16)
C1—S1—Ag1109.30 (6)C25—C26—H26119.7
C11—P1—C31105.62 (8)C21—C26—H26119.7
C11—P1—C2199.64 (8)C32—C31—C36118.88 (15)
C31—P1—C21105.30 (8)C32—C31—P1123.80 (13)
C11—P1—Ag1118.36 (6)C36—C31—P1117.27 (13)
C31—P1—Ag1111.81 (6)C33—C32—C31120.52 (16)
C21—P1—Ag1114.63 (5)C33—C32—H32119.7
C41—P2—C51103.41 (8)C31—C32—H32119.7
C41—P2—C61106.55 (8)C32—C33—C34120.23 (17)
C51—P2—C61101.36 (8)C32—C33—H33119.9
C41—P2—Ag1117.14 (6)C34—C33—H33119.9
C51—P2—Ag1104.48 (6)C35—C34—C33119.75 (17)
C61—P2—Ag1121.15 (6)C35—C34—H34120.1
C1—N1—H1A120.0C33—C34—H34120.1
C1—N1—H1B120.0C34—C35—C36120.19 (17)
H1A—N1—H1B120.0C34—C35—H35119.9
C1—N2—C2127.91 (15)C36—C35—H35119.9
C1—N2—H2116.0C35—C36—C31120.42 (16)
C2—N2—H2116.0C35—C36—H36119.8
O2—N3—O1120.45 (16)C31—C36—H36119.8
O2—N3—O3120.53 (15)C42—C41—C46119.18 (17)
O1—N3—O3119.01 (15)C42—C41—P2123.50 (14)
N1—C1—N2115.86 (16)C46—C41—P2117.26 (13)
N1—C1—S1119.06 (13)C41—C42—C43120.24 (18)
N2—C1—S1125.06 (13)C41—C42—H42119.9
C3—C2—C7120.16 (16)C43—C42—H42119.9
C3—C2—N2122.09 (16)C44—C43—C42120.54 (19)
C7—C2—N2117.64 (16)C44—C43—H43119.7
C2—C3—C4119.35 (17)C42—C43—H43119.7
C2—C3—H3120.3C43—C44—C45119.52 (18)
C4—C3—H3120.3C43—C44—H44120.2
C5—C4—C3120.43 (18)C45—C44—H44120.2
C5—C4—H4119.8C44—C45—C46120.28 (19)
C3—C4—H4119.8C44—C45—H45119.9
C4—C5—C6120.25 (18)C46—C45—H45119.9
C4—C5—H5119.9C45—C46—C41120.23 (18)
C6—C5—H5119.9C45—C46—H46119.9
C5—C6—C7119.74 (18)C41—C46—H46119.9
C5—C6—H6120.1C56—C51—C52119.07 (16)
C7—C6—H6120.1C56—C51—P2124.06 (13)
C2—C7—C6120.05 (17)C52—C51—P2116.84 (13)
C2—C7—H7120.0C53—C52—C51120.60 (17)
C6—C7—H7120.0C53—C52—H52119.7
C16—C11—C12119.03 (15)C51—C52—H52119.7
C16—C11—P1120.35 (13)C52—C53—C54120.24 (18)
C12—C11—P1120.58 (13)C52—C53—H53119.9
C13—C12—C11120.56 (16)C54—C53—H53119.9
C13—C12—H12119.7C53—C54—C55119.64 (17)
C11—C12—H12119.7C53—C54—H54120.2
C12—C13—C14120.01 (16)C55—C54—H54120.2
C12—C13—H13120.0C56—C55—C54120.54 (18)
C14—C13—H13120.0C56—C55—H55119.7
C15—C14—C13119.86 (16)C54—C55—H55119.7
C15—C14—H14120.1C55—C56—C51119.91 (17)
C13—C14—H14120.1C55—C56—H56120.0
C14—C15—C16120.54 (16)C51—C56—H56120.0
C14—C15—H15119.7C66—C61—C62119.03 (16)
C16—C15—H15119.7C66—C61—P2118.99 (13)
C15—C16—C11119.92 (16)C62—C61—P2121.89 (13)
C15—C16—H16120.0C63—C62—C61120.10 (17)
C11—C16—H16120.0C63—C62—H62119.9
C22—C21—C26119.17 (15)C61—C62—H62119.9
C22—C21—P1124.26 (13)C64—C63—C62120.18 (18)
C26—C21—P1116.56 (13)C64—C63—H63119.9
C21—C22—C23120.20 (16)C62—C63—H63119.9
C21—C22—H22119.9C65—C64—C63119.90 (17)
C23—C22—H22119.9C65—C64—H64120.1
C24—C23—C22120.30 (16)C63—C64—H64120.1
C24—C23—H23119.9C64—C65—C66120.05 (18)
C22—C23—H23119.8C64—C65—H65120.0
C23—C24—C25119.70 (16)C66—C65—H65120.0
C23—C24—H24120.2C65—C66—C61120.74 (17)
C25—C24—H24120.2C65—C66—H66119.6
C26—C25—C24120.06 (16)C61—C66—H66119.6
C2—N2—C1—N1172.88 (17)P1—C31—C32—C33177.53 (14)
C2—N2—C1—S18.7 (3)C31—C32—C33—C340.0 (3)
Ag1—S1—C1—N1147.45 (13)C32—C33—C34—C350.1 (3)
Ag1—S1—C1—N234.16 (17)C33—C34—C35—C360.3 (3)
C1—N2—C2—C361.7 (3)C34—C35—C36—C310.4 (3)
C1—N2—C2—C7122.0 (2)C32—C31—C36—C350.3 (3)
C7—C2—C3—C42.0 (3)P1—C31—C36—C35177.86 (14)
N2—C2—C3—C4178.19 (17)C51—P2—C41—C4299.52 (17)
C2—C3—C4—C51.1 (3)C61—P2—C41—C426.87 (18)
C3—C4—C5—C60.4 (3)Ag1—P2—C41—C42146.22 (15)
C4—C5—C6—C71.0 (3)C51—P2—C41—C4677.57 (15)
C3—C2—C7—C61.4 (3)C61—P2—C41—C46176.04 (14)
N2—C2—C7—C6177.76 (16)Ag1—P2—C41—C4636.69 (16)
C5—C6—C7—C20.1 (3)C46—C41—C42—C431.5 (3)
C31—P1—C11—C16117.34 (14)P2—C41—C42—C43175.56 (16)
C21—P1—C11—C16133.67 (14)C41—C42—C43—C440.4 (3)
Ag1—P1—C11—C168.77 (16)C42—C43—C44—C450.5 (3)
C31—P1—C11—C1265.03 (15)C43—C44—C45—C460.3 (3)
C21—P1—C11—C1243.97 (15)C44—C45—C46—C410.7 (3)
Ag1—P1—C11—C12168.87 (11)C42—C41—C46—C451.6 (3)
C16—C11—C12—C132.8 (2)P2—C41—C46—C45175.61 (16)
P1—C11—C12—C13179.50 (13)C41—P2—C51—C5611.67 (17)
C11—C12—C13—C141.5 (3)C61—P2—C51—C5698.60 (16)
C12—C13—C14—C151.1 (3)Ag1—P2—C51—C56134.76 (14)
C13—C14—C15—C162.4 (3)C41—P2—C51—C52170.39 (13)
C14—C15—C16—C111.0 (3)C61—P2—C51—C5279.34 (14)
C12—C11—C16—C151.6 (2)Ag1—P2—C51—C5247.30 (14)
P1—C11—C16—C15179.23 (13)C56—C51—C52—C530.6 (3)
C11—P1—C21—C22121.60 (15)P2—C51—C52—C53177.44 (14)
C31—P1—C21—C2212.36 (16)C51—C52—C53—C540.3 (3)
Ag1—P1—C21—C22110.96 (14)C52—C53—C54—C550.4 (3)
C11—P1—C21—C2657.49 (14)C53—C54—C55—C560.8 (3)
C31—P1—C21—C26166.73 (13)C54—C55—C56—C510.4 (3)
Ag1—P1—C21—C2669.95 (14)C52—C51—C56—C550.2 (3)
C26—C21—C22—C231.7 (3)P2—C51—C56—C55177.65 (14)
P1—C21—C22—C23177.36 (13)C41—P2—C61—C66106.80 (14)
C21—C22—C23—C240.7 (3)C51—P2—C61—C66145.35 (14)
C22—C23—C24—C252.3 (3)Ag1—P2—C61—C6630.55 (16)
C23—C24—C25—C261.6 (3)C41—P2—C61—C6276.64 (16)
C24—C25—C26—C210.8 (3)C51—P2—C61—C6231.20 (16)
C22—C21—C26—C252.4 (3)Ag1—P2—C61—C62146.00 (13)
P1—C21—C26—C25176.72 (14)C66—C61—C62—C630.7 (3)
C11—P1—C31—C329.27 (17)P2—C61—C62—C63175.88 (14)
C21—P1—C31—C3295.60 (15)C61—C62—C63—C640.2 (3)
Ag1—P1—C31—C32139.30 (13)C62—C63—C64—C650.4 (3)
C11—P1—C31—C36168.20 (13)C63—C64—C65—C660.7 (3)
C21—P1—C31—C3686.92 (14)C64—C65—C66—C610.2 (3)
Ag1—P1—C31—C3638.18 (14)C62—C61—C66—C650.4 (3)
C36—C31—C32—C330.1 (3)P2—C61—C66—C65176.21 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.022.877 (2)180
N1—H1B···O3ii0.862.172.921 (2)145
N2—H2···O1i0.861.972.823 (2)171
C35—H35···Cg2iii0.932.973.746 (2)142
C54—H54···Cg2iv0.932.823.531 (2)134
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.022.877 (2)180
N1—H1B···O3ii0.862.172.921 (2)145
N2—H2···O1i0.861.972.823 (2)171
C35—H35···Cg2iii0.932.973.746 (2)142
C54—H54···Cg2iv0.932.823.531 (2)134
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+2, z+2.
 

Acknowledgements

Financial support from the Center of Excellent for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education and Graduate School, Prince of Songkla University, are gratefully acknow­ledged.

References

First citationAslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). Inorg. Chim. Acta, 254, 277–284.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhassemzadeh, M., Sharifi, A., Malakootikhah, J., Neumuller, B. & Iravani, E. (2004). Inorg. Chim. Acta, 357, 2245–2252.  Web of Science CSD CrossRef CAS Google Scholar
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472–479.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSewead, C., Chan, J., Song, D. & Wang, S. (2003). Inorg. Chem. 42, 1112–1120.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkoulika, S., Aubry, A., Karagiannidis, P., Aslanidis, P. & Papastefanou, S. (1991). Inorg. Chim. Acta, 183, 207–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, S.-L., Tong, M.-L., Fu, R.-W., Chen, X.-M. & Ng, S.-W. (2001). Inorg. Chem. 40, 3562–3569.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds